
ASTR 4020 / 8020: Diffuse Matter and Star Formation

Class 7 Notes: Ionisation and recombination I

In this class we will discuss the processes that ionise interstellar and intergalactic gas, and
the processes that allow it to recombine. In the next class we will use this information
to calculate the mean ionisation state of gas. Our goal at the end of this to be able to
understand the ionisation state of the various phases of the ISM.

I. Ionisation balance in LTE

As a prelude to examining the individual processes that drive ionisation and recombi-
nation, it is useful to ask what we expect the ionisation states of atoms to be in gas
that it is local thermodynamic equilibrium (LTE). The vast majority of the ISM will
not in LTE, but the LTE case gives us a baseline that provides some intuition, and also
provides a limit that we will use below to derive some useful results in analogy with the
way we have deduced the relationship between forward and backward collision rates
and between different Einstein coefficients by considering what must happen in LTE.

The basis for our LTE calculation is the Boltzmann distribution, which requires that
if we have two energy states u and `, the number densities of particles in those two
states obeys

nu
n`

=
gu
g`
e−Eu`/kBT . (1)

If we now regard the lower state as an atom of some species X that has been ionised
i times (so i = 0 corresponds to the atom being neutral), and the upper state as a
member of the species that has been ionised i+ 1 times, then we have

ni+1

ni
=
gi+1ge
gi

e−I/kBT , (2)

where I is the ionisation potential for going from Xi+ to X(i+1)+.

Note an important subtlety here in the degeneracy factors: in the denominator we have
gi, the degeneracy of the lower ionisation state. In the numerator, however, we have
to include the total possible number of states of the ionised system, and this includes
not just the degeneracy gi+1 of the upper ionisation state, it includes the product of
this and the number of possible states of the free electron ge – after all, the electron is
part of the “upper state”, so we need to include its statistical weight as well.

So what is the statistical weight of the free electron? The general answer to this is
the partition function: the the sum of the Boltzmann factors for all available states.
Since the electron is a free particle, we can compute the available states using the
classic particle in a box problem: we say that each electron has a volume available to it
Ve = 1/ne, where ne is the number density of free electrons, and a particle in a box of
this volume has three quantum numbers (nx, ny, nz), with the energy of any particular
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state given by

E =
h2

8mel2e

(
n2
x + n2

y + n2
z

)
, (3)

where le = V 1/3
e = n−1/3e is the length of the “box” the electron is confined to. Since the

electron is a spin 1/2 particle, there are two distinct spin states for each combination
of (nx, ny, nz). Thus the statistical weight of the electron is

ge = 2
∑
nx

∑
ny

∑
nz

e−E/kBT (4)

= 2
∑
nx

∑
ny

∑
nz

exp

[
− h2n2/3

e

8mekBT

(
n2
x + n2

y + n2
z

)]
(5)

= 2

[∑
n

exp

(
−h

2n2/3
e n2

8mekBT

)]3
(6)

≈ 2

[∫ ∞
0

exp

(
−h

2n2/3
e n2

8mekBT

)
dn

]3
(7)

= 2
(2πmekBT )3/2

neh3
. (8)

In the second step we used the fact that the sums over nx, ny, and nz are all the same
to rewrite the expression as the cube of a single sum over n, and in the third step,
we assumed that we are in the classical limit whereby ne is small (to be precise, ne
is much less than the quantum concentration) and therefore we can approximate the
infinite sum by an integral.

Plugging this in, we arrive our our expression for the ratio of ionisation states:

ni+1

ni
=

(2πmekBT )3/2

neh3
2gi+1

gi
e−I/kBT . (9)

This result is known as the Saha equation. The main thing to notice is that, as one
might expect, the ratio is exponential in I/kBT . However, there is also an additional
T 3/2 scaling, which arises from the temperature dependence of the phase space volume
available to the electron.

