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Inference from Data.
Bootstrapping and
Monte-Carlo techniques
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Bayesian Basics...

The intuitive frequentist definition of probability is that P(A) is a
number between 0 and 1 representing the limit for an infinite
number of identical experiments of the fraction of experiments
that achieve result A.

An infinite number of experiments is not very practical.

The Bayesian approach is to be more nuanced — probability
represents the likelinood of a statement being true, even if the
idea of an approximately infinite number of experiments seems
irrelevant (e.g. Cosmology, where there is only one Universe).

If we want to get pedantic, by a statement we really mean that
an elementary event is part of a set.

Example: A>0. Out of the set of all possible universes our
Universe (the event) is part of the set with A>0.
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Assumptlons and Basic Stats

Strict Bayesians do not believe in “Unconditional probability”.

The probability of an event always depends on conditions. E.g. a dice roll
has well-defined probability if the dice is fair (not weighted) and the throw is
reasonable.

We will write P(A) as a probability given assumptions defined elsewhere
The probability of one statement given another is written:
P(A|B)

Conditional probability is very useful in writing and reading science papers,

as it enables information beyond a paper’s scope to be used, and a reader
to make their own conclusions.

Examples:

a) P(AJA)=1

b) If AUB=C and AB=0@, then P(A|C) + P(B|C)=1 and P(A|B)=0.
c) P(AB) =P(A|B)P(B)
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Bayes’ Theorem
The key to Bayesian probability is Bayes’ theorem, which

can be written: P(4)P(D|A)
P(A|D) = P(D) or
P(Ay)P(D|Ay)
YkP(Ar)P(D|Ag)
Derived in any good textbook, D can be any event, butis
written as D because it is typically a particular set of data.

P(A) is the priorand P(A|D) is the posterior.

With many data sets D;, Bayes’ theorem can be repeated,
with one posterior becoming the next prior.

P(Ag|D) = for mutually exclusive Ay
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Bayes' Theorem with Probability Densities

* |n astrophysics, many parameterizations are
continuous, meaning that our probabilities are
really n-dimensional probability densities, e.g.:

Plz <X <z+dz)= f(x)dz
fp(:vo) (Do)
[ fp(z)P(D|x)dx
« Data are often (approximated by) Normal
distributions, i.e..  p(D|z) o exp(—x2/2)

V=%, (my(2) — di)?

2
Ok

f(@o| D) =
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Likelihood

* You'll often hear of likelihood instead of probability.
The conventional definition for a continuous random
variable 0 is:

L(O{Dx}) = F({Dx}0)
= Il f(Dyg|0) for independent data,
= exp(—x?%/2) independent data, Normally distributed errors

 Note that likelihoodisn’t normalised.
* The Bayesian likelihood needs a prior (e.g. last

TR LOUDRY) = Fu0)F (DL}
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Uninformed Priors

As the last example shows... ignoring priors can give
the wrong answer. There are some typical examples
(read up on Jeffreys priors if you want a formal
derivation).

Unbounded numbers that can be positive or negative
— a Uniform distribution, i.e. no need to write anything
down.

Scale factors that have to be positive — a Logarithmic
distribution with: f(a) a 1/a

Angles on a sphere, e.g. inclination in [0,180], a
sinusoidal distribution with: f(i) = sin(i)/2.
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Inverse Problems with Uncertain Data

« Often a data set is reasonably removed from what
we're trying to learn. E.qg.

1. Observed positions of a binary star on the sky can be
determined from an orbital solution... but an orbital solution
IS non-trivially determined from the measurements of
positions.

2. Interferometric measurements can be determined from a
true object brightness distribution, but (esp. with self-cal
etc) there is not necessarily a unique image corresponding
to interferometric data.

3. A CMB power spectrum and SNla laws can be determined
from a cosmology, but there is no formula to invert this.

9
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Marginalisation

* Most inverse problems are phrased as problems of
computing likelihood.

« Sometimes, many of the parameters are nuisance
parameters, and the term P(D|M) involves the
probability product rule and marginalisation, i.e..

