
ASTR 4020 / 8020: Diffuse Matter and Star Formation

Class 8 Notes: Ionisation and recombination II

In the previous class we understood the basic mechanics of how atoms are ionised and
recombine. Our goal in this class is to put that information to use, in order to understand
the equilibrium ionisation state of the ISM. We will do so in two limiting cases: when the
main ionisation process is collisional, and when it is photoionisation. We will also calculate
the expected observational signatures of systems in ionisation equilibrium.

I. Collisional ionisation equilibrium

First consider a hot gas where collisional ionisation is the dominant ionisation process,
balanced by radiative recombination as the dominant recombination process. In equi-
librium, the rates of ionisation and recombination must match for every species, so we
have

kcinen(Xn+) = krrnen(X(n+1)+), (1)

where the k’s are the rate coefficients for collisional ionisation and radiative recombi-
nation. Thus in equilibrium the ratio of the number of atoms in the two ionisation
states is given by

n(Xn+)

n(X(n+1)+)
=
krr

kci

. (2)

Recall that we showed earlier that the collisional ionisation rate coefficient when elec-
tron energies are near the ionisation threshold is approximately

kci ≈ Cπa2
0

(
8kBT

πme

)1/2

e−I/kBT , (3)

where I is the ionisation potential.

For radiative recombination, we can estimate the rate using the Milne relation. Again,
recall that we showed that the radiative recombination rate cross section for electrons
of energy E is related to the photoionisation cross section by

σrr(E) =
g`
gu

(I + E)2

Emec2
σpi(hν = I + E). (4)

As for hydrogen, we can compute the total recombination rate coefficient simply by
integrating σrr(E) over a Maxwellian distribution of electron energies. However, to do
this we would have to know σpi(ν), either from theory or from laboratory measurement.
For hydrogen we have the former, but for most other species we must rely on the latter.

While this is the most accurate approach, and it is the one that people take to generate
detailed predictions, we can obtain reasonably good approximate results analytically.
These provide us with useful rules of thumb. First, let us rewrite the photoionisation
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cross section in terms of an oscillator strength. Recall that the oscillator strength is
related to the cross section by

σ(ν) =
πe2

mec
fφν . (5)

Thus we can define the oscillator strength fpi for photoionisation by∫ ∞
I

σpi d(hν) =
πe2

mec
hfpi. (6)

Next, recall the approximate dependence of σpi on frequency: σpi ∝ (hν)−3. This leaves
out features due to ionisation edges and similar effects, but it is not a bad broad-brush
estimate. If we approximate σpi(E) = σpi(I)(hν/I)−3, then we have

πe2

mec
hfpi = σpi(I)I3

∫ ∞
I

(hν)−3 d(hν) = σpi(I)
I

2
=⇒ σpi(I) =

2πe2

mec
fpi
h

I
. (7)

Inserting the approximation σpi(I + E) = σpi(I)I3/(I + E)3 into the Milne relation
gives us an estimate for the radiative recombination cross section:

σrr(E) =
g`
gu

(I + E)2

Emec2

[
2πe2

mec
fpi
h

I

(
I

I + E

)3
]

=
g`
gu

(
2πe2h

m2
ec

3

)
fpi

I2

E(I + E)
(8)

Using this estimate, let us compute the radiative recombination rate coefficient:

krr =

(
8kBT

πme

)1/2 ∫ ∞
0

σrr(E)xe−x dx (9)

=
g`
gu

(
2πe2h

m2
ec

3

)
fpi

(
I

kBT

)2

eI/kBTΓ (0, I/kBT ) , (10)

where Γ(0, x) is an incomplete gamma function. In the limit I � kBT , which is gener-
ally the regime where we’re interested in computing collisional ionisation equilibrium
(for reasons we’ll see in a moment), we can Taylor expand this to

krr ≈
g`
gu

(
2πe2h

m2
ec

3

)
fpi

I

kBT
. (11)

Now that we have the recombination rate coefficient, we are in a position to figure out
the conditions under which the gas will change from predominantly being in ionisa-
tion state Xn+ to predominantly X(n+1)+. Comparing the collisional ionisation and
radiative rate coefficients, we have

n(Xn+)

n(X(n+1)+)
=
krr

kci

≈ 4πα3 g`
gu

fpi

C

I

kBT
eI/kBT , (12)

where α = e2/~c ≈ 1/137 is the fine structure constant. The temperature at which
this ratio is unity, i.e. where there are equal numbers of atoms in the two ionisation
states, is given implicitly by the solution to

