
ASTR 4020 / 8020: Diffuse Matter and Star Formation

Class 2 Notes: Fluid dynamics

In the last class we developed a basic theory of particle-particle collisions. In this class we
will use that theory to answer the question of under what circumstances we can think of the
ISM as a fluid that can be characterised by a temperature and an equation of state. We will
then make some general observations about what type of fluid the ISM is, which will inform
our treatment of it in the rest of the class.

I. Is the ISM a fluid?

To start with the question of whether the ISM is a fluid, we have to first recall what
it means for something to be a fluid. If we were to use a vacuum pump to suck all the
our of this room, leaving behind only two molecules, clearly it would be meaningless to
talk about the room as a fluid. For example, there is no single density or velocity that
describes the two molecules. The reason that it makes sense to talk about the air in the
room as a fluid is that there are no many molecules, colliding so often, that particle
velocities get randomised. In this case it makes sense to talk about the air moving
at a certain velocity, because the distribution of particle velocities will be some mean
plus some isotropic distribution about that mean. So the key process is randomisation:
to have a fluid, particles must collide often enough for their velocity distributions to
become random and isotropic.

A. Neutral particles

To evaluate this condition, we will start with the simplest case: a set of identical
neutral particles, say hydrogen atoms. Since any scattering between two such
particles is enough to redirect their motion in an arbitrary direction, we can
consider things a fluid on scales significantly larger than the particle mean free
path. For neutral particles undergoing hard-sphere scattering, this length is

λmfp =
1

nσ
= 55

(
r

1 Å

)−2 ( n

1 cm−3

)−1

AU, (1)

where r is the particle radius. We have normalised here to the mean density of
the ISM in the Galaxy, so this provides a useful answer: we can think of the ISM
as a fluid as long as we are considering length scales larger than ∼ 100 AU. This
is a very tiny scale by interstellar standards, so a fluid description is appropriate.

For a population containing particles of very disparate masses the question is more
complicated, because a massive particle will not change its momentum much per
encounter with much less massive particles. Instead, it will take many encounters
to change the massive particle’s direction significantly. We will consider this case
in the practice problem.
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B. Charged particles

Another case that is more complicated is the case of collisions between ionised
particles, because in that case, as we have seen, the cross section is not a well-
defined quantity due to the long range Coulomb interaction. Instead, we must
ask about how long it takes the particle’s momentum to change significantly as a
result of all those Coulomb interactions.

Consider a particle of charge Z1e moving through a field of particles of charge
Z2e. We have seen that the change in particle 1’s transverse momentum due to
an encounter at impact parameter b and velocity v is

∆p⊥ = 2
Z1Z2e

2

bv1
. (2)

On average the momentum change due to the many particles in the field will sum
to zero, but the RMS change will not be zero – the particle’s transverse momentum
will undergo a random walk. We can compute the rate at which it increases by
multiplying the rate at which particle 1 encounters field particles times (∆p⊥)

2.

The rate of encounters with cross section b is n2v1×2πb db, i.e., number of targets
in the field times velocity with which particle 1 moves through them times area
with impact parameter between b and b+ db. Here we’re making the simplifying
assumption that v1 is much larger than the mean velocity of the field particles,
so that we don’t have to worry about integrating over the Maxwellian distribu-
tion they present, i.e., v1 ≫ v; properly integrating over relative velocities just
introduces a factor of order unity difference. Thus we get a rate of change for
(∆p⊥)

2〈
d

dt
(∆p⊥)

2

〉
=

∫ bmax

bmin

n2v12πb

(
2Z1Z2e

2

bv1

)2

db =
8πn2Z

2
1Z

2
2e

4

v1

∫ bmax

bmin

db

b
. (3)

Clearly we cannot take bmin = 0 or bmax = ∞ without the integral diverging. For
the minimum impact parameter to consider, we can adopt the impact parameter
for which the impulse approximation used to compute ∆p⊥ fails. If the initial
kinetic energy in the center of mass frame is E, this failure occurs when the
interaction energy is comparable to E – if this is the case, then clearly we cannot
ignore the deflection of the particles during the encounter. Thus we take bmin =
Z1Z2e