II. Ionisation processes

Now that we have understood how things should behave in the LTE limit, we are in a
position to examine the individual mechanisms that govern ionisation and recombina-
tion, so we can see when and where we will get to LTE, and how the non-LTE results
differ from the LTE ones. The first step in that is to discuss processes that ionise
atoms. We will again consider an atom of species X that has been ionised i times, Xi+,
and discuss the ways it can change its ionisation state to X(i+1)+. Broadly speaking, we
can break ionisation processes into two categories: those that involve interaction with
a photon, and those that involve interaction with a fermion, usually but not always
an electron. We refer to the former as photoionisation and to the latter as collisional
ionisation.
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A. Photoionisation

1. Primary photoionisation

Photoionisation consists of an interaction between species X and a photon:

Xi+ + hν → X(i+1)+ + e−. (10)

The rate at which photoionisations happen depends on a cross-section, which
is a function of the frequency of the radiation and the properties of the atom.
The simplest case, ionisation of a single-electron atom in the 1s1 electronic
state (the ground state), is solvable analytically. This is useful, since this
case includes the most important interstellar element, hydrogen. For a single-
electron atom in its ground state, the ionisation rate for photons of frequency
ν > Z2IH/h is

σpi(ν) = σ0

(
Z2IH
hν

)4
e4−(4 tan

−1 x)/x

1− e−2π/x
, (11)

where

x =

√
hν

Z2IH
− 1 (12)

σ0 =
29π

3e4
Z−2απa20 = 6.304× 10−18Z−2 cm2 (13)

Z is the charge of the nucleus, IH = 13.6 eV is the ionisation potential of
hydrogen, and α = e2/h̄c is the fine structure constant. The quantity σ0
is known as the ionisation potential at threshold. Note that the ionisation
potential varies with charge as Z2, not as Z. This is because the potential
increases linearly with Z, but the expectation value of the separation for a
given quantum state of the electron also scales inversely with Z, so the net
scaling of the ionisation potential with charge is as Z2.

A variety of simple analytic approximations to this formula are given in
Draine. The important thing to note is that this function reaches a max-
imum at hν = Z2IH, and declines at higher frequencies as roughly ν−3 to
ν−3.5.

In principle we could also calculate ionisation cross section for atoms in other
electronic states n`; the threshold energy and the cross section are obviously
different if the electron is in an excited state rather than the ground state. In
practice, however, this is generally unimportant. This is because the Einstein
A’s for transitions from excited electronic states to lower states are generally
very large – these are allowed transitions, so typical values are ∼ 109 s−1.
This means that excited states have lifetimes measured in nanoseconds. By
contrast, the mean time between encounters between an atom and an ionising
photon is vastly larger than this in any realistic interstellar environment. The
implication is that, under conditions where we are interested in photoionisa-
tion, we can safely assume that the vast majority of atoms are in the ground
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state. We will, however, worry about distinguishing between the different
states when it comes to recombination, below.

For multi-electron atoms there is generally no simple expression for the ioni-
sation cross section, and the frequency-dependence can be complex. In par-
ticular, one common feature for many multiple-electron atoms is that they
show a jump in the ionisation cross section at the frequency that corresponds
to the energy requires to remove an electron from the 1s shell. This is called
an absorption edge.1

Given the cross section, one can compute the total photoionisation rate by
integrating over the rate at which ionising photons pass an atom:

ζpi =
∫ ∞
ν0

σpi(ν)4π
Jν
hν

dν. (14)

Here 4πJν is the radiation intensity averaged over all 4π sr. The factor of hν
in the denominator is to convert the intensity, which is in units of energy, to
number of photons.

2. Auger ionisation

If photoionisation ejects an electron from an inner rather than an outer shell,
it provides the atom with more energy than is required to remove the least
bound electron, and so the resulting ion is left in an excited state. It can
decay out of this excited state radiatively, but it is more likely to do so via
a two-electron process in which one electron drops down into the vacated
slot, and another electron is promoted into a more excited state. If there is
sufficient energy available, this more excited state may be unbound, leading
to a second ionisation. This is referred to as the Auger effect. Formally we
can write the process as

Xi+ + hν → X(i+1)+(∗) + e− → X(i+2)+ + 2e−. (15)

For neutral C, N, O, and Ne, ionisations of electrons from the 1s level are
generally followed by ejection of a second electron via the Auger effect. For
more complex atoms multiple Auger electrons may be emitted if the photon
that causes the initial ionisation is sufficiently energetic. This is an important
effect for ionisation by X-rays.

3. Secondary ionisation

In addition to the Auger effect, another way of getting more than one ion-
isation out of a single photon is for the ejected electron to produce more

1You will sometimes see the 1s shell referred to as the K shell, and the ionisation edge associated with
it as the K shell edge, particularly in the X-ray literature. This notation comes from the experimental
X-ray literature from the first decades of the 20th century before quantum mechanics was fully worked out.
Spectroscopists at the time noticed the X-rays emitted by light elements fell into distinct energy groupings,
which they labeled alphabetically as K, L, M, N, etc.
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ionisation. If the primary photon has much more energy than the minimum
required to eject the electron, the bulk of the remaining photon energy goes
into the kinetic energy of the ejected electron. For an X-ray, this excess en-
ergy can easily be hundreds or thousands of eV, so that the electron then
carries more than enough energy to cause a second ionisation, or possibly
even more.

