
ASTR 4020 / 8020: Diffuse Matter and Star Formation

Class 3 Notes: Radiation-matter interaction

Very broadly speaking, the last class was all about matter-matter interaction: atoms and
molecules running into one another, and the rates at which they do so. This is one fundamen-
tal process in the diffuse matter of the ISM. However, a second and equally import process is
the interaction of matter with radiation fields – collisions between atoms and photons, rather
than between atoms and other atoms. Our goal today is to explore interactions of this type.
We will do so by beginning with a brief review of radiation transfer and radiation fields,
before spending the majority of the class on the statistical mechanics of matter-radiation
coupling.

I. Describing the radiation field

A. The radiation intensity and its equivalents

A radiation field is most easily described in terms of the radiation intensity
I(ν,n, r, t). The intensity gives the amount of radiant energy per unit area per
unit frequency per unit solid angle. It is a function of time t, the position in space
r, the direction n, and the frequency ν. Intuitively, we can understand what the
intensity is telling us as follows: suppose we were to place a detector at some
position r in space at some time t. This detector has a collecting area dA, and it
is sensitive to light only within some narrow frequency range from ν to ν + dν.
In addition, the detector is directional: it only picks up radiation coming from
a small range of solid angle dΩ about a particular direction n. If we turn the
detector on for a time interval dt, then the amount of energy dE that it receives
will be

dE = I(ν,n, r, t) dAdν dΩ dt. (1)

If a region is in local thermodynamic equilibrium (LTE – a term we will define
more precisely later on), then one can show (but we will not demonstrate here –
this is covered in the astrophysical processes course) that the intensity is equal to
the Planck function

Iν = Bν(T ) =
2hν3

c2
1

exp(hν/kT )− 1
(in LTE). (2)

Note that this is independent of n, because if the radiation field varies by direction,
then it can’t be in equilibrium.

The relationship between Iν and Bν(T ) motivates us to define an alternative de-
scription of the radiation field. For any given intensity Iν at a particular frequency
ν, we can always solve equation 2 for T . We define the value of T that solves this
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equation as the brightness temperature,

TB(ν,n, r, t) =
hν/k

ln[1 + 2hν3/c2I(ν,n, r, t)]
. (3)

The brightness temperature is simply the temperature of a blackbody that pro-
duces the same intensity I as the given one. There are two things worth pointing
out about this. First, although the motivation for the definition of the brightness
temperature is in terms of the Planck function that describes the radiation field in
LTE, one can compute the brightness temperature for any intensity, regardless of
whether the system is in LTE. The brightness temperature is nothing but a math-
ematical expression derived from I. Second, and a corollary of the first point, is
that since I is a function of ν, n, and r, the brightness temperature is too – that
is, not only can the brightness temperature be different at different locations r, as
one might expect, can be different at different frequencies ν or different directions
n at the same location.

The reason to use brightness temperature is that it becomes very convenient for
systems that are in or close to LTE. We will show below that for an optically thick
system in LTE, the brightness temperature is simply equal to the gas temperature.
This is most commonly the case in the world of radio observations, where hν ≪
kBT . In this limit we can expand the exponential in equation 2 to first order and
obtain a slightly simpler expression,

TA(ν,n, r, t) =
c2

2kν2
I(ν,n, r, t). (4)

This is called the antenna temperature, since it comes from radio, but it is really
nothing more than the first-order expansion of the brightness temperature in the
low-frequency limit.

Finally, the description that we will use most often in this course is the photon
occupation number,

nγ(ν,n, r, t) =
c2

2hν3
I(ν,n, r, t), (5)

This is simply I multiplied by a constant, so that it is dimensionless. Physically, it
measures the number of photons per polarisation mode at a given point. It is the
natural quantum mechanical description of the radiation field, since in quantum
mechanics the radiation field may be considered a harmonic oscillator, and nγ

just corresponds to the quantum number describing its oscillation. The reason
for using nγ is that it makes the statistical calculations we will undertake below
look simple, as it gets rid of various extraneous constants.