2/E. For the maximum, the plasma will shield charges on size scales longer
than the Debye length,

LD =

(
kT

4πnee2

)1/2

, (4)

where ne is the free electron density, and this will cut off the Coulomb force from
larger distances. Thus we take bmax = LD, and we have〈

d

dt
(∆p⊥)

2

〉
=

8πn2Z
2
1Z

2
2e

4

v1
ln Λ, (5)
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where lnΛ is known as the Coulomb logarithm, and has the value

lnΛ = ln

[
E

kT

(kT )3/2

(4πne)1/2Z1Z2e2

]
= 22.1 + ln

[(
E

kT

)(
T

104 K

)3/2(
cm−3

ne

)]
(6)

Note that we made some very rough approximations in computing bmin and bmax,
but these enter the result only logarithmically.

We are now in a position to answer the question of on what length scales we can
treat a plasma as a fluid. The characteristic time for the random walk produced by
lots of little kicks ∆p⊥ to randomise an initial velocity v1, known as the deflection
time, is

tdefl =
(m1v1)

2

⟨(d/dt)(∆p⊥)2⟩
=

m2
1v

3
1

8πn2Z2
1Z

2
2e

4 ln Λ
, (7)

and the distance the particle travels in this time, the effective mean free path, is

λmfp = v1tdefl =
m2

1v
4
1

8πn2Z2
1Z

2
2e

4 ln Λ
. (8)

If we consider electrons being deflected either by other electrons or by protons, and
plug in a velocity corresponding to a kinetic energy (3/2)kT (not fully consistent
with our choice to take v1 much larger than the thermal energy, but we’re only
after an order of magnitude estimate here), we have

λmfp = 5× 1012
(
m1

me

)2(
T

104 K

)2(
0.1 cm−3

n2

)(
25

lnΛ

)
cm. (9)

Thus on size scales larger than ∼ 1 AU, for densities of ∼ 0.1 cm−3 and temper-
atures ∼ 104 K, we may consider the electrons in a plasma to be a fluid.

II. Does the ISM have a temperature?

We have now established conditions for thinking of the ISM as a fluid. However, this
does not necessarily mean that it has a well-defined temperature. Temperature is a
meaningful concept only for systems in or close to thermal equilibrium, meaning that
the distribution of energies follows the Maxwell-Boltzmann distribution. Does the ISM
satisfy this condition?

To answer this, instead of asking about the deflection of a particle by its random walk
in momentum space, we can now ask about how its energy changes due to these deflec-
tions. For equal-mass neutral particles that interact as hard spheres, every encounter
leads to a significant change in energy, so the time to change a particle’s energy is es-
sentially the same as the time to change it’s momentum, and the conditions for being
a fluid and having a well-defined temperature are very similar.

The situation is more complicated for charged particles of unequal mass, which is an
important case, since this is what happens when we have electrons and ions. Suppose
particle 1 has initial velocity v1, so its kinetic energy is (1/2)m1v

2
1, and again assume
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v1 is much greater than the thermal velocities of the field particles. Each time particle
1 undergoes an encounter, it gives momentum ∆p⊥ to the field particle, and as a
result its energy decreases by (∆p⊥)

2/(2m2). The time required for such encounters to
completely deplete particle 1’s excess energy and make it into a field particle is

tloss =
m1v

2
1

⟨(d/dt)(∆p⊥)2/m2⟩
=

m1m2v
3
1

8πn2Z2
1Z

2
2e

4 ln Λ
. (10)

If we ask how long it will take encounters between fast electrons with a speed corre-
sponding to a temperature Te, and a sea of protons with number density np, to slow
down the electrons, we get

tloss = 0.4×
(

Te

104 K

)3/2(
cm−3

np

)(
25

lnΛ

)
Myr. (11)

Thus hot electrons make take ∼ 1 Myr to slow down due to encounters with protons.

This timescale is short enough compared to flow timescales in the ISM that for most
places in the ISM it is reasonable to assume a single temperature. However, there are
exceptions, for example in regions where the electrons are very hot or the density is low.
In these regions, the electrons will thermalise with respect to each other quickly, but
may not reach the same temperature as the protons for a long time. A gas in this state
is referred to as a two-temperature plasma, because the electrons and protons each
have a well-defined Maxwellian velocity distribution, but at different temperatures.

