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Course news

• Labs start tomorrow

• Clickers will now be used for assessment. 
You need to have a “U” in front of your 
student number in the clicker. If you can’t 
join the class, come see me now!

• Class reps - introduce yourselves.
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Course Reps 
Nominated

• Samantha Cheah

• Raj Srilakshmi

• Ellen Rykers

• Lachlan McGinness

• Sarah Biddle
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Momentum and Force

• We will talk about two special cases - 
circular motion and oscillation.

• Then we will start dealing with the general 
case.

Monday, 7 March 2011



Circular motion

• Remember - if a force is applied that is 
always sideways, an object will move in a 
circle.
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Example - Orbits

• If one object (say the Space Station) is in a 
circular orbit around another, much larger 
object (say the Earth), the larger object’s 
gravity must be supplying the necessary 
(centripetal) force to keep the space 
station moving in a circle.
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Distance r

Velocity v

Gravitational Force F =
GMm

r2
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GMm

r2
=

mv2

r

Cancel masses and one of the r’s

GM

r
= v2

Rearrange to find v

To stay in a circular orbit, this gravitational force 
must supply the necessary centripetal force F =

mv2

r

so...

v =
�

GM

r
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Centrifugal Force

• A particularly confusing topic
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Clicker Question
1. Before and after the 

collision, there is a 
leftward force pushing you 
into the door

2. Starting at the time of the 
collision, the door exerts a 
leftward force on you

3. Both of the above

4. Neither of the above

You are a passenger in a car 
and not wearing your 
seatbelt.  Without 
increasing or decreasing its 
speed, the car makes a 
sharp right turn, and you 
find yourself colliding with 
the left-hand door. Which is 
the correct analysis of the 
situation?
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The Answer

• The door exerts a force on you.

• You are trying to continue 
moving in a straight line, and the 
door pushes into you sideways, 
forcing you to turn.
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Centrifugal Force
• Centrifugal force is even more imaginary 

than centripetal force.

• There is no outward force when you go 
around a circle.

• You are just trying to continue in a straight 
line and being prevented from doing so by 
some force (which might be due to gravity 
or friction or the door, acts towards the 
centre and has magnitude mv2

r
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SImilarly for “g”-forces

• When you speed up or slow down there is 
no “g”-force. You are being pushed by your 
chair or the dashboard.

• This push is what is changing your speed.
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Crucial Facts

• Special case - a force that is constant in 
magnitude but perpendicular to the 
motion.

• Result - motion in a circle.

• The force points at the centre of the circle.

F =
mv2

r

Monday, 7 March 2011



Spring force

• This is another special case - a situation 
you almost never meet in the real world,  
but which can be solved without the need 
for a computer.
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Spring Forces
SImple Harmonic Motion
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“Ideal Spring”

• It has a “Natural” or 
“unextended” length.

• Whenever you pull it 
away from this length 
by a distance D, it 
exerts an opposing 
force F = −kD

where k is the “Spring Constant”
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Vertical weight 
calculation

• Example - a 50 g weight is 
hung from a spring of 
constant k=3.0 N/m.

• By how much does it 
stretch?
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Draw a free-body 
diagram for the weight

• This is a diagram just 
showing the weight, as a 
dot, and the forces 
ACTING ON IT

Spring force

Weight
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As it’s hanging still...

• Forces must balance. So 
the weight and the spring 
force must be the same

Spring force

Weight

mg = kD

Rearrange to get D

D =
mg

k

So this gives how much the spring stretched.
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Why are we worried 
about this?

• Because while ideal springs are rare, forces 
which always pull towards a point are 
common.

• Such as chemical bonds

• Any elastic behaviour

• So it’s worth getting used to this sort of 
force.
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Motion attached to a 
spring

• We’ve seen how to calculate a static 
situation with a spring.

• But what if something is moving while 
attached to a spring?
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Vertical spring-mass 
system

• VPython simulation, spring_vertical.py
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Oscillation

• The net force is towards the equilibrium 
position.

• It accelerates towards it.

• But thanks to momentum, it overshoots. 
The force is now backwards and slows it to 
a halt.
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Energy

• A constant interplay between kinetic and 
spring energy (with a little gravitational 
potential energy thrown in for good 
measure)
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Very general behaviour

• Whenever you get any sort of force which 
tends to push things back into place.

