
ASTR 4020 / 8020: Diffuse Matter and Star Formation

Class 6 Notes: Absorption lines

We now come to our second application of what we have learned about radiative transfer:
absorption spectroscopy. Before the advent of radio telescopes this was our our only source
of knowledge about interstellar gas, and it is still our primary means of studying the ISM
and IGM in very diffuse or distant environments where the surface brightness of emission is
too low to detect. Absorption spectroscopy has the disadvantage that it relies on serendipity
– we can only observe things that happen to have a bright background source for which we
can obtain a spectrum. When that is the case, however, absorption spectroscopy provides
some of the most sensitive measurements available for studying the ISM and IGM.

I. Equivalent width of lines

Consider observing a bright continuum point source, such as a star or quasar that
subtends a small solid angle ∆Ω on the sky. The source produces an intensity Iν(0),
and in the absence of any intervening emission of absorption, the flux that we observe
from the source is

Fν =
∫
Iν(0) dΩ = Iν(0)∆Ω ≡ Fν(0). (1)

Now suppose that the light from this source passes through a cloud of foreground gas,
which we assume to be uniform over ∆Ω. The transfer equation for this system is

Iν = Iν(0)e−τν +Bν(Texc)(1− e−τν ), (2)

where Texc is the excitation temperature of the intervening matter. As a result, the
flux that we observe is

Fν =
∫
Iν dΩ = Fν(0)e−τν +Bν(Texc)∆Ω(1− e−τν ), (3)

where we have used the assumption that τν is constant over the angular extent of the
cloud.

For optical frequencies, we usually have nu/n` � 1 since most of the ISM is cold, and
as a result Bν(Texc)∆Ω� Fν(0). Thus, to good approximation we have

Fν = Fν(0)e−τν . (4)

In general τν has a non-negligible value only over a narrow range in frequency, and
outside this narrow range we can directly measure Fν(0). By simply interpolating in
frequency from one side of a line to the other, we can therefore estimate Fν(0) even in
the frequency region where a line is absorbed. We therefore define the dimensionless
equivalent width of a line by

W ≡
∫ (

1− Fν
Fν(0)

)
dν

ν0

=
∫ (

1− e−τν
) dν
ν0

, (5)
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where ν0 is the frequency of the line centre. The virtue of this definition is that it can be
measured even in an observation where the absorption line is not resolved in frequency.
It is simply the total power that is missing relative to the unabsorbed continuum.

Note that in the literature you will also sometimes see a dimensional equivalent width,
expressed in units of Angstrom. This is simply

Wλ = Wλ0, (6)

where λ0 = c/ν0, i.e., it is just the equivalent width we have defined multiplied by the
wavelength of line centre.

The equivalent width is related to the column density of absorbers. To see this, recall
that we showed previously that the attenuation coefficient for line absorption is

κν =
hν

4π
n`B`u

(
1− g`

gu

nu
n`

)
φν , (7)

so under our assumption that the cloud is uniform, the optical depth is

τν =
hν

4π
N`B`u

(
1− g`

gu

nu
n`

)
φν , (8)

where N` =
∫
n` ds is the column density through the cloud. Note that we are implicitly

assuming that the ratio nu/n` is constant along the line of sight, which means that we
could also write it Nu/N`.

Also note that instead of an Einstein coefficient, this relation is often written in terms
of an oscillator strength, which is related. The dimensionless oscillator strength f`u is
defined in relation to the cross section, by

σ`u(ν) =
πe2

mec
f`uφν . (9)

The scaling factor πe2/mec is analogous to the one we defined earlier when we intro-
duced the dimensionless collision strength Ωu` – it is the natural order of magnitude for
transitions due to leading order terms, and so, for transitions that are not suppressed
by some sort of symmetry (i.e., for allowed transitions), we expect f`u to be of order
unity. For example, the Lyman α line of hydrogen, corresponding to transitions from
the n = 1 to n = 2 state, has f`u = 0.4164. Additional tabulated values can be found
in Draine’s book.