III. Fluid mechanics of the ISM

Now that we have established that we can for the most part think of the ISM as a
fluid with a well-defined temperature, we can use the equations of fluid mechanics to
investigate its behaviour. We will not derive these equations here – that is covered in
the astrophysical processes class. We will simply assert them and work with them.

A. The conservation equations

We will start with the case of a non-magnetised fluid, and then build up to include
magnetic fields. Both magnetised and unmagnetised fluid are governed by a series
of conservation laws. The most basic one is conservation of mass:

∂

∂t
ρ = −∇ · (ρv). (12)

This equation asserts that the change in mass density at a fixed point is equal
to minus the divergence of density times velocity at that point. Physically, this
is very intuitive: density at a point changes at a rate that is simply equal to the
rate at which mass flows into or out of an infinitesimal volume around that point.

We can write a similar equation for conservation of momentum:

∂

∂t
(ρv) = −∇ · (ρv ⊗ v)−∇P + ρν∇2v. (13)
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Note that the term v ⊗ v here is a tensor product. This is perhaps more clear if
we write things out in index notation:

∂

∂t
(ρvi) = − ∂

∂xj

(ρvivj)−
∂

∂xi

P + ρν
∂

∂xj

(
∂

∂xj

vi

)
(14)

The intuitive meaning of this equation can be understood by examining the terms
one by one. The term ρv is the density of momentum at a point. The term
∇ · (ρv ⊗ v) is, in analogy to the equivalent term in the conservation of mass
equation, the rate at which momentum is advected into or out of that point by
the flow. The term ∇P is the rate at which pressure forces acting on the fluid
change its momentum. Finally, the last term, ρν∇2v, is the rate at which viscosity
redistributes momentum; the quantity ν is called the kinematic viscosity.

The last term, the viscosity one, requires a bit more discussion. All the other
terms in the momentum equation are completely analogous to Newton’s second
law for single particles. The viscous term, on the other hand, is unique to fluids,
and does not have an analog for single particles. It describes the change in fluid
momentum due to the diffusion of momentum from adjacent fluid elements. We
can understand this intuitively: a fluid is composed of particles moving with
random velocities in addition to their overall coherent velocity. If we pick a
particular fluid element to follow, we will notice that these random velocities
cause some of the particles that make it up to diffuse across its boundary to the
neighbouring element, and some particles from the neighbouring element to diffuse
into the one we are following. The particles that wander across the boundaries of
our fluid element carry momentum with them, and this changes the momentum
of the element we are following. The result is that momentum diffuses across the
fluid, and this momentum diffusion is called viscosity.

B. The Reynolds Number and the Mach Number

To understand the relative importance of terms in the momentum equation, it
is helpful to make order of magnitude estimates of their sizes. Let us consider a
system of characteristic size L and characteristic velocity V . The natural time
scale for flows in the system is L/V , so we expect time derivative terms to be of
order the thing being differentiated divided by L/V . Similarly, the natural length
scale for spatial derivatives is L, so we expect spatial derivative terms to be order
the quantity being differentiated divided by L. If we apply these scalings to the
momentum equation, we expect the various terms to scale as follows:

ρV 2

L
∼ ρV 2

L
+

ρc2s
L

+ ρν
V

L2
, (15)

where cs is the isothermal sound speed, and we have written the pressure as
P = ρc2s. Canceling the common factors, we get

1 ∼ 1 +
c2s
V 2

+
ν

V L
. (16)

5



From this exercise, we can derive two dimensionless numbers that are going to
control the behaviour of the equation. We define the Mach number and the
Reynolds number as

M ∼ V

cs
(17)

Re ∼ LV

ν
. (18)

The meanings of these dimensionless numbers are fairly clear from the equations.
If M ≪ 1, then c2s/V

2 ≫ 1, and this means that the pressure term is important in
determining how the fluid evolves. In contrast, if M ≫ 1, then the pressure term
is unimportant for the behaviour of the fluid. Similarly, the Reynolds number is
a measure of how important viscous forces are. Viscous forces are significant for
Re ∼ 1 or less, and are unimportant of Re ≫ 1. We can think of the Reynolds
number as describing a characteristic length scale L ∼ ν/V in the flow. This is
the length scale on which diffusion causes the flow to dissipate energy. Larger
scale motions are effectively dissipationless, while smaller scales ones are damped
out by viscosity.

