More Collisions, Action and Reaction, and Systems

(Systems is the really important bit)

CPR deadline problem

- Due to the start of Daylight savings in California, the deadline for CPR submission changed from 9pm to 10pm yesterday without me knowing!
- I've given everyone an extension until 10pm tonight.
- Let me know if anything else goes wrong...

Zoho Viewer problem

- Seems to mangle some (but not all) pdf files from windows computers.
- Sometimes they come through with mangled or missing diagrams. Sometimes they don't come through at all - you get a spinning wheel.
- But files do seem to "save" correctly so do this.
- e.g. <u>http://viewer.zoho.com/docs/vcaVbP</u>
- Best not to use Zoho more reliable alternatives exist and are explained in the instructions.

Collisions and Vectors Continued

- Remember we talked about collisions, momentum being conserved, and dealing with vectors graphically.
- Now lets talk about vectors done by components.

Using components

- An incredibly powerful way to deal with vectors.
- Revolutionised all of physics when it was invented (300 year ago, by Rene Descartes).
- You have to pick some "coordinate axes"
- Then work out "the components" of each vector along each axis.
- Then just add-up or subtract these components as scalars.
- It allows you to turn one vector problem into three scalar problems.

Pick your axes...

- The answer will be the same regardless of which axes you choose.
- So choose whatever set of axes make your calculation easiest.

Converting a vector to components

• Trigonometry

Watch where θ is...

• Trigonometry

Converting components back into a vector

 If you have components (x, y, z), the magnitude m of the vector is (Pythagorus)

$$m = \sqrt{x^2 + y^2 + z^2}$$

• The angle to the x axis (if z=0) is:

Example

You are skateboarding up to the corner of a building. You collide with a heavier person going faster coming the other way. Do you hit the lamppost?

 M_2

Initial momentum

Final Momentum

All the momenta are VECTORS. The most common mistake in doing questions like this is to forget to treat them as vectors.

In the upward direction, $M_1V_1 = (M_1 + M_2)V_3 \cos(\theta)$

H

In the leftwards direction, $M_2V_2 = (M_1+M_2)V_3 \sin(\theta)$

To see if we will hit the lamp-post, we need to determine θ . Divide bottom equation by top to eliminate V₃.

 $(M_1 + M_2)V_3$

So we get...

$$\tan \theta = \frac{M_2 V_2}{M_1 V_1}$$

$$\theta = \arctan \frac{M_2 V_2}{M_1 V_1}$$

TO find how fast we hit

- We could substitute θ back into one of the equations and solve for V₃.
- Or there is a mathematical trick square both equations and add them together, and make use of the fact that $\sin^2\theta + \cos^2\theta = 1$

Answer

 $(M_1 V_1)^2 + (M_2 V_2)^2 = (M_1 + M_2)^2 V_3^2 (\sin^2 \theta + \cos^2 \theta)$

$$V_3 = \frac{\sqrt{(M_1 V_1)^2 + (M_2 V_2)^2}}{M_1 + M_2}$$

In general - write down the initial and final momentum.

Set each component of momentum to be equal before and after the collision.

Key Facts

- Momentum is conserved in collisions.
- If energy is conserved too, the collision is elastic and the objects bounce back at the same relative velocity.
- If objects are not all moving along the same line, you have to treat momentum as a VECTOR.

Systems And Newton's Third Law

A paradox

Which is larger?

- Imagine the horse is moving at a steady speed. Which is larger?
- The force by which the horse pulls the cart, or the force by which the cart pulls back on the horse?
- Clicker Question

Equal

- Newton's Third Law
- Every action has an equal and opposite reaction.

What about acceleration?

- If the horse was accelerating the cart (say starting from rest and breaking into a gallop) -
- Are the forces still equal?
- Clicker Question: By yourself.

They are equal

- But if the forces are equal and opposite, as Newton's third law says they must be.
- Equal and opposite forces cancel out.
- So there can be no net force.
- So how can the cart accelerate?

How to resolve this?

- Systems.
- The Momentum principle is that:

"In a given collection of objects (a system), momentum is conserved unless an external force is applied to this system."

What is a system?

- All the conservation laws (momentum, energy and angular momentum) apply everywhere.
- So you can define any system you like.
- The trick is to be self-consistent.

What systems shall we use?

Horse only? What forces apply?

Clicker Question...

Horse only? What forces apply?

Why is friction forwards?

- We know it must be.
- As otherwise the net force would be backwards and the horse could not continue at a uniform speed.
- But why? Doesn't friction oppose motion?
- Any ideas? Discuss.

Imagine the road were ice

 If the horse's hooves were slipping, in which way would they move relative to the ground?

legs are trying to go backwards

Friction stops them from doing so...

Car accelerates

- What are the forces?
- Is there a friction force?
- If so does it point forwards or backwards?

It points forward

- (there is probably also some drag which points backwards. But if its accelerating, the net force must be forwards)
- Otherwise it wouldn't be accelerating...

Car on Skateboard

- One way to think about it. Imagine the car was resting on a skateboard.
- When you put your foot on the accelerator, which way will the skateboard go?
- That tells you the direction of the force the car applies to the road.

the road pushes back in the opposite direction

Car decelerates

- What are the forces?
- Is there a friction force?
- If so does it point forwards or backwards?

Backwards

- Now you are using the brakes.
- If you skidded, the wheels would be moving forward along the road.
- So friction must be backwards.

So two ways to work it out.

- Draw a free-body diagram. In which direction does the force have to point to make the object behave as observed?
- Work out which way the hooves or tyres would push the ground if the ground were a skateboard. Friction pushes back.

Meanwhile, back to the cart

- It will accelerate if...
- the forward friction at its hoofs is greater than the backward pull from the cart.

Make the CART the system

What forces apply here?

• Draw a free-body diagram.

It will accelerate if...

• The forward force from the horse is greater than the backward friction force on its wheels.

Must be equal and opposite.

But they are acting on different systems

- These forces were equal and opposite and if they were both acting on the same system, they would not accelerate it.
- But if we choose either the horse or the cart as our system, only one applies to it.

How about the yolk connecting them?

Free-body diagram of Yolk

Force from horse

It will accelerate if...

• The forward force from the horse is greater than the backward pull from the cart.

Horse and cart?

Monday, 21 March 2011

Internal forces

- In this case the force between horse and cart, and vice versa, is *internal to the system -* it applies from one part of the system to another, and can hence be ignored.
- Only count forces applied to the system from outside.
- Due to Newton's third law, any internal forces will cancel out.

Or many other possibilities

- For example the horse and road combined - or the horses' nose, or a cubic centimetre half way up the yolk...
- Regardless if the forces ON THIS SYSTEM balance, it will not accelerate.
- If they do not balance, it will.

What you need to do

- Draw free-body diagram, to make it clear to yourself which forces act on which bodies.
- Define your system. And stick to it.
- The laws of physics will apply to any system you choose - so choose the one that makes your calculation easiest.

Big source of mistakes

- I strongly urge you to try and get in the habit of thinking "what is my system?", "What forces are acting on this system?"
- Not doing this is a huge source of error and frustration.

Conclusions

- Newton's third law (every action has an equal and opposite reaction) applies always and everywhere.
- But don't confuse forces with damage or acceleration - if a bug hits your windscreen, the forces are equal and opposite, but the acceleration and damage are not!
- And remember that the action and reaction apply to different systems. Being careful to think through your systems is a very very good habit!