I

kBT
eI/kBT =

C

4πfpi

gu
g`

1

α3
(13)
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For C ≈ 1, gu ≈ g`, and fpi ≈ 1/2 (a typical value), the solution is I/kBT = 10.6.
Thus a good rule of thumb is that the gas becomes 50% ionised when the temperature
reaches kBT = I/10. This justifies our earlier approximation that I � kBT . It
also makes a point that is not so obvious: even at temperatures where the typical
particle has a kinetic energy a factor of 10 below the ionisation potential, we still
expect very significant levels of ionisation. This is because there is a tail of particles
at higher energies that can create ions. Applying this result to hydrogen, for which
I/kB = 1.6× 105 K, we expect 50% ionisation at the substantially lower temperature
of ∼ 1.6× 104 K.

Finally, a note of caution: our calculation omitted dielectronic recombination. As a
result, for those multi-electron atoms for which dielectronic recombination is significant,
the ionisation fraction at a given temperature will be less – possibly significantly less
– than the estimate we just derived.

II. Photoionisation equilibrium

We now consider cases where the main ionisation process is photons rather than col-
lisions. Such regions are characteristically found around hot stars or similar sources
of ionising photons, and are known as H ii regions, since their dominant component is
H ii.

A. The Strömgrem sphere

The basic model of H ii regions we will adopt was developed by Bengt Strömgren
in the 1930s. We consider a uniform medium with number density of H nuclei nH,
at the centre of which is placed a source of ionising radiation with a luminosity
Q0 photons s−1 with energies above 13.6 eV. The photons ionise the hydrogen
around the source.

We can solve this problem approximately using the following very simple idea: the
cross section of neutral hydrogen atoms to ionising photons is huge, so the mean
free path of ionising photons through a predominantly neutral region is negligibly
small. For this reason, let us approximate that the medium consist of a spherical
volume centred on the source that is fully ionised, which is filled with ionising
photons, and around it a medium that is fully neutral, where no ionising photons
penetrate. The radius of this volume is called the Strömgren radius, Rs, and the
volume is know as a Strömgren sphere.

Note that this approximation is only good if the ionising photons have energies
that are not too large compared to 13.6 eV, because the cross section drops rapidly
with energy. Thus the Strömgren sphere is a good model for ionisation driven by
hot stars, where the ionising photon energies only go up to a few times 13.6 eV,
but not for photoionisation driven by compact objects whose emission is mostly
in X-rays; we will not treat the latter case in this class, but it can be handled
using the same basic idea.

Returning to the Strömgren sphere case: in equilibrium every ionising photon
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must be absorbed within the ionised volume – otherwise it would strike the neutral
gas on the border and ionise it, expanding the ionised region. The absorption is
provided by neutral hydrogen atoms that are created inside the ionised volume
via recombinations. We approximate that every atom created by recombination
immediately encounters an ionising photon, absorbing it and ionising again. Thus
in equilibrium over a given time period one neutral atom must be created for
every ionising photon injected, i.e., the recombination rate throughout the ionised
volume must match the ionising luminosity.

This gives us a simple condition for RS: balancing recombinations against ionisa-
tions, we have

Q0 =
4

3
πR3

SαBn
2
H =⇒ RS =

(
3Q0

4παBn2
H

)1/3

= 9.8× 1018Q
1/3
0,49n

−2/3
2 cm,

(14)
where we have assumed full ionisation, so nH = nH+ = ne, the numerical evalua-
tion is for a temperature of T = 104 K (used to set αB), Q0,49 = Q0/1049 s−1, and
n2 = nH/100 cm−3. The temperature is typical of H ii regions, and the ionising
luminosity is typical of O stars. We have also used the case B recombination
coefficient, to be consistent with our assumption that ionising photons have short
mean free paths. We’ll check that in a moment.

First, let’s check if our assumption of steady state ionisation is reasonable. Sup-
pose that the source suddenly turns on. The time it will require to ionise the
region is simply limited by the supply of ionising photons, and is roughly the
number of ions to be created divided by the rate at which photons are supplied:

tion =
(4/3)πR3

SnH

Q0

=
1

αBnH

=
1.2 kyr

n2

. (15)

Should the source suddenly turn off, the time it will take the nebula to recombine
is the same, since the recombination rate per proton is αBnH. In comparison, the
timescale over which gas can be expected to move is the sound crossing timescale,

tsound =
RS

cs
= 240Q

1/3
0,49n

−2/3
2 kyr, (16)

where we have used cs =
√

2kBT/mH = 13 km s−1 at T = 104 K. Thus ionisation
equilibrium will be established much faster than the gas can be expected to move
around.