So what are M and Re in the ISM? Well, it depends on which phase of the
ISM we are considering. Let us begin with M, which requires knowledge of
the characteristic flow speed and the characteristic sound speed. The isothermal
sound speed of a gas is

cs =

√
kBT

µmH

= 9.1µ−1/2

(
T

104 K

)1/2

km s−1. (19)

where µ is the mean particle mass in units of the hydrogen mass mH. Recall that
the temperature varies from as high as ∼ 107 K in the hot ionised medium, to as
low as ∼ 10 K in cold molecular gas. The mean particle mass will also be lower in
the hot gas: a fully ionised gas has µ = 0.61 due to the presence of free electrons,
while a gas where all the hydrogen is in form of H2 has µ = 2.3. Thus the sound
speed will vary from ∼ 500 km s−1 in the hottest gas to ∼ 0.2 km s−1 in the
coldest. Typical velocities vary too: hot regions are typically observed to have
flow speeds of hundreds to thousands of km s−1, while in atomic and molecular
regions speeds tend to be closer to a few to 10 km s−1. Comparing these numbers
to the sound speed, we see that warmer phases of the ISM tend to have M ∼ 1
(transsonic), while colder phases have M ≫ 1 (highly supersonic).

To estimate Re, we must know the viscosity. For an ideal gas, the kinematic
viscosity is ν = 2uλmfp, where u is the RMS particle speed (which is of order cs)
and λmfp is the particle mean free-path. Using equation 1 for the mean free path
and equation 19 for the sound speed (and thus roughly u), we have

ν ∼ 1021
(

T

104 K

)1/2 ( n

1 cm−3

)−1

cm2 s−1. (20)
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Re#=#0.05# Re#=#10# Re#=#200# Re#=#3000#

Flows#at#different#Reynolds#number,#from#the#NSF#fluid#
dynamics#film#series#

Figure 1: Flows at varying Reynolds number Re. In each panel, a fluid that has been dyed
red is injected from the top into the clear fluid on the bottom. The fluids are a glycerin-water
mixture, for which the viscosity can be changed by altering the glycerin to water ratio. By
changing the viscosity and the injection speed, it is possible to alter the Reynolds number
of the injected flow. The frames show how the flow develops as the Reynolds number is
varied. This image is a still from the National Committee for Fluid Mechanics Film Series,
which, once you get past the distinctly 1960s production values, are a wonderful resource for
everything related to fluids.

If we consider the hot phase, which tends to be found around rather than in
galactic discs, we reasonable length and velocity scales might be L ∼ 1 kpc,
V ∼ 1000 km s−1, and if we take T = 107 K and n = 10−3 cm−3, we obtain
Re ∼ 104. For the warm neutral or ionised phases in a galactic disc, we might
have L ∼ 100 pc, V ∼ 10 km s−1, T ∼ 104 K, and n ∼ 1 cm−3, which gives
Re ∼ 105. For a molecular cloud, L ∼ 10 pc, V ∼ 10 km s−1, T ∼ 10 K, and
n ∼ 100 cm−3, giving Re ∼ 108.

We therefore conclude that for all phases of the ISM Re is a very large number.
The extremely large value of the Reynolds number immediately yields a critical
conclusion: the ISM must be highly turbulent, because flows with Re of more
than ∼ 103 − 104 invariably are. This is obvious from experiments, as shown in
Figure 1.
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C. Magnetised flows

We now relax the approximation that there are no magnetic fields present, and
generalise our treatment of flows to the magnetic case.

1. Conservation equations

To start with, we will write down the conservation equations for magnetised
flows. Conservation of mass is of course the same, but conservation of mo-
mentum acquires an extra term representing the forces exerted by magnetic
fields on the gas:

∂

∂t
(ρv) = −∇ · (ρvv)−∇P + ρν∇2v +

1

4π
(∇×B)×B, (21)

Here B is the magnetic field.