We can also relate the dimensionless oscillator strength to the Einstein coefficients,
since these are also related to the cross section. Working through the algebra, the
relationship is

Au` =
8π2e2ν2

u`

mec3

g`
gu
f`u, (10)

and the upward and downward oscillator strengths obey f`u = −(gu/g`)fu`. With this
definition, the optical depth written in terms of the oscillator strength is

τν =
πe2

mec
f`uN`

(
1− g`

gu

nu
n`

)
φν . (11)
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If we have cold interstellar gas, with g`nu/gun` � 1, then we can approximate the term
in parentheses as unity, and we have

τν =
πe2

mec
f`uN`φν . (12)

The line profile function φν is generally a Voigt profile, meaning that it has a Gaussian
core and Lorentzian damping wings. If we focus first on the core, we can approximate
φν by a pure Gaussian,

φν =
1√
πb
e−(1−ν/ν0)2/(b/c)2 , (13)

where b =
√

2σv is the Doppler broadening parameter we introduced earlier, and which
is simply

√
2 times the velocity dispersion. This has a maximum value of 1/

√
πb at

ν = ν0, so the maximum optical depth, at ν = ν0 is

τ0 =
√
π
e2

mec

f`uλu`N`

b
= 0.758

(
N`

1013 cm−2

)(
f`u

0.4164

)(
λu`

1215.7 Å

)(
10 km s−1

b

)
,

(14)
where λu` = c/ν0, and the normalisation quantities chosen in the second step are those
appropriate for the Lyman α line of hydrogen. We refer to τ0 as the optical depth at
line centre. The optical depth in the Gaussian part of the line profile is then

τν = τ0e
−u2/b2 , (15)

where u = c(ν0 − ν)/ν0 is the velocity shift required to produce a frequency shift ν.

II. The curve of growth

Clearly the equivalent width W of the line is an increasing function of τ0, with a sub-
sidiary dependence on the Doppler broadening parameter b and the oscillator strength
and wavelength f`uλu`. The function W (τ0) is referred to as the curve of growth and,
we can compute it numerically simply by numerically evaluating the Voigt profile.
However, it is useful to understand how W behaves in limiting cases, to gain physical
insight.

A. Optically thin lines

First consider the case when τ0 � 1, so that even at line centre the line is optically
thin. In this case we can series expand the factor 1 − e−τν that appears in the
definition of the equivalent width:

W =
∫ (

1− e−τν
) dν
ν0

≈
∫ (

τν −
τ 2
ν

2

)
dν

ν0

. (16)

For small τ0 almost all of the absorption occurs in the Gaussian core of the line,
so we can approximate τν by the Gaussian form we just derived, and this makes
the integral trivial to evaluate. Doing so, we obtain

W ≈
√
π
b

c
τ0

(
1− τ0

2
√

2

)
. (17)
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Draine recommends replacing this with a formula that is equivalent to first order
in τ0 but behaves sensibly as τ0 increases, rather than going to zero for large
enough τ0:

W ≈
√
π
b

c

[
τ0

1 + τ0/(2
√

2)

]
. (18)

Numerically this formula is accurate for any τ0
<∼ 1. For small τ0 the second term

in the denominator is negligible compared to 1, and we simply have

W =
√
π
b

c
τ0 = π

e2

mec2
f`uλu`N` (19)

Note that b drops out, which makes sense: since we’re only absorbing a small
amount of power at each frequency, the total power absorbed over the entire line
doesn’t depend on the distribution of the absorption in frequency. This implies
that W is simply proportional to N`, with a constant of proportionality that
depends only on known atomic constants for the line. This is very useful, because
it means that, given a measurement of W , we immediately know N`.

B. Saturated lines

As τ0 increases, all the photons near line centre are absorbed, and it is no longer
the case that W increases linearly with N`. This is easy to understand: if we add
more absorbers, most of these will have velocities such that they can only absorb
near line centre. Since there are no more photons near line centre to absorb, they
do not contribute to the equivalent width. Only the small fraction of particles that
have velocities away from line centre contribute. Thus W increases sub-linearly
with N`. In this case we say that the line centre has become saturated.