• Usually need a computer to solve exact 
motion, but if you assume the spring is ideal 
(seldom the case in reality) you can solve it.
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Analytic Solution

• I’ll show you the mathematical solution in 
this idealised case.

• But first - what would you expect to 
determine how rapidly it oscillates?

• What makes it oscillate faster?
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Clicker Question

• What makes it oscillate faster?

• The spring constant?

• The mass?
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Answer

• A stiffer spring - pushes back harder

• A lighter mass - accelerates faster.

Monday, 7 March 2011



Horizontal

• To make the maths simpler, let’s take a 
horizontal spring-mass system, with the 
mass sliding along a frictionless surface.

• (the result is the same as for a vertical 
system but the argument is a bit simpler)
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Coordinates

• Let’s call the position of the weight x, and 
measure it from the spring’s rest position.

• (Once again you can use any axes you like 
and will get the same result, but it makes 
the calculation messier).

x
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Force

• The only horizontal force acting is the 
spring force

x

F = −kx

As we know the force, we can work out the 
acceleration using F=ma

a = − k

m
x
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Calculus

• So we know the acceleration. But what 
about the velocity v or position x?

• Luckily, we know that acceleration is 
defined as the rate of change of velocity. 

• So
a =

dv

dt
= − k

m
x
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Position

• And velocity is defined as the rate of 
change of position, so

v =
dx

dt

This means that acceleration a is

a =
dv

dt
=

d
�

dx
dt

�

dt
=

d2x

dt2

So acceleration is what you get when you 
differentiate position twice with respect to time.
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So we now know that...

• k and m are just constants. So this is telling 
us that if you differentiate x twice, you get 
x back again, albeit multiplied by a constant.

• Can you think of any functions that when 
you differentiate themselves twice are 
unchanged (apart from a constant?)

d2x

dt2
= − k

m
x
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What appears in its own 
second differential?

• How about Cosine?

• Let’s try x = A cos(ωt), where A and ω 
(omega) are constants, currently unknown.

• Let’s try differentiating this twice
x = A cos (ωt)

dx

dt
= −Aω sin (ωt)

d2x

dt2
= −Aω2 cos (ωt) = −ω2x
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It works!

• Compare
d2x

dt2
= −ω2x

with the spring acceleration equation we got earlier

d2x

dt2
= − k

m
x

Identical, as long as 
we make 

ω =
�

k

m
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So the answer is...

• This whole derivation should remind you of 
the projectile motion one.

• Write down F=ma, and integrate twice to 
get position versus time.

• This is called “simple harmonic motion”

x = A cos (ωt) where ω =
�

k

m
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What are ω and A?
Period T!

A
m

p
lit

u
d
e 

A
!

t!

x!

A is the amplitude of the oscillation - how far it goes 
ON ONE SIDE of the equilibrium position
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ω?
Period T!

A
m

p
lit

u
d
e 

A
!

t!

x!

ω is the angular  frequency, and is measured in radians 
per second.  As 2π radians is a complete circle, this 
corresponds to the period T above.
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Period and Frequency

• The period T (time to repeat) is

• The frequency (in cycles per second, also 
known as Hertz, Hz) is  

T =
2π

ω

f =
1
T

=
ω

2π

So the angular frequency ω =
�

k

m
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Very Useful

• You will come back to these quantities time 
and time again, as they are fundamental in 
waves, interference and all sorts of 
vibrations.
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Resonance

• One final feature.

• An oscillating system like this is peculiarly 
responsive to outside wiggles at its natural 
frequency.

• This is called resonance.
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Vpython simulation
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Tacoma Narrows
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SkyMapper

• Currently being 
commissioned

• Has a resonance 
problem. The 
cryocoolers are 
resonating with 
the secondary 
mirror (we think)
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Carbon Dioxide

• VPython simulation
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Key Points

• Whenever you get a force that pushes back 
towards some equilibrium position, you 
probably get vibrations.

• You can work out the frequency of 
oscillations if you know how strong the 
restoring force and how big the inertia of 
whatever is being vibrated.
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