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Background
One of the most important skills that any professional astronomer needs is the ability to 
very quickly get a highly approximate answer to a problem, without getting bogged down in 
details. This has many purposes:

• Most research projects start off with a bright/crazy idea, along the lines of `I wonder if a 
black hole could be producing these flashes' or `perhaps that galaxy is full of red 
supergiant stars, which is why it is so red'. Most of these bright ideas turn out to be 
wrong, irrelevant or unimportant. For most astronomers, 1 in every 10 ideas turns out to 
be correct, productive or exciting: really brilliant astronomers may have a ratio as large 
as 1/5. Any astronomer who has all his/her ideas work is obviously doing boring, 
unadventurous science. Given that most ideas do not work, it is vital to be able to tell 
quickly whether it is worth pursuing a particular idea: if you work out every idea in 
enormous detail, you will never get to the few interesting ones. This is the most common 
mistake that young researchers make: they get bogged down in some horribly 
mathematical detailed calculation, full of nasty integrals and messy algebra, and in the 
end discover that the effect they are computing is 1027 too small to be detected, 
something they could have worked out on the back of an envelope right at the beginning 
if they'd tried, thus saving them a month of work. So, whenever starting a research 
project, try and work out the answer very very approximately. If your idea is crazy, you 
will quickly find out. Only if this initial quick guesstimate comes out with an interesting 
answer should you bother doing the calculation in detail.

• No really complex calculation or computer simulation ever gives the right answer first 
time (unless you are an incredibly persnickety, careful, anally precise individual, in which 
case you are probably enrolled either in accountancy or maths, and not in astronomy). 
Worse still, for real research, there is no answer in the back of the textbook, and no 
higher authority to give you a high mark for getting it right (God may know, but she isn't 
telling). What this means is that you should never believe the result of any detailed 
calculation unless it roughly agrees with some simple  approximate estimate that you can 
do on the back of an envelope, and  understand fully. This is a second common mistake 
of young researchers: they get a result, and go out and publish it, do vast amounts of 
work relying on it, while all the time it was clearly wrong. I see the same problem all the 
time in undergraduate assignments: someone comes up with an answer that is clearly, 
wildly, hopelessly  wrong (e.g. the mass of some star is 0.7 kg, or an asteroid is travelling 
at 1010  m s-1 (faster than light), or the Earth took 1011 years to form (much longer than 
the age of the universe). Always check your answers for plausibility: even if you don't 



have time to re-do them properly, you will get credit for saying “this is clearly garbage, 
but I don't have time to fix it”.

• In most real situations, many different effects are operating. For example, consider the 
elementary physics problem of a falling object. You normally calculate how long it takes 
to hit the ground considering only gravity, height and maybe air resistance. In reality, 
however, its course will be influenced by radiation pressure, the Earth's magnetic field, 
the gravitational pull of Jupiter, the curvature of space-time, coriolis force, cosmic ray 
bombardment, and the perfume being worn by the person who dropped it, to name but a 
few. Most of these effects are tiny: far too small to have a measurable effect. 
Nonetheless, many people waste vast amounts of time computing, in tedious detail, 
these tiny and unimportant effects. A `back-of-the-envelope' calculation can often tell 
you, right away, that one of these effects is far too small to be worth calculating properly.

Hints for doing `Back-of-the Envelope' estimates
Doing guesstimate type calculations is actually far harder than doing things properly, in 
enormous detail. You need a really strong grasp of physics, intuition about which parts of a 
problem are important, and imagination to dream up short-cuts. The only real way to learn 
is through practice, and you will get plenty of that in this course. What I can give you is a 
few hints, based on the personal experience of many professional astronomers. 
Everybody has their own style for doing these simple calculations: you should develop 
your own, but hopefully these hints will give you somewhere to start.

Hint 1: Don't worry about factors of 2, π, etc.

The aim of most approximate calculations is to get an answer that is correct to about an 
order of magnitude (a factor of ~10). So don't worry about poxy little things like factors of 
two, or π, or 4/7. Throw away most constants! The area of a circle is r2, the gravitational 
field of the Earth is 10 m s-2, etc.
Another useful approximation is:
sinθ ~ θ ~ tanθ
as long as the angles are smallish (θ < 15° ) and measured in radians.

Hint 2: Guess numbers

Every professional astronomer should have memorised a bunch of basic numbers, like the 
typical density of rock, mass of a star, radius of a galaxy, and so on. When you find that 
some new number is needed, you can often guess its value by comparison
with numbers you already know.

For example, if you are working out the pressure at the base of Olympus Mons, as a first 
guess, assume that Mars rocks have the same density as Earth rocks. Go further - 
assume that all solid bodies in the universe have the same density. With the exception of
neutron stars, you will be correct to about a factor of five.

Exercise 1:
Roughly how many piano tuners are there in New York?



Exercise 2:
The car-park outside a shopping mall is completely full. You are cruising around in your car 
waiting for a space to become free. Roughly how long will you typically have to wait?

Exercise 3:
If you connect a car engine up to a generator, how many light bulbs could it keep 
illuminated?

