

Python in astronomy + Monte-Carlo techniques

Michael Ireland (RSAA)

Interpreted languages in astronomy

- For complex data analysis, we want to:
- Interact with our data an interpreted language helps.
- 2. Be moderately fast, and have an option to be very fast.
- 3. Have the ability to write and test complex code more quickly than our competitors.
- 4. Have great astronomy libraries.
- 5. Gain skills relevant for employment.

What are the options and their popularity?

- Yorick (unknown language with some die-hard fans)
- IDL (ranked between #51 and #100)*.
- Julia (ranked #47 and rising)
- R (ranked #18)
- MATLAB (ranked #15)
- Python (ranked #5)
- * Rankings from http://www.tiobe.com/tiobe-index/.

Python is the right combination of career-relevant skills for students/postdocs, speed and ease of use.

https://gooroo.io/GoorooTHINK/Article/16225/

Python – the good and bad

- Python is free, with the first version with community support python 2.0 (2000).
- Python is *minimalist* in many aspects of the language. There are only 34 keywords in the global namespace (many of which you'd never use).
- Python has *lightweight object-oriented* programming. Lightweight because there is no explicit C++ style declarations (no *public, private, virtual, overloaded functions, pointers...*)
- Python is designed from the ground up for powerful data structures: lists, dictionaries and tuples (and sets).
- However, Python requires external modules to have more than basic functionality. If only all useful modules were packaged and available in a neat way...

Demo python here

Use a Python distribution or package manager

- Most popular for Mac and Windows is probably anaconda (https://www.continuum.io/downloads)
- Anaconda comes with astropy, which is a great general purpose astronomy package (V1.0 last year).
- Under Ubuntu, you can just use apt-get.
- Most additional packages can be installed with pip, e.g. pip install sick (Andy Casey's spectroscopic inference crank)
- Given that python is open-source, many packages are on github or other public repositories.

Most Important Packages

- Numpy: From 2006*, a set of structures and routines designed to make python roughly as powerful as Matlab.
- Scipy: Mostly wrappers for powerful libraries such as LAPACK, plus other bits and pieces.
 From 2001, but still version "0.17".
- Matplotlib: A great 2D plotting package.
- Astropy: version 1.2.1 only a few years old in a useable form.

All of these are on github, and you can also contribute to python itself if you are keen (in C)

- numpy example from the command prompt.
- "vectorised" code style and speed
- N-body example code using the semiimplicit Euler's method:
 - Update velocity to timestep (n+1)
 - Use velocity at timestep (n+1) to update position a timestep (n)
 - Conserves energy.

Exercise (non-assessed)

- If you are not a python expert yet:
 - Learn python for fun, e.g.https://learnpythonthehardway.org/book/
 - Play with the N-body code. Try a different algorithm, better plotting...
 - Read in part of Gaia DR1. Download and plot distributions of your favourite type of star, with:

```
from astropy.table import Table
...or...
from astroquery.vizier import Vizier
```

Small assignment given out on Thursday.