Calculating the number of secondary ionisations is a complex problem that
depends not just on the energy of the ejected electron, but also on the state
of the gas. In a mostly ionised gas the ejected electron will rapidly lose
energy via Coulomb interactions with other electrons, so it may not find a
neutral atom before thermalizing and losing the ability to ionise again. In a
neutral gas, the electron may lose energy via interactions that excite but do
not ionise the particles with which it collides. In general the problem must
be solved numerically, though analytic fitting formulae are given in Draine
and elsewhere.

B. Collisional ionisation

1. Thermal electrons

The second main ionisation process in the ISM is collisional ionisation, usually
due to a collision with a free electron. Electrons usually dominate because
their masses are so small compared to other particles, which maximizes their
speed and leads to a stronger perturbation to the wavefunctions of bound
electrons than would a slower interaction with a more massive particle.

As with other collisional processes, we describe the rate at which collisional
ionisation happens in terms of a cross section and a rate coefficient, using our
standard formula for collisional processes:

kci =
∫ ∞
I

σci(E)vfE dE =

(
8kBT

πme

)1/2 ∫ ∞
I/kBT

σci(x)xe−x dx, (16)

where I is the ionisation potential for the atom in question and x = E/kBT .
Note that this implicitly assumes that the electrons have a Maxwellian ve-
locity distribution, which is generally as safe assumption, but fails in some
circumstances – we’ll get to those in a bit. The total number of collisional
ionisations per unit volume per unit time is then

ζci = kcinenI , (17)

where nI is the number density of particles being ionised.

Unlike photoionisation, where the cross section is at maximum at the thresh-
old and declines at higher energies, for collisional ionisation the cross section
is zero at threshold and rises smoothly as the energy increases, before falling
off at even higher energies.
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The behavior at low energies can be understood as follows. If an electron
arrives with energy E, then after ionisation the two free electrons must have
total energy E − I. The volume in phase space that is allowed therefore
depends on E − I, and as E → I it shrinks to zero. Since the transition
probability is proportional to the volume in phase space the electrons are
allowed to occupy after ionisation, it must go to zero as this volume goes
to zero. This is different that photoionisation, because after photoionisation
there is only one electron, and the number of states accessible to it is non-zero
even at very low energies.

At low energies, E <∼ 3I, this behavior can be approximated by a cross section

σci(E) = Cπa20

(
1− I

E

)
, (18)

where C is a constant of order unity. For hydrogen, C = 1.07. Plugging this
into the integral gives

kci ≈ Cπa20

(
8kBT

πme

)1/2

e−I/kBT (19)

At higher but still non-relativistic electron energies, the collisional ionisation
cross section falls off as 1/E. This is because, as we showed toward the
beginning of class, the momentum transfer due to a Coulomb interaction
scales as ∆p⊥ ∝ 1/bv ∝ 1/bE1/2, where p is the impact parameter. Thus to
transfer a fixed amount of momentum and energy and ionise the electron, the
impact parameter must vary as E−1/2, and the cross section as σ ∝ b2 ∝ 1/E.
However, by the time thermal electrons are moving fast enough to be in the
1/E regime, ionisation is generally near complete anyway.

2. Cosmic rays

Most electrons and ions in the ISM have a Maxwellian velocity distribution,
but there is a population of much faster, relativistic particles known as cosmic
rays as well. There are particularly important in environments such as the
interiors of dense clouds, where other ionisation processes are ineffective –
the gas is too cold for collisional ionisations, and there is too much extinction
to photoionising photons to penetrate. Cosmic rays, on the other hand, can
have very long mean free paths, even through dense gas.

The cosmic ray ionisation rate is given by the usual collision integral, gener-
alised to include a non-Maxwellian velocity distribution:

ζCR = 4π
∫ ∞
Emin

σci(E)E
dF

dE
· dE
E
. (20)

Here dF/dE is the flux per unit solid angle of cosmic rays with energies from
E to E+ dE. The cross section for photoionisations by extremely relativistic
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particles of charge Ze and velocity βc is approximately

σci = 0.285
2πe4Z2

mec2IHβ2

{
ln

[
2mec

2β2

IH(1− β2)

]
+ 3.04− β2

}
. (21)

Of course this is only good to the extent that we know dF/dE, which is set
by complicated processes of cosmic ray injection, transport, energy loss, and
escape from the galaxy. In practice this means that we are generally trying
to evaluate this using empirically-determined cosmic ray spectra.