Hint 3: Tinker with the geometry

Feel free to be very cavalier with the geometry of the problem you are working on. For 
example, the Milky Way galaxy has a complex flattened shape, but for many purposes it 
can be approximated as a point source. Assume that mountains are square blocks, that 
asteroid are cubes or spheres: whatever makes the calculation easier.

One specific hint: replace smoothly varying functions (which have to be integrated over) 
with discrete functions. For example, consider the issue of whether a star passing near the 
solar system will disturb the planets in their orbits. As the star approaches, its gravitational 
pull slowly increases, constantly changing in direction, making the calculation of the 
perturbation of a planet's orbit tricky. Instead, why not just assume that the planet appears 
from nowhere, popping into existence at a distance from the solar system equal to its 
closest approach in the real situation. Keep it there for a time roughly comparable to the 
time needed to pass the solar system, and  then make it disappear again. This is now an 
easy problem to solve: the gravitational pull of the star is always from the same direction 
and always has the same strength, and the answer won't be too far wrong.

Exercise 4:
Roughly how far must you look in any particular direction before your line of sight passes 
through a galaxy?

Hint 4: Use Ratios

Ratios are wonderful things: they avoid the need to work out constants and fiddle with 
many details. For example, the gravity on the surface of a planet of radius r and density ρ  
is

g = 4Gπrρ ∝ rρ

Now, we know g on earth (=9.81  m s-2). What is g on Mars? Well, Mars is rocky, just like 
the Earth, so its density is going to be about the same. Its radius is 1/3 that of the Earth, so 
on Mars, g ~10/3 ~ 3. We never needed to know G, or the density and radius of either 
planet.

Exercise 5:
If the maximum possible height of a mountain is set by the pressure at which the rocks at 
its base become plastic, and Mt Everest is roughly at the maximum height mountains can 
have on Earth, estimate the maximum possible height of mountains on Mars.

Exercise 6:
Prove that all four-legged animals can jump to the same height.



Hint 5: Use Conservation Laws

One of the many wonderful things about Physics is all the lovely conservation laws: 
conservation of energy, mass, momentum, angular momentum, etc. By judicious use of 
these laws, you can get an approximate answer to many problems, while leaving out all 
the messy details.

For example, as a giant molecular gas cloud shrinks down to form stars and planets, the 
details of gas flows, turbulence, shocks and accretion are so complex that not even the 
world's fastest supercomputers come close to simulating it. Nonetheless, somehow all this 
messy physics must produce a final solar system with the same angular momentum as
the cloud had at the beginning!

Exercise 7:
Deep in space, out near Pluto, lies the spaceship Canberra, Australia's first interstellar 
probe. Its weight, including the 27 astronauts, 46 sheep, 15 kangaroos, and 45 tonnes of 
meat pies, is 1327 tonnes. It has a nuclear reactor on board, which can generate a total 
energy output of 1018 J, in the process using up its entire fuel (50 kg of anti-matter, in the 
form of anti-tim-tams). This energy will be used to accelerate 40 tonnes of xenon gas, 
which will be fired out backwards to provide the rocket thrust.
How long will it take the Canberra to arrive at Alpha Centauri, and will they have run out of 
meat pies by then?

Hint 6: The Method of Dimensions

The laws of physics are supposedly universal: they work for everyone. This means that 
every valid equation should work equally well, regardless of the units you use (as long as 
they are self consistent). Thus

F = ma

should work regardless of whether you use Newtons, Kilograms and metres per second, or 
some other units (mass in Australian standard sheep, speed in furlongs per fortnight?).

This means that the units of both sides of any valid equation must always be the same. 
You can often use this fact to work out the form of an equation, without any knowledge of 
the physics. Play around with the various plausible terms in the equation (which you can 
usually guess) until you come up with something with the same units (dimensions) on both 
sides of the equals sign. This will hopefully be correct, apart from some dimensionless 
constant (like 2 or π).

One hint on using this method: if you are doing a calculation that will have a numerical 
answer, it is sometimes tempting to substitute numbers in place of symbols early in the 
analysis. This is bad for two reasons: firstly, it makes it impossible to use the method of 
dimensions to check your results. Secondly, if you find you got a silly answer, it is hard to 
see where you went wrong, and to recalculate things. It is almost always best to keep 
things as symbols right through to the end of the algebra, and only then to substitute in 
numbers.

Exercise 8:



A starship is ploughing through interstellar space. How much force (per unit area) does the 
interstellar gas exert on the spacecraft, slowing it down? This pressure might depend on 
the density ρ of the interstellar gas, the velocity v of the spacecraft, on the time t it has 
been flying, on the mass m of the individual gas particles, etc.

Ignoring all dimensionless constants, use the method of dimensions to derive an 
expression for the drag pressure.

Hint 7: Plausibility Checking

There are several ways to check your results without re-doing a whole tedious and 
complex calculation. The method of dimensions, discussed above, is one such method. 
Another is to check that your solution gives a correct result in some situation where you 
know the answer. For example, if you derive an equation which tells you the thickness of 
the atmosphere on a planet of a given mass and composition, use it to calculate the 
thickness of the atmosphere of the Earth, and see if it comes out right.