In addition to the momentum equation, we require an equation to tell us how
the magnetic field itself evolves. This is known as the induction equation,
and takes the form (again, we assert without proving)

∂B

∂t
+∇× (B× v) = −∇× (η∇×B), (22)

where η is the resistivity, which is simply the analog of resistance for a bulk
material: if we make a resistor of cross sectional area A and length ℓ out of
a material with resistivity η, the resistance will be ηℓ/A.

2. The Alfvén Mach Number

The Mach Number and Reynolds Number for non-magnetised fluids have
fairly straightforward analogs for magnetised fluids. We will start with the
Mach number. Beginning from the momentum equation, we can make the
same order of magnitude estimates of the sizes of terms we did to derive the
Reynolds Number, whereby we let L be the characteristic size of the system
and V be the characteristic velocity, so L/V is the characteristic timescale.
We let B be the characteristic magnetic field strength. Doing so, the order
of the various terms in the momentum conservation equation are

ρV 2

L
∼ −ρV 2

L
+

ρc2s
L

+
ρνV

L2
+

B2

L
(23)

1 ∼ 1 +
c2s
V 2

+
ν

V L
+

B2

ρV 2
(24)

The second and third terms on the right hand side we have already defined
in terms of M = V/cs and Re = LV/ν, and we now see that there is another
dimensionless number that characterises the importance of the magnetic term.
We define

MA ≡ V

vA
, (25)
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No. 1, 1998 DISSIPATION IN COMPRESSIBLE MHD TURBULENCE L101

TABLE 1
Dissipation Characteristics of Saturated MHD Turbulence

Model b 3 2E/rL cs 3 2E /rL cK s dEB/EK tdiss/tfa aKt /tdiss f tdec/tfa aKt /tdec f

A . . . . . . 0.01 20.3 13.0 0.56 0.83 0.54 0.82 0.65
B . . . . . . 0.1 18.9 11.8 0.61 0.74 0.46 0.69 0.39
C . . . . . . 1.0 17.0 12.9 0.32 0.70 0.53 0.58 0.37
D . . . . . . ` 15.4 15.4 0 0.69 0.69 0.40 0.40

a The variables tdiss, , tf, tdec, and are defined in the text.K Kt tdiss dec

Fig. 2.—Images of the logarithm of the density (colors) on three faces of the computational volume, representative magnetic field lines (dark blue lines), and
isosurface of the passive contaminant (red) after saturation. Left: ; right: .b 5 0.01 b 5 1

the four models displayed. From the values in the table, the
change in E with b is not large, amounting to only a ª30%
increase in the E saturation amplitude as b varies from ` to
0.01. The dissipation times for saturated turbulence all lie in
the range ª0.5–0.8tf, with slightly longer dissipation times for
stronger B0 models.
The structure of driven compressible MHD turbulence

changes as the field strength is varied. Figure 2 shows the
logarithm of the density along three faces of the computational
volume, representative magnetic field lines, and an isosurface
of the passive contaminant after saturation for both b 5 0.01
and models computed at a resolution of 2563. In bothb 5 1
cases, the density is compressed into small-scale knots and
filaments; in the model, these are elongated in theb 5 0.01
direction parallel to the field. The mass-weighted (volume-
weighted) mean of in the strong magnetic field modellog (r/r )0
is 0.28 (20.29), whereas for the weak field model it is 0.20
(20.22), which indicates that the density contrasts are larger
for strong fields at fixed turbulent Mach number. The maximum
density in the strong field model is 83; for the weak field model,
it is 44. The passive contaminant is confined to a narrow range
of flux tubes for , indicating that cross-field diffusionb 5 0.01
is small; for , it diffuses isotropically.b 5 1
There is a tendency toward equipartition of kinetic and mag-

netic energy in all of the models. From Table 1, the turbulent
magnetic energy dEB is between 30% and 60% of EK. In the
weak field case, significant amplification of the magnetic field
is produced by the turbulence, so that after saturation, the en-

ergy in the fluctuations in the field is 10 times larger than that
in the mean field. In the weakly magnetized model, the field
lines are thoroughly tangled (Fig. 2, right). In the strong field
model, the field lines are relatively well ordered (Fig. 2, left),
as expected (e.g., Weiss 1966).
Next consider models of decaying turbulence. The initial