P(DIM) = [ P(D, $|M)do,

P(D|M) = / P(D|¢, M)P(¢|M)dep

10
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Comparing Models

* |If you have two models to compare, often the
probability ratio is more intuitively useful than the

probability.
 |If only 2 models are being considered, then:
P(D|My, I)P(Mi|I)
(D|M, I)P(Mi|I) + P(D| My, I)P(Ma|I)
* More generally, we can consider a probability ratio

(odds ratio) R, and a Bayes’ factor K:
R— P(Mi|D) P(D|M,) P(M1) P(M)

= POLID) ~ P(D|My) POMy) — P(Mp) ™

P(Mi|I) = Iz

11
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Famous Example: Tegmark (2004)

PHYSICAL REVIEW D 69, 103501 (2004)

Cosmological parameters from SDSS and WMAP

Max Tegmark,l’2 Michael A. Stragss,3 MichaelnR. Blanton,4 Kevg)rk Abazajian,snScott Dodelson,6;7 Havard Sandvik,1

a cosmological constant without tilt (n,=1), running tilt, tensor modes, or massive neutrinos. Adding SDSS
information more than halves the WMAP-only error bars on some parameters, tightening 1o constraints on the
Hubble parameter from h=~0.74"0%5 to h~0.707003, on the matter density from ,~0.25+0.10 to Q,,
~0.30+=0.04 (10) and on neutrino masses from <11 to <0.6 eV (95%). SDSS helps even more when

* One of many early-2000s papers on Bayesian
cosmological parameters, taking many data sets
together and marginalising over unknown data.

12
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Hubble parameter h

0 0.2 0.4 0.6
Matter density Q_
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... and marginalisation...
P(DIM) = [ P(D,¢|M)d

P(D|M) = / P(D|, M)P(¢|M)d¢s

(marginalisation can also be for continuous random variables)

* The catch is that integrals are often highly multidimensional.
How can we compute them efficiently?

(NB “parameters” above sometimes @, sometimes 6)

14



Australian

,  National
s University

Monte-Carlo Integration

 |f we want to integrate a function f of a real variable
over an interval, we can approximate the integral by
a sum;

350
300 |
250 | ‘,
200 | -___R_L__-

>
150

b 1 M
/a f(x)dx ~ Ve 7Z:;f(acz) for {x;} € [a, b] 100 |

50 }
0

0 2 - 6 8 10

 |If we choose the x values regularly, this is rectangle
integration (similar to the trapezoidal rule).

* |If we choose the x values randomly (Uniformly

distributed), this is Monte-Carlo integration.
15
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Monte-Carlo Integration

* Monte-Carlo integration is obviously ! .
useless in 1D. P A g

05F/ o e © ¢ o ©
* |In N computations in M dimensions, the N S
error in a trapezoidal-rule like integration is  °f * °
proportional to N-¢M, ¢ ¢* .

0.5} . e o
« Monte-Carlo uncertainties just go as N-"2. .

« This means that in more than 4 YL o5 o0 o5 1

dimensions, Monte-Carlo is a good idea.

* E.g. Volume of a 10-dimensional
hypersphere of radius 1. Should be 1m°/120.

(point out the problem... most the points lie
outside the hypersphere)

16
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I\/Ionte Carlo Integration with Non-
Uniform distributions

Integrals that are a product of a complex function and a probability
distribution can be computed like:

o0 M
/_oo f(z)g(z)dx ~ % Z f(z;) for {z;} distrubuted as z; + G ~ g(x)

=1

This may seem easy if e.g. g is a Gaussian, but how far can we take the
idea of complex distrubutions for our {x;}?

17
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Monte-Carlo Markov Chains

* A Markov Process is something where the future depends on
the present but not the past [ P(future | present) = P(future |
present,past)]

A Markov Chain is a discrete Markov process where the next
step in the sequence (of numbers or vectors) depends only on
the present step.

» Markov Chain Monte Carlo is a way of creating a Markov Chain
where, in the limit of infinite time, the distribution of parameter
vectors 6 match the posterior likelihood.

L(0{Dx}) = fpr(0)f({ Dk }10)

18
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 From less than half an orbit,

can we find the dynamical
mass a T dwarf binary?

(NB paper submitted and
accepted without 2008 data)

300 E """" "‘ """""""""""""""" RARRRRRRE
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http.//adsabs.harvard.edu/abs/2008ApdJ...689..436L
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Dynamical mass
M=a3/P? changes
little with different
orbits.