Another very powerful method is to check that the functional form of the equation is 
correct. For example, say that you derived an equation relating the mass m of a star to its 
luminosity L. Imagine that the equation you derived was
l ∝1.05 + m3 + 4π / (3− m)
with m measured in units of solar masses and l in units of solar luminosities.

Do you think this could be correct? If you look at the equation, you can easily see two 
problems. Firstly, what happens if m is very small? Say a star with a mass on 1kg? It 
clearly should not be very bright. But the equation above says that even if m=0, the 
luminosity is still more than 5 solar luminosities. This clearly makes no sense: if this
equation were correct, then even pebbles would outshine the sun. Secondly, what 
happens if m=3? The last term in the equation goes to infinity. This is saying that stars with 
three times the mass of the Sun are infinitely luminous. This doesn't seem to make much 
sense. Worse: it gives the wrong answer when m = 1 (the Sun should presumably have  a 
luminosity of one solar luminosity…) and for m just larger than three, it gives a negative 
answer (how can anything have a negative luminosity?).

So: always check the functional form of your answer to make sure that it is behaving in the 
correct way (another good reason for leaving your algebra in the form of symbols right until 
the end). If they don't seem to make sense, go back and think very hard about what you've 
done. Sometimes the calculation is right, and the answer that you thought made no sense 
is actually telling you something revolutionary about the universe (this is how the Hawking 
radiation from black holes was  discovered), but usually it is telling you that you've stuffed 
up your calculation somewhere…

Exercise 9:
Our view of many parts of the universe is obscured by interstellar dust: tiny grains of rocky 
or icy materials floating in interstellar space. It is therefore very important to work out by 
how much this dust obscures our view.
Consider a dust cloud of thickness d, composed of dust grains, each of radius r. There are 
n dust grains per unit volume, throughout the cloud. Behind the cloud is a star, emitting 
light of intensity I0. This light hits the cloud, and some of it is absorbed: only a smaller
intensity I makes it through the dust cloud, and is detected by our telescopes.



One astronomer claims to have calculated how I and I0 are related. The claim is that
I
I0

= 1− dnr2

Using the methods described in this section, work out whether this equation can be correct 
or not.

Exercise 10:
Can the following equations be correct? Without actually deriving anything, assess the 
plausibility of the following equations, and give your considered opinion on whether they 
can possibly be correct.  Try not to make the problems any harder than they have to be!

I. White dwarf stars are supported by the pressure of relativistic electrons within them. It 
has been suggested that the momentum p of these electrons is given by the equation

p2 = E2

c2
− me

2c2  where E is the mean electron energy, m_e the electron mass, and c 

the speed of light. Is this result plausible?

II. If a galaxy is observed at some redshift z, it has been suggested that the time that its 

light has been travelling towards us t is given by the equation t = 1
H0

z − 4
3
q0z

2⎧
⎨
⎩

⎫
⎬
⎭

where 

H0 is Hubble's constant and q0 is the deceleration parameter (half the ratio of the 
mass density in the universe to the critical mass density of the universe). Is this 
equation plausible?

III. A black hole of mass M is passing through a gas cloud of density ρ at a relative speed 
v. It has been claimed that any gas that passes within radius r of the black hole will be 
sucked into a vortex of gas around it, and eventually consumed. The radius is given 
by the equation r = 2GMρ

v2
where $G$ is the gravitational constant. Do you believe this 

result?

IV. A quasar at redshift z has a total power-output of L. The distance to the quasar, as 
measured along the light path, is D. If we point a telescope at it, we detect an amount 
of power per unit area (of the telescope primary mirror) F, given by the equation 

F =
L

4πD2 (1+ z)2
Is this equation plausible?

Advanced Exercises

Using all the tricks you've learned (as well as any dirty tricks you can dream up by 
yourselves) have a go at these three difficult problems.

1. A group of aliens from Alpha Centauri were enraged by the quality of the TV broadcasts 
that the Earth is beaming into space. They sent a spacecraft here to punish us for our 
crass taste in soap operas. The spacecraft has just deployed a giant orbiting sun-
screen that blocks all sunlight from reaching the Earth. How long do we have to 
improve the quality of our programs before thePacific Ocean freezes?



2. How often does a passing star come sufficiently close to the Sun that it disrupts the 
orbit of the planets?

3. An asteroid, one kilometre in diameter, lands in the North Atlantic. How high will the 
tidal waves be?

Conclusions

I hope I've convinced you that the art of doing “back-of-the-envelope” calculations is a very 
valuable one. They cannot take the place of proper calculations, of the sort you are doing 
in your physics and maths assignments, but most professional astronomers spend more of 
their time on these guesstimates than they do on full-blown calculations.

Doing these approximate calculations is admittedly very hard: you have to really 
understand the physics, and rote learning of techniques and equations won't help you with 
these. You will get plenty of chances to practice, however, as all parts of the 
undergraduate astrophysics curriculum involve these guesstimates (including all 
PHYS1011 assignments).