B. Moments of the radiation intensity

The intensity or its equivalents describe all there is to know about the radiation
field (except polarisation – we could have two different intensities for two different
polarisations, but for simplicity we’ll neglect that). Often this is more information
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than we need, and instead we care only about certain averages of the intensity.
One such commonly-used average is the frequency-integrated intensity

I =

∫
Iν dν. (6)

This is the quantity that is relevant when we don’t care about the frequency of
the radiation. In some other circumstances we might not care about the direction
n, so we integrate over it. We define

Jν =
1

4π

∫
Iν dΩ (7)

as the directionally-averaged intensity.

These averages are closely related to more familiar physical quantities. In partic-
ular, suppose that we are interested in the energy density in the radiation field.
This is given by

uν =
1

c

∫
I(ν,n, r, t) dΩ =

4π

c
Jν . (8)

You can verify for yourself that this has the correct units. To understand where it
comes from intuitively, first note that we clearly want to average over directions,
since we only want to know the total energy density at a point. To understand
where the 1/c factor comes from, suppose that instead of photons we were describ-
ing some other particle traveling at half the speed of light. We are holding the
intensity fixed, so that the same number of ergs per second of these particles pass
a given point – they’re just traveling half as fast. Clearly they must therefore be
bunched up twice as closely as the photons, so the density will be twice as high.
This is the effect that the 1/c captures.

Similarly, the next two moments of the radiation field are

Fν =

∫
I(ν,n, r, t)n dΩ (9)

Pν =
1

c

∫
I(ν,n, r, t)n⊗ n dΩ. (10)

These are the radiation flux and the radiation pressure tensor.

II. Einstein coefficients

A. Definition

Now that we have introduced a description of the radiation field, we are ready
to introduce the way that radiation interacts with matter. A key consideration
here is that, since the matter we are concerned with is diffuse gases, almost all
of the interactions are going to be resonant interactions that are associated with
a change in the quantum state of the atoms or molecules in the matter. We
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therefore need a language to talk about such transitions. This basic language was
invented by Albert Einstein, and is called the Einstein coefficients.

Consider a particle of species X with lower and upper energy levels Xℓ and Xu,
with energies Eℓ and Eu. If a member of this species is in state ℓ, it can absorb
a photon and transition to state u:

Xℓ + hν → Xu, hν = Eu − Eℓ. (11)

Suppose we now have a population of members of species X in state Xℓ with
number density nℓ, and that this population interacts with a population of photons
of intensity Iν . Photons with frequencies near hν = Eu−Eℓ can be absorbed. We
define the line profile function ϕν as giving the relative probability that a photon
of frequency ν will be absorbed, and we normalise so that∫

ϕν dν = 1. (12)

For now we can think of ϕν as closely approximating a δ function at frequency
νuℓ = (Eu − Eℓ)/h, and we will calculate its true form later.

As with any other collisional process, the rate at which collisions between particles
and photons produce transitions must be proportional to the number density of
target particles times the number density of photons in the beam. Thus we write
the rate at which photons are absorbed is(

dnu

dt

)
abs.

= −
(
dnℓ

dt

)
abs.

= nℓBℓuJ, where J =

∫
Jνϕν dν, (13)

since the photon number density at frequencies near ν where they can be absorbed
is proportional to J . Bℓu is the rate coefficient for this absorption. In cgs it has
units of cm2 erg−1. This type of rate coefficient has a special name: Bℓu is the
Einstein absorption coefficient for this transition.1

Bℓu can be calculated quantum mechanically using a semi-classical approach; one
treats the radiation field classically, as an oscillating electrical and magnetic field,
and uses perturbation theory to compute the probability of the atom undergoing
a change in state due to the perturbation. In practice these calculations are ana-
lytically tractable only for the very simplest atoms, and are numerically tractable
only for slightly more complex ones. For most complex multi-electron atoms and
molecules, however, the absorption rate must be measured in the lab.

1Important caution: there are two different conventions for how to define the Einstein B coefficient.
The one we have adopted here is to define it in terms of the angle-averaged intensity Jν , which is the
convention used in Krumholz, and also in textbooks such as Rybicki & Lightman and Shu. Draine, however,
uses the opposite convention, which is to define B in terms of the radiation energy density uν . As a result,
Draine’s B coefficients differ from the ones in these notes by a factor of c/4π. This will not matter much in
practice, because we will write all results below in terms of the A coefficient that we will define momentarily,
and that does not contain this ambiguity. Just be aware that two conventions exist, since many papers in
the literature unfortunately do not say explicitly which one they are using.
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In addition to absorption, two other types of transition are possible. First, a
particle in the excited state u can spontaneously decay to state ℓ, emitting a
photon:

Xu → Xℓ + hν. (14)

The rate at which this happens per unit volume simply depends on the number
density of particles that can emit:

−
(
dnu

dt

)
spon. emiss.