We can approximate this by continuing to use the Gaussian-only core of τν , but
treating the 1−eτν as simply an inverted top-hat function, which is 0 for frequen-
cies near ν0, and is 1 otherwise. We take the width of the top-hat to be the full
width at half maximum. Thus we have

exp
(
−τ0e

−[(∆u)FWMH/2)2/b2
)

=
1

2
. (20)

Solving, we have

W =
(∆u)FWHM

c
=

(∆ν)FWHM

ν0

=
2b

c

√
ln(τ0/ ln 2). (21)

As we can see, the equivalent width increases only very slowly with τ0 in this
regime – as the square root of the log. We refer to this as the flat part of the
curve of growth. In this regime it is not easy to determine the column density
from an observation of W , because W is far more sensitive to variations in b, or
to any non-Gaussianity in the velocity distribution, than it is to changes in N`.
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C. Damped lines

As τ0 continues to increase, the saturation region around line centre continues
to grow up to the point where it extends beyond the Doppler core of the line,
and we must consider the Lorentzian damping wings. In this limit we can ignore
the Gaussian part of the line profile, and instead treat the line profile as a pure
Lorentzian, so that

τν =
πe2

mec
N`f`u

4γ`u
16π2(ν − ν0)2 + γ2

`u

. (22)

Inserting this into the formula for the equivalent width, we have

W =
∫ (

1− exp

[
− πe

2

mec
N`f`u

4γ`u
16π2(ν − ν0)2 + γ2

`u

])
dν

ν0

. (23)

The integrand is of the form 1 − e−a/x2 , and integrals of this form may be eval-
uated exactly to give

√
πa/2 (at least in the approximation where the range of

integration goes from −∞ to ∞). Thus the equivalent width is

W =

√√√√ e2

mec2
N`f`uλ`u

(
γ`uλ`u
c

)
=

√
b

c

τ0√
π

γ`uλ`u
c

. (24)

Inverting this to solve for N`, we have

N` =
mec

3

e2

W 2

f`uγ`uλ2
`u

. (25)

Thus in this regime N` ∝ W 2, and we can again measure the column density
reasonably well. As in the case of optically thin lines, we don’t need to know b –
this time because Doppler broadening is weaker than natural broadening.

The transition between the damped and flat parts of the curve of growth occurs
roughly where the two formulae for W in those two regimes are equal. Solving,
this gives

τ0 ≈ 4
√
π

b

γ`uλ`u
ln
(
τ0

ln 2

)
. (26)

This transcendental equation cannot be solved analytically, but when b� γ`uλ`u,
as is almost always the case (if it were not, there wouldn’t be a Doppler core),
the solution is well-approximated by

τ0 = 4
√
π

b

γ`uλ`u
ln

(
4
√
π

ln 2

b

γ`uλ`u

)
. (27)

This gives the characteristic line centre optical depth for which the damping wings
begin to dominate. As an example, consider a typical Lyman α absorption system.
For Lyman α, γ`uλ`u = 7616 cm s−1, and typical Doppler parameters are b ≈ 100
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km s−1, so damping begins to dominate at τ0 ≈ 105. Looking back to our earlier
formula for τ0, this corresponds to a column density N` of a few times 1019 cm−2.
This is the reason that one traditionally defines damped Lyman α systems as
those with column densities above about 1020 cm−2.

D. Doublet ratios

Curve of growth gives us a way to directly measure the column density of a given
species. However, there are some limitations. If we cannot directly measure the
line shape and only have the equivalent width, we don’t know b, and thus we don’t
know the line centre optical depth, and we don’t know what part of the curve of
growth we’re on. This is a significant problem, because we could be on the flat
part, in which case we cannot reliably measure the column density. Fortunately,
for certain cases nature has provided us with a natural detector for this condition.

Often the upper state u into which transitions occurs is a doublet. Thus an
absorbing state ` will be able to transition to two different excited states u1 and
u2 that are separated slightly in energy due to fine structure. An example from
the IGM is C iv, which has transitions at 1548 and 1551 Å; an example from stars
and the ISM is the Ca ii H and K lines at 3970 and 3935 Å. If we have sufficient
spectral resolution we can measure the equivalent width of each of these two lines,
and the resolution required to do that is generally a lot lower than the resolution
required to resolve the individual lines.