M = f(6)
Parallax dominated
the uncertainties.

Different
“reasonable” priors
gave nearly the
same answer.
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Metropolls Hastings with Gibbs Sampler...

The simplest way to compute a chain is with the MH algorithm.

 The simplest MH variant is the Gibbs Sampler, where each dimension k
has its own step size s, and our parameters 6 are approximated by the
chain X(t).

* Note that this algorithm always goes “downhill” and sometimes “uphill” in
chi-squared space.

Randomly choose a dimension k£ € {1, ..., N} and direction D € {—1, 1}.
Create a new trial element Y = {X1(¢), ..., Xx(t) + D X sg,..Xn(t)}.
Compute g < %
Get a random number r < R ~ [0, 1]
if r < g then
X(t+1)«Y
else
X(t+1) + X(t)
end if

S R A O o e

23
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Metropolis-Hastings Algorithm

The general MH algorithm can make e.g. variable step sizes.
E.g. from http://arxiv.org/pdf/1202.3665v4.pdf, with:
X ~0

p(X) ~ L(O|{Dx}) = fpr(0) f({Dx}[0)

Algorithm 1 The procedure for a single Metropolis-Hastings MCMC step.

Draw a proposal Y ~ Q(Y; X (t))
g < [p(Y) Q(X(2);Y)]/[p(X(8)) Q(Y; X (2))] // This line is generally ezpensive
r < R~ [0,1]
if r < g then
X(t+1)«Y
else
X(t+1)« X(t)
end if

24
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Tricks with Metropolis-Hastings

Unless you know you start at the global minimum (and arguably even if
you do), MCMC requires a “burn-in” time to randomize the starting
location.

Step sizes in the Gibbs sampler can’tbe too large or too small — for
optimal convergence, you wantto accept new steps about half the time.

Finding credible intervals which are Bayesian confidence intervals
requires care in wording. E.g. no standard on using the posterior mean,
median or mode (maximum likelihood/MAP) for the “best guess”
parameter.

To get reliable results, you have to make sure the chain runs for many
correlation lengths.

If you have multiple solutions in totally different parts of parameter
space, you need a better algorithm or annealing.

Complex distribution and pretty plots need more steps.

26
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Affine-Invariant Monte-Carlo

In the Liu/Dupuy/Ireland work, we used a trial chain, then chose
new Metropolis-Hastings directions as linear combinations of
parameters using principle component analysis on the trial
chains.

This works, but is regarded as dodgy because the algorithm as
a whole violates the Markov property.

A better idea is to find an algorithm that works equally well on
any linear combination of parameters.

These are trickier to code... but luckily other people have coded
them for us! E.g. emcee which is in anaconda.

27
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Insert Python Example Here

emcee

= The MCMC Hammer

emcee is an extensible, pure-
Python implementation of
Goodman & Weare's Affine
Invariant Markov chain Monte
Carlo (MCMC) Ensemble
sampler. It's designed for Bayesian
parameter estimation and it's

really sweet!

Feedback

Feedhack is ereatlv annreciated. If

€IMNCee

Seriously Kick-Ass MCMC

emcee is an MIT licensed pure-Python implementation of Goodman & Weare’s Affine Invariant

Markov chain Monte Carlo (MCMC) Ensemble sampler and these pages will show you how to use

it.

This documentation won’t teach you too much about MCMC but there are a lot of resources
available for that (try this one). We also published a paper explaining the emcee algorithm and

implementation in detail.

emcee has been used in quite a few projects in the astrophysical literature and it is being actively

developed on GitHub.

29
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Summary

 Integrals in Bayesian inverse problems are often stupidly
difficult to compute. The solution is Monte-Carlo integration.

* In most situations, Monte-Carlo Markov Chain integration is
fastest, because it computes P(D|0) for parameters 6 only in
the region where they are most likely given the data D.

 Although writing your own code for the Metropolis-Hastings
algorithm is super-fun and relatively easy, once you get to
affine invariant ensemble MCMC, and you want
parallelizable code, it is easier to use pre-made tools e.g.
emcee.

30