=

(
dnℓ

dt

)
spon. emiss.

= nuAuℓ, (15)

where Auℓ, which we introduced in the last class, is a constant with units of s−1.
It is called the Einstein spontaneous emission coefficient, or just the Einstein A
coefficient.

Finally, there is another emission process. Just as a time-varying electromagnetic
field can induce a particle in state ℓ to transition to state u by perturbing it, the
reverse is true: a particle in state u can be induced to transition to state ℓ:

Xu + hν → Xℓ + 2hν. (16)

The extra photon has the same direction (and phase and polarization) as the one
that induced the emission. This process is known as stimulated emission. The
stimulated emission rate must have the same functional form as the absorption
rate, since it is essentially the same process in reverse. Thus we write

−
(
dnu

dt

)
stim. emiss.

=

(
dnℓ

dt

)
stim. emiss.

= nuBuℓJ, (17)

Here Buℓ has the same units as Bℓu, and is called the Einstein stimulated emission
coefficient.

B. Relationships

The three Einstein coefficients are not independent of one another. We can see
this using the same trick as we did for collisions of material particles: considering
a system in LTE. In LTE, the distribution of particle energy levels must be given
by the Boltzmann distribution, while the radiation intensity has to follow the
Planck function (which is just the generalisation of the Boltzmann distribution
for bosons). For the matter this implies

nu =
gu
gℓ
e−hν/kTnℓ, (18)

and for the radiation

Iν = Bν(T ) =
2hν3

c2
1

ehν/kT − 1
, (19)
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where Bν(T ) is the Planck function. Clearly this is independent of direction, so
Jν = Iν . If we approximate ϕν as a δ function, so that we ignore the variation in
Iν over it, then we have

J =

∫
Jνδ(ν) dν =

2hν3
uℓ

c2
1

ehνuℓ/kT − 1
. (20)

In LTE, we require that the rate of change of nu and nl be zero, and substituting
in for Iν and nu using LTE, we have

0 =

(
dnu

dt

)
abs.

+

(
dnu

dt

)
stim. emiss.

+

(
dnu

dt

)
spon. emiss.

(21)

= nℓBℓu
2hν3

uℓ

c2

[
1

ehνuℓ/kT − 1

]
−

nℓ
gu
gℓ
e−hνuℓ/kT

(
Auℓ +Buℓ

2hν3
uℓ

c2

[
1

ehνuℓ/kT − 1

])
. (22)

This equation is required to hold independent of T . For hνuℓ/kT ≪ 1, the expo-
nentials approach 1, so the terms in square brackets are very large, and we can
ignore the Auℓ term in comparison. This immediately shows us that

Bℓu =
gu
gℓ
Buℓ. (23)

Similarly, for hν/kT ≫ 1, the terms in square brackets become very small, so we
can drop the Buℓ term in comparison to the Auℓ one. Doing so and solving, we
find

Buℓ =
c2

2hν3
uℓ

Auℓ. (24)

Thus the value of Auℓ and the degeneracies and energies of the two levels fully
determines all the Einstein coefficients.

For convenience we sometimes define the dimensionless directionally-averaged
photon occupation number:

⟨nγ⟩ =
c2

2hν3
uℓ

Jν , (25)

where the brackets indicate that we are dealing with a quantity that has been
averaged over directions. This quantity has the virtue that it allows us to express
the emission and absorption rates very simply:(
dnℓ

dt

)
spon. emiss.

= nuAuℓ

(
dnℓ

dt

)
stim. emiss.

= nu⟨nγ⟩Auℓ

(
dnu

dt

)
abs.

=
gu
gℓ
nℓ⟨nγ⟩Auℓ.