conditions are taken from the saturated driven models presented
above. Figure 1b shows the evolution of E for decay from
saturated initial conditions for various magnetic field strengths.
At late times the decay of E follows a power law in time, with
an index between 0.8 and 0.9 (consistent with the finding of
Mac Low et al. 1998). This implies that the dissipation time
varies with time. We define decay times tdec ( ) as the timeKtdec
taken for 50% of the initial energy (kinetic energy) to be lost;
values for the decay time in these decay runs are given in Table
1. For all models, the decay times are in the range 0.4–0.8tf,
comparable to the range of steady state dissipation times.
The decay rate measured here could in principle differ sub-

stantially from decay simulations that begin with unsaturated
initial conditions. To investigate this possibility, we have com-
puted the decay of supersonic turbulence from initial conditions
in which the magnetic and velocity field perturbations are taken
from the saturated, driven model A, but the density is reset to
a uniform value. The result is plotted as a dashed line in Figure
1b. The corresponding decay times are andt /t 5 0.80dec f

, nearly identical to those for model A’s decay.Kt /t 5 0.68dec f

Finally, to make contact with other studies of decayingMHD
turbulence, we have performed simulations that begin with a
uniform density and magnetic field and velocity perturbations
that follow a k22 spectrum normalized to have the same initial
energy as our driven turbulence simulations at saturation. The
result is shown as a dotted curve in Figure 1b; the decay times
for this model are and , again compa-Kt /t 5 1.0 t /t 5 0.6dec f dec f

rable to the other dissipation times that we have found. Thus,
we conclude that turbulent decay times are not strongly affected
by specifics of initial conditions. The energy decay times found
for -dimensional models (Ostriker et al. 1998) are a factor12 2

Figure 2: Simulations of sub-Alfvénic (left) and Alfvénic (right) turbulence. Colors on the
cube surface are slices of the logarithm of density, blue lines are magnetic field lines, and red
surfaces are isodensity surfaces for a passive contaminant added to the flow. From Stone,
Ostriker, & Gammie (1998, ApJL, 508, L99).

where

vA =
B√
4πρ

(26)

is the Alfvén speed – the speed of the wave that, in magnetohydrodynamics,
plays a role somewhat analogous to the sound wave in hydrodynamics. In
flows with MA ≫ 1, which we refer to as super-Alfvénic, the magnetic force
term is unimportant, while in those withMA ≪ 1, referred to as sub-Alfvénic,
it is dominant.

An important difference between super- and sub-Alfvénic flows is the shape
of the magnetic field. Magnetic field lines resist compression via magnetic
pressure, and resist bending via magnetic tension; only if magnetic field lines
are straight and uniformly spaced do magnetic forces vanish. In the regime
MA ≪ 1, these magnetic forces are larger than other forces in the problem,
and thus gas thermal pressure and ram pressure are insufficient to bend or
compress field lines. As a result, flows with MA ≪ 1 are characterised
by having nearly straight, uniform magnetic fields. Conversely, flows with
MA ≫ 1 are characterised by having bend, tangled magnetic fields.

3. The magnetic Reynolds Number

Now let us repeat this scaling exercise for the induction equation, equation
22. The various terms scale as

BV

L
+

BV

L
∼ η

B

L2
(27)
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1 ∼ η

V L
(28)

Note that the scaling of the final term looks very much like the one we ob-
tained for the Reynolds Number for hydrodynamics, i.e., it is resistivity /
viscosity times V / B divided by L2. In analogy to the ordinary hydrody-
namic Reynolds number, we therefore define the magnetic Reynolds number
by

Rm =
LV

η
. (29)

The significance of η, and the magnetic Reynolds Number, becomes clear if
we investigate the implications of the limit η → 0, or Rm → ∞. If we adopt
η = 0 exactly, we have

∂B

∂t
+∇× (B× v) = 0. (30)

To understand what this equation implies, it is useful consider the magnetic
flux Φ threading some fluid element. We define this as

Φ =

∫
A

B · n̂ dA, (31)

where we integrate over some area A that defines the fluid element. The time
derivative of this is then

dΦ

dt
=

∫
A

∂B

∂t
· n̂ dA+

∮
∂A

B · v × dl (32)

=

∫
A

∂B

∂t
· n̂ dA+

∮
∂A

B× v · dl (33)

where ∂A is the boundary of A. Here the second term on the right comes
from the fact that, if the fluid is moving at velocity v, the area swept out by
a vector dl per unit time is v× dl, so the flux crossing this area is B · v× dl.
Then in the second step we used the fact that ∇ ·B = 0 to exchange the dot
and cross products.