As with photoionisation, cosmic ray ionisations often yield fast electrons that
can induce secondary ionisation. The mean energy of the secondary photo-
electrons produced in this process is nearly independent of the energy of the
primary cosmic ray, and is typically around 35 eV, although there is a tail to
much higher energies so that the mean is close to 70 eV. In neutral gas this
yields ∼ 0.67 secondary ionisations per primary ionisation, with the number
decreasing with the ionisation fraction of the ambient gas for the reasons we
discussed earlier. Draine gives an approximation formula for this decline.

III. Recombination processes

Now we turn to recombination processes, which are those that change a charge state
from X(i+1)+ to Xi+.

A. Radiative recombination

Radiative recombinations take the form

X(i+1)+ + e− → Xi+ + hν, (22)

with the electron being captured into an electronic state n` that was formerly
unoccupied.

1. The Milne Relation and recombination rates

The recombination rate via this process can be written in terms of a cross-
section, and we can relate this cross section to the ionisation cross section
using the same approach we have been using throughout the class to derive
rates of inverse processes. The resulting relation is known as the Milne Rela-
tion. Consider an atom of species Xi+ in state `, and it can absorb a photon,
transitioning to species X(i+1)+ in state u and emitting an electron. The
reaction is

Xi+
` + hν ↔ X(i+1)+

u + e−. (23)

The difference in energy between the ionised and unionised states is IX,u`.

Let σpi(E) be the photoionisation cross section to a photon of energy E, and
σrr(E) be the radiative recombination cross section for an atom encountering
an electron with relative energy E. In LTE, the rate per unit volume with

7



which photons with energies in the range (E,E+dE) are absorbed by atoms
must be equal to the rate at which they are created by radiative recombi-
nations. As we have already written down, the total photoionisation rate
is

ζpi =
∫ ∞
ν0

σpi(ν)4π
Bν

hν
dν, (24)

where we have taken Bν = Jν since we are in LTE. The rate per unit volume is
simply ζpinX`

, i.e. the photoionisation rate multiplied by the density of target
particles. To figure out the rate at which photoionisation creates electrons
in a given energy range, we simply have to differentiate this with respect to
energy, obtaining

absorptions cm−3 erg−1 = 4πnX`

Bν

hν
σpi(hν) d(hν). (25)

The radiative recombination rate is slightly more complicated, because we
must figure out what electron energy will give rise to a photon of frequency
ν. Conservation of energy requires that the electron energy E be related to
the photon energy hν by

E = hν − IX,u`. (26)

Thus an electron of 0 energy produces a photon of frequency IX,u`/h. The
recombination rate therefore is

recombinations cm−3 erg−1 = nX+
u
nevfE(hν−IX,u`)σrr(hν−IX,u`)(1+nγ)h dν.

(27)
Here fE(hν − IX,u`) is the value of the Maxwellian distribution of electron
energies evaluated at energy E = hν−IX,u`. The 1+nγ term is the correction
for stimulated recombination; in LTE, the photon occupation number is

nγ =
1

ehν/kBT − 1
. (28)

Now we can set absorptions equal to recombinations. Doing so and solving
for σrr gives

σrr(hν − IX,u`) =
4πBν

hν

1

vfE(hν − IX,u`)(1 + nγ)h

(
nX`

nX+
u
ne

)
σpi(hν). (29)

In LTE the quantity in parentheses can be computed from the Saha equation,
giving

nX+
u
ne

nX`

=

[
(2πmekBT )3/2

h3

]
gu
g`
e−IX,u`/kBT . (30)

If the states are not ground states, a more general form of this equation can
be derived by analogous means. Plugging this in, along with the Maxwellian
velocity distribution

vfE =

(
8

πµkBT

)1/2
E

kBT
e−E/kBT , (31)
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and solving, we arrive at the Milne relation:

σrr(E) =
g`
gu

(IX,u` + E)2

Emec2
σpi(hν = IX,u` + E). (32)

Thus, given the photoionisation cross-section, we can directly calculate the
radiative recombination rate cross section.