(26)
This definition makes clear that stimulated emission is unimportant when the
photon occupation number is ≪ 1, and dominant when it is ≫ 1.
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III. Cross sections and line profiles

It is often convenient to recast the absorption process in terms of a cross section, using
something like the collision formalism we developed earlier in the class. Since each
photon has an energy hν, the number of photons per unit time with frequencies from ν
to ν+dν passing a given point is Jν/hν. Thus, following our example of writing reaction
rates as number density times number density times cross section times velocity, we
define the cross section σℓu(ν) by(

dnu

dt

)
abs.

= nℓ

∫
σℓu(ν)

4πJν
hν

dν ≈ nℓJν(νuℓ)
4π

hνuℓ

∫
σℓu(ν) dν. (27)

Here we are integrating over all photons energies or frequencies, and the factor of
4π is inserted because we are integrating over all directions as well. In the second
step, we have assumed that σℓu(ν) is very narrowly peaked around the frequency ν =
(Eu − Eℓ)/h, so that Jν/hν is nearly constant over the range where σℓu(ν) has any
appreciable value, and we can take it out of the integral. This is almost always the
case, unless the radiation field varies extremely rapidly with frequency.

If we now equate our formula for (dnu/dt)abs in terms of σℓu with our formula with
that in terms of the Einstein coefficients, and do a little re-arranging, we obtain∫

σℓu(ν) dν =
gu
gℓ

c2

8πν2
uℓ

Auℓ, (28)

where νuℓ = (Eu −Eℓ)/h is the frequency corresponding to the exact energy difference
between the levels. We therefore define the line profile function ϕν by

σℓu(ν) =
gu
gℓ

c2

8πν2
uℓ

Auℓϕν ,

∫
ϕν dν = 1. (29)

The function ϕν contains all the information about how σℓu depends on frequency.
Thus we see that the line profile function we introduced earlier is just a representation
of how the microphysical absorption cross section depends on frequency.

Similarly, considering stimulated emission gives

nuJν(νuℓ)
4π

hν

∫
σuℓ(ν) dν =

(
dnℓ

dt

)
stim. emiss.

, (30)

so we can write

σuℓ(ν) =
c2

8πν2
uℓ

Auℓϕν =
gℓ
gu

σℓu(ν) (31)

Note that we are implicitly assuming that the line profile function ϕν is the same for
absorption and stimulated emission. To see that this must be true, simply note that,
in LTE, the rates of stimulated plus spontaneous emission must balance the rate of
spontaneous emission at every frequency, and that this must be true independent of the
temperature, which of course changes the functional form of ϕν . This is only possible
if all three rates have the same frequency dependence.
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A. Natural broadening

One might think that σℓu(ν) should be an infinitely sharp δ function; after all, how
can a photon whose energy does not precisely match the energy difference between
the two levels be absorbed? However, that ignores the uncertainty principle:
one cannot precisely determine the photon energy or the exact velocity of the
emitting particle. It also ignores the fact that, even in the absence of quantum
uncertainty, for a population of particles at finite temperature there will be a
range of velocities, and thus the Doppler effect will allow emission and absorption
of a range of frequencies.

First let’s consider the intrinsic quantum effect, which is called natural broaden-
ing. The exact line profile this produces can be computed quantum mechanically
(a full treatment is given in Rybicki & Lightman), but to good approximation
we can write it in a form that resembles the strength of response of a system to
driving near a resonance, which varies as the square of the difference between the
driving and resonant frequencies. This is the Lorentz profile:

ϕν ≈ 4γuℓ
16π2(ν − νuℓ)2 + γ2

uℓ

. (32)

Here γuℓ has units of frequency. The full width at half max of this profile is

(∆ν)FWHM =
γuℓ
2π

. (33)

What is the quantity γuℓ? We can estimate this from the uncertainty principle.
The lifetimes of the upper and lower states are

τu =

(∑
j<u

Auj

)−1

τℓ =

(∑
j<ℓ

Aℓj

)−1

. (34)

The uncertainty principle states that ∆E∆t ≥ ℏ, or equivalently in terms of
photon frequency ∆ν∆t ≥ 1/2π. Since ∆t ∼ τu for the upper level, it follows
that ∆ν ∼ 1/τu =

∑
j<uAuj, and similarly for the lower one. In fact, a precise

calculation gives

γuℓ =
∑
j<u

Auj +
∑
j<ℓ

Aℓj. (35)

Thus we can compute the natural linewidth from the Einstein A’s.