Strömgren spheres are detectable in various ways, including by hydrogen recom-
bination lines and by free-free emission. The emission measure averaged over the
projected area of the sphere is

〈EM〉 =
1

πR2
S

∫ RS

0

2πr

(∫
n2

H ds

)
dr =

n2
H

πR2
S

∫
dV =

4

3
n2

HRS. (17)
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B. Neutral gas in H ii regions

The Strömgren Sphere is the 0th-order approximation to the structure of an H ii
region. Now let us consider a first-order approximation in which we actually solve
for the ionisation structure. We continue to use the case B approximation, we
continue to use spherical symmetry, we continue to assume ionisation equilibrium,
and for simplicity we assume that the ionising spectrum consists of photons with
median energy hν, and we neglect changes in the spectral distribution of the
photons as they propagate through the H ii region. The neutral cross section at
this median energy is σpi.

Let Q(r) be the ionising photon luminosity passing through the shell at radius
r. Photon conservation demands that any change in Q(r) as the photons cross
the shell from r to r + dr be due to photon absorptions within the shell, which
must occur at a rate equal to the recombination rate in order to maintain ion-
isation balance. The recombination rate in the shell is 4πr2αBn

2
Hx

2 dr, where
x = nH+/nH = ne/nH. Thus we have

dQ = −4πr2αBn
2
Hx

2 dr =⇒ Q(r)−Q0 = −4πn2
HαB

∫ r

0

x2r′2 dr′. (18)

For simplicity we can make a change of variables y = r/RS, in which case with a
little re-arranging we obtain

Q(r) = Q0

(
1− 3

∫ r/RS

0

x2y2 dy

)
. (19)

The photoionisation and recombination rates must also match the absorption
rate. The flux of photons passing through the shell at radius r is Q(r)/4πr2, and
the attenuation coefficient of the shell is nH0σpi = nH(1 − x)σpi. The number of
absorptions per unit volume per unit time is simply the photon flux times the
attenuation coefficient, so equating that with the number of recombinations per
unit volume per unit time, we have

n2
HαBx

2 =
Q(r)

4πr2
nH(1− x)σpi. (20)

It is convenient to rewrite this by substituting αB = 3Q0/(4πR
3
Sn

2
H) and r = yRS.

Doing so we obtain

x2

1− x
=

Q(r)σpi

4παBnH

=
Q(r)

Q0

nHσpiRS

3y2
=
Q(r)

Q0

τS
3y2

, (21)

where
τS = nHσpiRS = 3400Q

1/3
0,49n

1/3
2 (22)

is the optical depth to ionising photons of a column of nHRS neutral hydrogen
atoms.
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Because τ0 � 1, the quantity 1− x� 1, which makes sense: the neutral fraction
1 − x is very small. We can therefore obtain an approximate solution by setting
x = 1 in the integral for Q(r). This gives

Q(r) ≈ Q0

(
1− 3

∫ r/RS

0

y2 dy

)
= Q0

(
1− y3

)
. (23)

Plugging this in, we have
x2

1− x
≈ 1− y3

3y2
τS. (24)

This gives the ionisation fraction x as a function of distance y, measured in units
of RS. For y → 0, clearly x → 0, so the ionisation fraction approaches unity at
small radii. As y → 1, x→ 0, meaning the that ionisation fraction approaches 0
at r = RS, which also makes sense.

To get a sense of the typical value of x, we can compute its value at the radius
that encloses half the mass or volume, which corresponds to y = 2−1/3. At this
radius, we have

x2

1− x
=

1− (1/2)

3(1/2)2/3
τS = 0.26τS. (25)

This quadratic equation is solvable, but we can be really lazy and make the
equation approximately linear, since τS � 1, which means x ≈ 1. In this case we
set x2/(1− x) = 1/(1− x) to first order in 1− x, and we have

1− x ≈ 1

0.26τS
≈ 1.1× 10−3Q

−1/3
0,49 n

−1/3
2 (26)

Thus the typical neutral fraction at the midpoint of the mass is around 10−3.