The advantage of this technique is that the ratio of the two lines then provides a
sensitive indicator for whether or not we’re on the flat part of the curve of growth.
To see why, let f`u1 and f`u2 be the oscillator strengths of the two lines, and λ1

and λ2 be their wavelengths. We adopt the convention that f`u2λ`u2 > f`u1λ`u1 ,
i.e. line 2 is the stronger one.

In the optically thin limit, the equivalent width is proportional to f`uλ`uN`, and
N` is the same for both lines, so the ratio of equivalent widths is simply

W2

W1

=
f`u2λ`u2
f`u1λ`u1

, (28)

i.e. it depends only on atomic constants.

Now suppose that we increase N`. The stronger line saturates at its centre and
enters the flat part of the curve of growth first, and eventually both lines reach
this regime. When they do, the line ratio becomes

W2

W1

=

[
1 +

ln(f`u2λ`u2/f`u1λ`u1)

ln(τ0,1/ ln 2)

]1/2

, (29)

where τ0,1 is the line centre optical depth for the transition to state u1. Similarly,
in the damping limit, the line ratio is

W2

W1

=
λ`u2
λ`u1

√
f`u2γ`u2
f`u1γ`u1

. (30)
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Thus the line ratio changes as column density and optical depth increase, and in
each of the three regimes it takes on a value that is determined solely or almost
solely (discounting the logarithmic dependence on τ0 in the flat regime) by atomic
constants. By measuring the line ratio we therefore learn what part of the curve
of growth we’re on, and which formula we should use to compute the column
density.

III. The Lyman Series

One important application of curve of growth analysis is to the Lyman series of hydro-
gen transitions, which provides one of our primary means of studying the ISM and IGM
beyond the local universe. The Lyman series consist of allowed transitions between
a lower 1s state (the ground state) and an upper np state, where n = 2 is Lyman
α, n = 3 is Lyman β, etc. Note that it must be a p state for the transition to be
allowed, since one of the selection rules is that change in the angular momentum of the
single-electron wavefunction must be ∆` = ±1, so transitions between two s states, or
between and s and a state with ` > 1, are forbidden and much weaker.

For Lyman α, the upper state is a doublet of a 2Po
3/2 and 2Po

1/2, and the ground state

is a singlet 2S1/2. Both transitions have Au` = 6.265 × 108 s−1, so the transition is
very strong. The transitions have wavelengths of 1215.674 and 1215.668 Å, and the
difference between those two, corresponding to a velocity shift of 1.33 km s−1, is so
small that in astrophysical environments we essentially never see the line split. It is
always blended by thermal or non-thermal motions. For this reason, we regard it as a
single line in practice.

Many other Lyman lines can be observed as well, up to what is called the Lyman limit.
This is limit is that, as n increases, the lines become more and more closely spaced in
energy, until such time as they blend together due to thermal broadening and simply
form a smooth continuum. The condition for this to happen is

dλn
dn

<
(∆v)FWHM

c
λn =⇒ n >

[
2c

(∆v)FWHM

]−1/3

= 67

[
(∆v)FWMH

2 km s−1

]−1/3

.

(31)
Higher n lines than this are not individually distinguishable.

IV. Abundance measurements

Beyond measuring hydrogen column densities, the next most important application
of abundance spectroscopy is measuring abundances of other elements relative to hy-
drogen. This is the main technique used to study chemical evolution of the universe.
Measuring the column density of an element in practice requires two conditions. First,
we must either know the dominant ionisation state of the element (since different
ionisation states have different lines) or we must be able to measure the abundances
over a range of ionisation states. Second, the element must have an absorption line
that is below the ionisation potential of hydrogen (13.6 eV), since photons above this
energy tend not to get very far in the ISM. Fortunately many elements meet these
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requirements.

We usually describe the abundance of an element X in terms of the log of its ratio to
hydrogen or some other element, normalised to the solar value. The notation is

[X/Y ] ≡ log10(NX/NY)− log10(MX/MY)�, (32)

where MX is the mass of element X in the Sun.
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