It is sometimes convenient to think of this width in terms of velocity: what
Doppler shift would be required to produce the same shift in frequency? This is
just (for non-relativistic motion)

(∆v)FWHM = c
(∆ν)FWHM

νuℓ
=

λuℓγuℓ
2π

, (36)

where λuℓ = c/νuℓ. Typical linewidths for allowed UV and optical transitions are
∼ 0.01 km s−1, while for X-ray transitions they can reach ∼ 10 km s−1. The most
prominent example is Lyman α, which has (∆v)FWHM = 0.0121 km s−1.
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B. Doppler broadening and the Voigt profile

The second main source of line broadening in the context of the ISM is Doppler
broadening. The effect is simply that the gas has a non-zero velocity dispersion,
so there are a range of atom velocities, each producing a different Doppler shifted
frequency of emission or absorption. In fact, except for X-ray lines, it is almost
always the case that the Doppler width is much greater than the natural width
we have just computed – since gas is usually moving around much faster than
∼ 0.01 km s−1.

For gas with a Maxwellian velocity distribution, the fraction fv of particles with
velocity between v and v + dv is

fv =
1√
2πσ2

v

e−(v−v0)2/2σ2
v , (37)

where v0 is the mean velocity and σv =
√

kT/m is the velocity dispersion. For

convenience we sometimes use the broadening parameter b =
√
2σv in place of σv.

Since the Doppler shift is simply νuℓv/c, the corresponding line profile is

ϕν =
1√
2πσ2

ν

e−(ν−ν0)2/2σ2
ν , (38)

where σν = (σv/c)νuℓ and ν0 = νuℓ(1− v0/c).

In reality, both Doppler broadening and natural broadening operate at the same
time. Every particle at a given velocity emits a line that is naturally broadened.
As a result, the true line profile is a convolution of the Doppler and Lorentz
profiles:

ϕν =
1√
2πσ2

v

∫ ∞

−∞
e−v2/2σ2

v
4γuℓ

16π2(ν − (1− v/c)νuℓ)2 + γ2
uℓ

dv, (39)

This is known as the Voigt profile. Note the factor of (1−v/c) in the denominator
of the Lorentz profile function, representing the Doppler shift of a particular
particle. For simplicity we have dropped the v0, since we can always choose to
shift our rest frame to one in which the gas is at rest.

The integral cannot be evaluated analytically in general, but we can approximate
it for the most common case γuℓ ≪ (σv/c)νuℓ, i.e. where the Doppler width is
much greater than the natural width. In this case the Lorentz profile is much
more sharply peaked than the Doppler profile near v = 0, so for small velocities
we can approximate it by a a δ function, i.e.

4γuℓ
16π2[ν − (1− v/c)νuℓ]2 + γ2

uℓ

≈ δ(v − c[1− ν/νuℓ]) (40)

In this case the integral is trivial, and reduces to simply the Doppler profile we
derived earlier.
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However, note that the Doppler profile falls off as (ν − νuℓ)
−2 for frequencies far

away from νuℓ, whereas the Maxwellian profile falls off as e−v2 , which is much
faster. For frequencies far from νuℓ, this means that we can instead think of the
e−v2/2σ2

v term as a δ(v). In this case the integral is again trivial, and reduces to
the Lorentz profile.

Thus we see that the shape of the Voigt profile is simply a “core” that looks
like a Doppler profile, but with broad “wings” that fall off as (ν − νuℓ)

−2, rather
than e−(ν−νuℓ)

2/2σ2
ν , as a pure Doppler profile would. We can roughly estimate the

velocity for which the transition between these two shapes occurs by solving for
the velocity / frequency at which the two line profiles are equal. This is given by

4γuℓ
16π2(v/c)2ν2

uℓ + γ2
uℓ

=
1√
2πσ2

v

e−v2/2σ2
v , (41)

where in the Lorentz profile we have written the difference in frequency ν − νuℓ
as (v/c)νuℓ. For convenience we define the Doppler broadening parameter

b =
√
2σv, (42)

and if we let z = v/b, then the velocity of the core / wings transition is given
implicitly by

ez
2

=
4π3/2b

γuℓλuℓ

z2 +
γuℓ
4πb

. (43)