C. Complications: dust and radiation pressure

There are two complications we have left out of this story, which we will not
discuss in class, but which are dealt with in Draine: dust and radiation pressure.
Dust is important because it can absorb some ionising photons. To get a sense
of the importance of this, note that the dust cross section to photons near 13.6
eV is around 2 × 10−21 cm−2 per H atom for Milky Way dust. In contrast, the
neutral hydrogen cross section at threshold is 6 × 10−18 cm−2, roughly a factor
of 3000 greater. On the other hand, as we have just seen the neutral fraction is
only about 10−3, so the cross section per H nucleus (not per H atom), is around
6× 10−21 cm−2. Of course this varies with position throughout the H ii region.

Since the cross section due to hydrogen is still greater than that due to dust,
even including the fact that most of the H is neutral, we are probably marginally
ok neglecting dust absorption in our calculations. Indeed, our result suggests an
approximate magnitude for the dust correction: since σd ≈ (1/3)σH, a reasonable
guess is that roughly 1/4 of the ionising photons will be absorbed by dust grains,
while 3/4 will be absorbed by H atoms. This comes out surprisingly close the the
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detailed estimate by McKee & Williams (1997), who come up with 27% absorbed
by dust. Draine and numerical calculations give even more detailed estimates.

Radiation pressure is a complication because it stops the ionised gas from being
uniform. As we will see later on, H ii regions tend to expand, but they do so at
speeds slower than the sound speed within them. As a result, the gas in the H ii
region interior has time to spread out and become fairly uniform, so our uniform
density assumption might seem reasonable.

However, the stellar radiation also exerts a force on the gas, and if this is com-
parable to the gas pressure, it will tend to “pile up” the ionised gas against the
inner boundary of the H ii region. Draine gives a sophisticated analysis of this in
the text.

III. The hydrogen recombination spectrum

The final topic we will tackle today is what a region in ionisation equilibrium actually
looks like. That is, all the recombinations that are balancing ionisations involve the
emission of photons, which we can detect. What does the spectrum of those photons
look like? We will not fully answer this question for another week or two, but for now
we can focus on one important part of it: what does the part of the spectrum that
is produced by the recombination of hydrogen, the most abundant element, look like?
Knowing the answer to this question proves to be the basis for a large fraction of our
understanding of star formation, among other phenomena.

A. Case A

Let’s start with case A, where we assume that the region is optically thin. The
rate at which recombinations create neutral hydrogen atoms in state n` is given
by nenH+α(n`), where α(n`) is the recombination rate coefficient for that state.
For n` 6= 1s, the atom will then undergo radiative decays to lower states, and
these produce the line photons that we’re interested in.

Let A(n` → n′`′) be the Einstein A coefficient for transitions from state n` to
state n′`′, which can be computed quantum mechanically. The probability that
an atom in state n` decays to n′`′, rather than into some different state, is simply

Γ(n`→ n′`′) =
A(n`→ n′`′)∑

n′′`′′,n′′<nA(n`→ n′′`′′)
. (27)

This quantity is called the branching ratio, and is a standard quantity in particle
physics. Thus, the rate at which photons corresponding to the transition n`→ n′`′

are emitted by atoms that recombine into state n` is

nenH+α(n`)Γ(n`→ n′`′). (28)

The emissivity is simply

jν =
hν

4π
nenH+α(n`)Γ(n`→ n′`′)φν . (29)
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This, however, only accounts for some of the photons emitted through the n`→
n′`′ transition. That is because atoms in state n` can be created through radiative
decays from higher bound states, as well as through recombinations directly to
state n`. Consider atoms created by recombination in the state (n + 1)`′. This
happens at a rate nenH+α((n + 1)`′′). When these atoms decay radiatively, a
fraction Γ((n + 1)`′′ → n`) will end up in state n`, and a fraction Γ(n` → n′`′)
of these will also produce n` → n′`′ photons. Including this contribution, the
emissivity becomes

jν =
hν

4π
nenH+Γ(n`→ n′`′)

[
α(n`) +

∑
`′′

α((n+ 1)`′′)Γ((n+ 1)`′′ → n`)

]
(30)

Clearly this process is recursive: recombination will leave some atoms in state
(n + 2)`′′, and some of these will end up in state n` or (n + 1)`, and therefore
contribute photons. To avoid the expression spiraling out of control, we simply
write the photon production rate as

jν =
hν

4π
nenH+Γ(n`→ n′`′)

[
α(n`) +

∑
n′′`′′,n′′>n

α(n′′`′′)P (n′′`′′ → n`)

]
, (31)

where P is the probability that an atom created in state n′′`′′ passes through
state n` on its way to ground. This is easy enough to compute given the known
branching ratios.