Once we know the recombination cross section, we can solve for the recom-
bination rate using the usual method of integrating over the velocity distri-
bution to obtain a rate coefficient. We normally write rate coefficients for
radiative recombination with the letter α:

αn`(T ) =

(
8kBT

πme

)1/2 ∫ ∞
0

σrr,n`(E)xe−x dx, (33)

where x = E/kBT , and the subscripts n` are to remind us that this is the
rate for recombination to a given n` electronic level. Values of αn`(T ) for
hydrogen are given in Draine.

As with our other applications of the law of mass action, note that, although
we derive this result in LTE, the value of σrr(E) is a purely quantum mechan-
ical constant that does not depend on anything but internal properties of the
ion in question. Thus the result is general. For αn`, we have assumed that
the electrons have a Maxwellian velocity distribution, but that is the only
assumption.

2. Case A and case B recombination

If we want to know the total recombination rate, we can simply sum the αn`
values over all possible levels of the newly-bound atom. However, there is
a complication, which comes from radiative transfer. Suppose that we have
a hydrogen recombination that goes directly to the ground state, 1s. The
resulting photon will have an energy of at least 13.6 eV. The cross section of
neutral hydrogen atoms to photons of this energy is very high: 6.3 × 10−18

cm2 at threshold. This means that even if a region is mostly ionised, even
a small fraction of neutral hydrogen is likely to render it optically thick to
photons with energies above 13.6 eV. This means that every such photon that
is emitted will be re-absorbed by a neutral hydrogen atom nearby, ionising it
and resulting in no net recombinations.

If the region in question is sufficiently hot, low density, or small, then it will
have so little neutral gas as to be optically thin even to ionising photons. We
refer to this as case A. The opposite limit is when the gas is assumed to be
optically thick to ionising photons, and we refer to this as case B. Generally
speaking, coronal and IGM gas with temperatures >∼ 106 K are case A, and
H ii regions around O and B stars are case B.

In case A, the total recombination rate is exactly what one would naively
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have guessed, a sum of recombinations to all levels of the bound atom:

αA(T ) =
∞∑
n=1

n−1∑
`=0

αn`(T ). (34)

A typical number to keep in mind for case A is αA ≈ 4.1 × 10−13 cm3 s−1

for hydrogen at 104 K. More accurate approximation formulae are given in
Draine.

In case B, on the other hand, only recombinations to excited states “count”
for producing recombinations, since the photons emitted in this case are now
too low energy to cause further ionisations. For case B, the net recombination
rate is simply the case A rate, but omitting n = 1:

αB(T ) =
∞∑
n=2

n−1∑
`=0

αn`(T ) = αA(T )− α1s(T ) (35)

For hydrogen at 104 K, αB ≈ 2.5× 10−13 cm3 s−1.

B. Radiative recombination of heavier elements

Thus far we have only discussed hydrogen, but radiative recombination occurs for
other elements as well. The method of calculating the recombination rates and
the emitted spectrum is similar, with one exception: helium is the only element
for which we ever have to worry about case B. No other element is abundant
enough for ionised regions to become optically thick to recombination radiation.
The case of helium is treated in the book, but we will not discuss it in class.

C. Other recombination mechanisms

Several other recombination processes can be important in special circumstances
or for particular elements, particularly in very cool regions. We will not discuss
these in detail, just go over them briefly so that you know they exist.

In multiple-electron atoms, one such mechanism is dielectronic recombination.
The idea is that a recombination requires that energy be lost by the free elec-
tron to render it bound. In radiative recombination it goes into a photon. In a
multi-electron atom, it could also go into one of the bound electrons in the ion,
pumping that electron into an excited state, leaving the atom with two electrons
in excited states. Dielectronic recombination is most important in high temper-
ature plasmas, where there are many electrons with enough energy to produce
atoms with two electrons both in excited states. However, in some atoms there
are accessible excited states even for plasmas as cold as ∼ 104 K.

One important recombination mechanism in predominantly molecular regions is
dissociative recombination. This happens when a molecular ion, for example OH+

or H+
3 , captures a free electron. The excess energy can be dumped into vibrational

excitations of the molecule, and it is usually enough to leave the resulting molecule
in an unbound state.
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A final recombination mechanism is charge exchange, in which an ion collides
with a neutral particle or a dust grain, and grabs an electron from it. This can
happen if the ionisation potential of the species grabbing the electron is greater
than that of the species losing it.
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