Since b ≫ γuℓ for almost all astrophysical applications, we can generally drop
the last term. This still leaves a transcendental equation that cannot be solved
analytically, but the solution is reasonably well approximated by

z2 ≈ 10.31 + ln

[
7618 cm s−1

γuℓλuℓ

b6

]
, (44)

where we have normalized to the value of γuℓλuℓ for Lyman α, and b6 = b/10 km
s−1. Since the logarithmic term generally isn’t large (unless we’re dealing with
gas at X-ray temperatures), we see that tend the damping wings dominate the
profile for |z| ≳ 3.2, i.e. for velocities of more than about 4.5 times the velocity
dispersion.

IV. Radiative transfer

We are now in a position to discuss the propagation of a beam of radiation through
a material medium, and the interactions that take place as the photons move through
the matter.

A. The transfer equation

Consider a beam of radiation of intensity Iν (where we’ve dropped the argument
list for conciseness) entering a slab of material of thickness ds. On the far side of
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the slab, the intensity that emerges is Iν +dIν . The equation of radiative transfer
states that

dIν = −Iνκν ds+ jν ds, (45)

where jν is the emissivity of the material (with units of power per unit volume per
unit frequency per unit solid angle), and κν is the attenuation coefficient (with
units of 1/length).

Suppose now that the dominant emission and absorption processes are line emis-
sion and absorption by atoms and molecules. We can write the emissivity and
attenuation coefficient in terms of the theory we have developed for these pro-
cesses. For simplicity, let us continue to consider a single species with upper and
lower states u and ℓ, and number densities nu and nℓ for particles in that state.

For emission, recall that the rate of spontaneous decays per unit volume from
state u is nuAuℓ integrated over all frequencies. The rate at a specific frequency
ν is nuAuℓϕν . Each emission produces a photon of energy hν. Thus the power
radiated per unit volume is nuAuℓhν. In the frame comoving with the emitting
particles, the emission is isotropic, and thus is evenly directed over 4π sr. Thus
the emissivity is

jν =
1

4π
nuAuℓhνϕν . (46)

If the material is moving this should be corrected for both Doppler shifting and
beaming, although the latter is usually unimportant for non-relativistic flows.

For attenuation, we must compute the net rate of absorption, i.e. absorption minus
stimulated emission. We can also do this in terms of the Einstein coefficients. The
rate at which stimulated emission produces new photons of frequency ν traveling
in direction n is nuBuℓ(Iν/4π)ϕν photons per unit time per unit frequency. Each
photon carries energy hν. Similarly, the rate at which absorption removes photons
from the beam is nℓBℓu(Iν/4π)ϕν . Thus the net absorption minus emission rate
is

κν =
hν

4π
nℓBℓuϕν −

hν

4π
nuBℓuϕν . (47)

Note that this has the right units: 1/length. The Iν is not included because of
the way κν is defined. Recalling the relationship between the B coefficients from
last class, we can rewrite this as

κν = nℓ
hν

4π
Bℓu

(
1− gℓ

gu

nu

nℓ

)
ϕν . (48)

The combination that appears inside the parentheses has a specific name. In LTE,
Boltzmann’s law tells us that

nu =
gu
gℓ
nℓe

−Euℓ/kT =⇒ gℓ
gu

nu

nℓ

= e−Euℓ/kT . (49)

We therefore define the excitation temperature of two levels by

e−Euℓ/kTexc =
gℓ
gu

nu

nℓ

. (50)
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Clearly in LTE we have Texc = T , but out of LTE this need not hold. With this
definition, the attenuation coefficient becomes

κν =
hν

4π
nℓBℓu

(
1− e−Euℓ/kTexc

)
ϕν . (51)

B. Integrating the transfer equation: formal solution and uniform media

It is often convenient to make a change of variables in the transfer equation by
letting

dτν = κν ds, (52)

which turns the transfer equation into

dIν − Iνdτν + Sν dτν , (53)

where

Sν =
jν
κν

. (54)

The equation can be solved formally by isolating the Iν :

dIν + Iν dτν = Sν dτν . (55)