B. Case B

In case B all the transition rates are the same, which one difference: photons may
not be able to escape freely. Recall that case B corresponds to a nebula that is
optically thick to ionising photons. The cross sections for resonant absorption
of Lyman series photons decrease with n, and in the limit n → ∞ the cross
section is equal to the absorption cross section at threshold. This means that
all the Lyman series transitions have cross sections larger than the cross section
to ionising photons, and that for small n the cross sections are many orders of
magnitude greater. Since both ionising photon and Lyman series photons are
primarily absorbed by the same species (neutral hydrogen in the 1s state), this
means that in case B the nebula must also be optically thick to Lyman series
photons.

We can approximate the effects of this with the “on-the-spot” approximation
that we already introduced to handle the total recombination rate. Since every
Lyman series photon that is emitted is immediately reabsorbed, producing an
excitation that exactly balances the de-excitation that led to photon emission, we
can simply approximate the net effect by neglecting all emission in the Lyman
series. In effect, we set A(n` → n′`′) = 0 when n′`′ = 1s. The calculation of
the luminosities of all the non-Lyman lines therefore proceeds in exactly the same
manner as in case A, just with different branching ratios.
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In case B the two strongest lines are Hα and Hβ. Draine gives numerical results
for the rate coefficients αHα(T ) and αHβ(T ) for production of these two lines, and
analytic approximations to them. The Hα line is particularly important because it
is one of our best star formation rate indicators. This is because, as we have seen,
in an H ii region produced by a mass star, the recombination rate, the the Hα
luminosity, and the ionising luminosity are all proportional to one another, with
a constant a proportionality that depends on αHα(T ). By knowing this value
from pure quantum mechanical theory, we can therefore compute the ionising
luminosity in an H ii region directly from its Hα luminosity. When we get to the
star formation part of the course, we will exploit this knowledge to measure the
star formation rates of galaxies.

1. 2-photon emission

The n = 2 level requires special attention in case B. That is because the
only transitions allowed out of this level are Lyman transitions, so in the
approximation that A(n` → 1s) = 0, all the recombined hydrogen atoms
eventually accumulate in n = 2 states and would decay no further. This
level consists of the 2s and 2p states, and we can let αeff,2s and αeff,2p be
the effective rates for populating them – effective meaning that we include
not only recombinations directly to these states, but also recombinations to
higher states that eventually cascade down into 2s or 2p.

Since every recombining atom eventually winds up in one of the states, we
have αeff,2s +αeff,2p = αB, i.e. if we sum the effective α’s for the two states, it
must add up to the total recombination rate. The values of αeff,2s and αeff,2p

can be calculated by exactly the same method as all the line strengths, i.e.
just by summing up branching ratios. It turns out that αeff,2s ≈ (1/3)αB and
αeff,2p ≈ (2/3)αB; more precise numerical values are given in Draine.

We can then ask about the fate of an atom that winds up in one of these two
levels. First consider what happens to atoms that end up in the 2s state. The
transition 2s→ 1s is forbidden because ∆` = 0, but it can happen, albeit at
a very slow rate, A2s→1s = 8.23 s−1. The decay is a two-photon process, so it
produces a continuous spectrum from ν = 0 to ν = 3IH/4 (the energy of the
level), i.e. the sum of the two photon energies must be 3IH/4, but each photon
individually can have any energy between that and zero. The spectrum can
be calculated quantum mechanically, and found in standard references. We
let P

(2s)
ν (ν) be the probability that the 2s decay results in one of the emitted

photons being in the frequency range ν to ν+dν; clearly energy conservation
requires that P

(2s)
ν (ν) = P

(2s)
ν (νLyα − ν), where νLyα = 3IH/4h. The peak is

at ν = νLyα/2. If every atom that enters the 2s state decays via this process,
then the emissivity is

jν(2s→ 1s) =
hν

4π
nenH+αeff,2sP

(2s)
ν . (32)

Because the Einstein A coefficient for this decay is so small, atoms may have
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time time to leave the 2s state collisionally rather than radiatively. Collisions
that take the atom to a higher state simply restart the decay process, and
have no net effect. Collisions that take the atom to the 1s state are possible,
but that rate is quite low. Instead, the main way of depopulating the 2s state
collisionally is via collisional transitions to the 2p state. The rate coefficients
for this transition are known; we denote them qp,2s→2p and qe,2s→2p, with
the first representing the rate due to collisions with protons, and the second
indicating the rate due to collisions with electrons.

