#### Vector Angular Momentum

and Frames of Reference

### First - some clarification

#### The Bad News

- There is NO SUCH THING as velocity, torque, energy, angular momentum etc.
- There is only velocity relative to a reference frame, torque about an axis, energy compared to a zero point etc.

#### The Good News

- All the laws of physics apply regardless of which reference frame, zero point or axis we choose.
- And while your choice of reference frame won't affect your answer, a clever choice can make your calculation much easier.

### Angular Momentum

- What's the angular momentum of my fist?
- It all depends on where you choose your axis.
- None about itself, something about my head, more about Pluto.
- All are correct. But some are more useful that others...

## Weird motion of the bike wheel

- When you try to turn it one way, it moves off at right-angles!
- Why?





 By the right-hand rule, the angular momentum points out to the left.

$$L = I\omega = \frac{1}{2}mr^2\omega$$



#### But now - take away one support cable. A torque is now applied to the spinning mg wheel. Let's chose the cable as our axis. The magnitude of the torque is dmg, but what is its direction?

#### Clicker Question

#### • In what direction is the torque?

remember -

$$\overline{\tau} \equiv \overline{r} \times \overline{F}_{net}$$



In this case *r* is the vector from the hinge to the centre of mass of the wheel, and F is the gravitational force on the wheel (a vector pointing downwards of magnitude mg).

#### Look at the two vectors



To take the cross product, slide them until they start in the same place.

#### Look at the two vectors





- The magnitude of the cross product is the magnitude of the first (d) times the magnitude of the second (mg) times sin(θ), which is 1 in this case.
- The direction comes from the right-hand rule.
- Start the four fingers at the first vector (r) then rotate to the second (F). This can only be done in the orientation shown - so the torque points out of the page towards us.



#### Look down from above



- And remember that torque is rate of change of momentum.
- So to work out what the angular momentum will be in a short while  $\Delta t$ , add  $\tau \Delta t$  to L,

#### Vector addition



- Do it the usual way.
- And we see that the axis of rotation rotates anticlockwise (as seen from above.

#### So this explains it

- This explains the weird behaviour of the spinning bike wheel.
- Or indeed anything spinning.
- When you try to rotate it perpendicular to the spin axis, it always moves off at right angles to both the push and the spin axis.

### Riding a Bike...

- Always seems a very implausible activity...
- Why doesn't everyone just fall off?
- And why is a bike more stable when it is moving - preferably fast?

### In which direction is the angular momentum of my front wheel?

To my right? Left? Forwards? Backwards?
Up? Down?

### Think about the angular momentum of the front wheel

• It's a vector pointing to your left as you cycle along.

# Now - imagine I'm falling off to the right...

 In what direction is the torque applied by my weight and the normal force?

#### Use the right-hand rule



• Torque is forward.



- Add this to the wheel's angular momentum - and it rotates the wheel to the right.
- Thus turning into the direction of fall and preventing the fall...
- Nice theory not clear it works...

### Angular momentum conserved.

- And it is a vector.
- So a spinning object tends to keep its axis in the same direction regardless of how it moves, unless a torque is applied to it.
- This means it can act as a sort of compass.
- Set a wheel spinning and it will hold its direction.

#### Gyrocompass - uses rotation to hold a direction

- More accurate than magnetic compasses.
- Not affected by metal in ships, and can work in space away from Earth's magnetic field.



### Gyroscopic gun-sight

- Used to better orientate guns or bomb aiming systems.
- Used, for example, in battleship fire-control systems to keep track of horizontal despite rough seas.
- Very high precision was required - even in World War I, battles such as Jutland were conducted at ranges of over 20 km.



## But what really decided both world wars...

- Torpedoes
- Which cannot work without
  gyroscopic
  navigation to
  keep them on track.



### Used to orientate rockets and satellites.

 The Hubble Space Telescope uses six gyroscopes to determine exactly where it is pointing, to allow sharp images.



## Can be used to change orientation

- By adjusting the speed or orientation of spinning wheels, you can rotate an object such as a space-probe.
- How? Overall angular momentum is conserved - so if you change the angular momentum of these wheels one way, an equal and opposite change is made to the rest of your object.

### International space station has four "Control moment gyroscopes"





#### If it didn't have these...

• The very small torques applied to the space station by air drag would continuously build up over time, until it was spinning so fast it would fly to pieces.

### Inertial Navigation Systems

- Combine gyroscopes with accelerometers to keep continuous track of what direction you are pointing and how you have moved.
- Very big military technology due to applications in ballistic missiles - this is the only form of navigation that cannot be jammed.





#### ICBM

Delivery in 30 minutes or less, or the next one's free.



### State of the art - MEMS vibrating structure gyroscopes

- MEMS = micro-electro-mechanical System.
- Basically a machine etched into Silicon using the same techniques as chip manufacture.
- Not as accurate as rotating gyroscopes but can be made very small and light (etched onto the surface of a silicon chip, for example).
- Don't actually use angular momentum at all.
- The physical principle is very simple: a vibrating object tends to keep vibrating in the same plane as its support is rotated.
- Used in some game controllers.

### Halteres

- Some insects use the same principle to help them navigate in the dark.
- Vibrating weights on little antennae...



### Precession VPython simulation

### This is called "Precession"

And has immense implications in all sorts of areas.

### Magnetic Resonance Imaging





## This works via precession

- Use a strong magnetic field to line up all the magnetism of all the hydrogen nuclei.
- Zap them with an electromagnetic pulse hence applying a torque.
- The torque causes all the nuclei to precess, due to their angular momentum.
- This generates electromagnetic radiation we can measure and map.

# Why horoscopes are wrong

- The Earth precesses.
- This is because it is not a sphere the Earth bulges around the middle, due to its rotation (the equatorial diameter is 42 km greater than the polar diameter)
- The gravity of Sun and Moon acts on this bulge to cause a net torque.



Thursday, 31 March 2011

# This causes the axis to precess

- Which means that exactly what star is overhead at a given time changes.
- Thus pushing the constellations out of position.
- Most horoscopes refer to your star signs as defined in ancient Babylon - but the Earth has precessed since then and star signs are no out by months.

# That's the end of Angular Momentum

- Key points everything is an analogue of the normal force/momentum principle.
- Torques and angular momentum depend on the perpendicular distance.
- They are vectors, at right-angles, using the right-hand rule.