If we then multiply by eτν on both sides, we can integrate the equation:

eτν (dIν + Iν dτν) = eτνSν dτν (56)

d (eτνIν) = eτνSν dτν (57)

eτνIν(τν)− Iν(0) =

∫ τν

0

eτ
′
Sν dτ

′ (58)

Iν(τν) = Iν(0)e
−τν +

∫ τν

0

e−(τν−τ)′Sν dτ
′ (59)

It’s worth pausing to understand the physical meaning of this equation. Formally,
it tells us the intensity along some particular ray. On this ray we have marked
some starting point and labelled it optical depth 0, and we want to compute the
intensity Iν at some optical depth τν further along the ray. This has two parts.
The first is the intensity at the starting point, decreased by a factor of e−τν . It
is the radiation entering the slab and being attenuated by it. The second term is
an integral over the radiation that is added by emission within the slab, but also
attenuated by it – radiation from the back of the slab is attenuated by more than
the radiation from the front.

The physical meaning of this equation is perhaps easiest to understand by consid-
ering some special cases. Consider an infinite slab of matter in LTE at temperature
T . The energy levels must therefore have an excitation temperature Texc = T ,
and the radiation field must be equal to the Planck function Iν = Bν(T ). Since
the intensity does not change anywhere, it follows that

dIν = 0 = Bν dτν + Sν dτν =⇒ Sν =
jν
κν

= Bν(T ). (60)
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This is another example of the trick we’ve been using for several classes: we
have deduced this equality from LTE considerations, which ultimately come from
nothing more than counting arguments. However, note that Sν = jν/κν is a
function only of local properties of the matter, and thus must hold locally at
every point. This is known as Kirchoff’s Law: for matter in LTE, the emissivity
and attenuation coefficients are related by

jν
κν

= Bν(T ). (61)

If we substitute this into the formal solution to the transfer equation, we have

Iν(τν) = Iν(0)e
−τν +

∫ τν

0

e−(τν−τ)′Bν(Texc) dτ
′. (62)

Note that Texc can be a function of position, since Kirchoff’s law applies locally.
However, if the temperature inside the slab is constant, the Bν(Texc) comes out
of the integral, and we can evaluate it trivially:

Iν(τν) = Iν(0)e
−τν +Bν(Texc)(1− e−τν ). (63)

The physical meaning of this becomes clear if we consider how the equation be-
haves in the limit of large and small τν . For small τν , the e−τν factor is unity, so
the first term is Iν(0), and the second is zero. Thus the radiation is the same as
what it was on the far side of the slab. On the other hand, for large τν the first
term goes to zero and the second one dominates. This says that the radiation
field simply approaches the Planck function for temperature T = Texc. Thus as
the radiation passes through the matter, it becomes thermalized.

C. Masers

An interesting phenomenon is possible when matter is out of LTE in a specific way.
Under some conditions collisions or radiative processes can lead to a population
inversion, meaning that nu/gu > nℓ/gℓ. In other words, there are more particles
in the upper state than one would expect for a Boltzmann distribution at any
temperature. Formally, in fact, in this case the excitation temperature Texc < 0.

Consider what happens as radiation moves through matter in which a population
inversion exists. We cannot use the form of the transfer equation that applies in
LTE, since of course the gas cannot be in LTE if a population inversion exists.
Instead, recall that we showed earlier that

κν =
hν

4π
nℓBℓu

(
1− gℓ

gu

nu

nℓ

)
=

hν

4π
nℓBℓu

(
1− e−Euℓ/kTexc

)
. (64)

If a population inversion exists, then the term in parenthesis is negative, and
the attenuation coefficient is positive. For simplicity, let us consider matter of
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negligible emissivity and constant, negative excitation temperature. In this case
the transfer equation becomes

dIν = −Iν dτν =⇒ Iν = Iν(0)e
−τν (65)

but with the twist that dτν = −κν ds is negative as one proceeds along the ray, so
the total optical depth is negative as well. This means that the intensity increases
rather than decreases exponentially as radiation propagates through the matter.

This is known as a maser or laser (microwave or light amplified by stimulated
emission of radiation) because the physical origin of the effect is that stimulated
emission adds new photons to the beam faster than absorptions remove them. In
some astrophysical situation the e−τν factor can be very large, and as a result the
intensity can be huge. For some astrophysical sources the brightness temperature
exceeds 1011 K.
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