To account for collisions we can compute a branching ratio exactly as we did
for radiative decays. The rate at which atoms leave the 2s state collisionally
is neqe,2s→2p + npqp,2s→2p, and the rate at which they leave it radiatively is
A2s→1s. Thus the branching ratio for radiative decay is

Γ(2s→ 1s) ≈ A2s→1s

A2s→1s + ne(qe,2s→2p + qp,2s→2p)
, (33)

where we have set ne ≈ np, as appropriate for a nearly fully ionised region.
We usually write this in terms of a critical density. We define

ne,crit =
A2s→1s

qe,2s→2p + qp,2s→2p

= 1880 cm−3, (34)

and with this definition the branching ratio becomes

Γ(2s→ 1s) =
1

1 + ne/ne,crit

. (35)

Physically, ne,crit is simply the electron density for which the rates of radiative
and collisional de-excitation are equal – we’ll see this again later. With this
definition, we can write the emissivity as

jν(2s→ 1s) =
hν

4π
nenH+αeff,2sΓ(2s→ 1s)P (2s)

ν =

(
hν

4π

)
nenH+αeff,2s

1 + ne/ne,crit

P (2s)
ν .

(36)

Note that this has an important implication for observations: the strength
of the two-photon emission spectrum depends on the density inside the H ii
region, and is weakest when ne � ne,crit. As a result, we can use the strength
of two-photon emission as a diagnostic of H ii region density. Low density
regions have strong two-photon emission, and high density regions have weak
two-photon emission.

2. Lyman α emission

Finally, let us turn our attention to atoms that end up in the 2p state, either
via collisional excitations from the 2s state, or by direct decays from higher
n states. Collisional de-excitation out of this state occurs at a negligible rate,
so the only decay path for these atoms is via the Lyman α transition. Given
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the cross-section of Lyman α absorption and assuming a Gaussian velocity
dispersion, we can write the Lyman α optical depth as

τLyα = 8.0× 104

(
15 km s−1

b

)
τLyC, (37)

where τLyC is the Lyman continuum optical depth, i.e. the optical depth to
photons at 13.6 eV. Since case B means that τLyC > 1, clearly τLyα is immense,
at least of order 105. Thus Lyman α photons travel only a tiny distance before
being re-absorbed. The photons can eventually escape in two ways: first, they
can be absorbed by a dust grain instead of a H atom. Second, each time they
interact with a neutral H atom, the photon will be Doppler shifted by some
small amount, depending on the atom’s random velocity. This causes the
photons to undergo a random walk in frequency. Eventually, they walk far
enough that they are either far enough from line centre to escape, or they
random walk into the frequency of another line that lies close to Lyα, most
commonly O iii, and are absorbed by one of those atoms. This problem is
treated in detail in Draine.

C. Radio recombination lines

Thus far our treatment has assumed that upper states are populated only by
recombinations and radiative decays, i.e., if you find an atom with an electron
in, say, the 4p orbital, it must have gotten there because the atom recombined
directly into that state, or because it recombined into a higher n state and then
decayed. This is a good approximation for low to moderate n. However, for very
high n, & 100, there is another mechanism that can populate levels: three-body
collisions between a proton and two electrons. Because the number of degenerate
substates of a given electronic state n rises as n2 (because the number of possible
l values is n, and for each ` value there are 2`− 1 distinct m` values), there is a
lot of phase space available for collisional recombination into high n states, and
non-negligible populations can build up at high n.

The high n atoms are rare enough that they not particularly important when it
comes to the total energy or ionisation budget, but they are significant for obser-
vational reasons: transitions from n + 1 to n, referred to as the Hnα transition,
can produce radio photons. If one works out the energy levels of the n+ 1 and n
states, the frequency of the n+ 1→ n transition is

νn =
2n+ 1

[n(n+ 1)]2
IH

h
≈ 6.48

(
100.5

n+ 0.5

)3

GHz. (38)

Photons in this frequency range have the great advantage that (1) they can be
detected from the ground, since the atmosphere is transparent at these frequencies,
and (2) dust attenuation is essentially negligible in the radio, so this emission can
still be seen even from H ii regions whose optical light is completely obscured by
dust. The H 166α line is particularly convenient to observe, because it just so
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happens to lie extremely close in frequency to the 21 cm line, so one can usually
observe both at the same time.

12