If we now apply Stokes theorem again to the second term, we get

dΦ

dt
=

∫
A

∂B

∂t
· n̂ dA+

∫
A

∇× (B× v) · n̂ dA (34)

=

∫
A

[
∂B

∂t
+∇× (B× v)

]
· n̂ dA (35)

= 0. (36)

Thus the magnetic flux through each fluid element is a conserved quantity.
A useful analogy is that fluid elements are tied to magnetic field lines like
beads on a wire; they are free to slide up and down the wire, and encounter
no resistance when they do so, but they can never come off the wire.
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We call the regime Rm ≫ 0, where this condition of flux freezing holds, ideal
magnetohydrodynamics. Flows where Rm ≲ 1 are non-ideal MHD. Note,
however, that like viscosity Rm depends on length scale, so for sufficiently
small L, we will always reach a regime where Rm ≲ 1 even if Rm ≫ 1 on
larger scales. This is a size scale on which magnetic fields and matter are no
longer perfectly flux-frozen to one another, and is of order L ∼ (η/V )Rm.

4. Non-ideal MHD effects and magnetic Reynolds Numbers in the ISM

Effects that make η non-zero, and allow violation of flux freezing, are called
non-ideal MHD effects. There are a wide range of non-ideal effects, only some
of which are important for ISM conditions. In the parts of the ISM that are
fully ionised, the main effect is collisions between ions and electrons in a
highly-ionised plasma. In an ideal plasma electrons and ions do not collide,
and interact only via electric forces, which cause currents to flow. Collisions
impede the flow of current, thereby giving rise to resistivity. This produces a
resistivity, called Spitzer resistivity,

η ≈ 4
√
2π

3

Ze2m
1/2
e ln Λ

(kBTe)3/2
, (37)

where Z is the mean ion charge, Te is the electron temperature, and lnΛ is the
Coulomb logarithm, a number ≈ 10 that accounts for shielding of the plasma
of large distances by electrons clustering around ions. If we consider most of
the ISM, where the dominant ion is hydrogen, Z = 1, then we roughly have

η ≈ 10−13

(
Te

104 K

)−3/2

cm2 s−1 (38)

We can immediately see from this expression that the ionised parts of the ISM
are very close to the ideal MHD regime, since Rm ∼ LV/η. On interstellar
scales LV ≫ 1 cm2 s−1, while we have just shown that η ≪ 1 cm2 s−1, so
Rm ≫ 1 at all times. Flux freezing is a very good approximation for the
ionised parts of the ISM.

In the part of the ISM that are predominantly neutral, but where there are
still some ions, the main non-ideal effect is called ion-neutral drift, or am-
bipolar diffusion. We can understand this effect intuitively as follows. Only
ions and electrons feel the Lorentz force exerted by a magnetic field directly;
neutrals do not. This means that magnetic fields only exert forces on neu-
tral particles indirectly, by exerting forces on the ions and electrons (and
mostly ions matter for this purpose), which then collide with the neutrals,
exchanging momentum with them and therefore transmitting the magnetic
force. However, if the ionisation fraction is sufficiently small, then a neutral
atom may have to wait a long, long time before it has a collision with an ion;
there are just very few ions with which to collide.
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Because neutrals encounter ions only rarely, an appreciable difference can
build up between the mean velocity of the ions, which feel magnetic forces,
and the neutrals, which do not. To estimate how this process works, we need
to think about the forces acting on both ions and neutrals. The ions feel a
Lorentz force

fL =
1

4π
(∇×B)×B. (39)

The other force in play is the drag force due to ion-neutral collisions, which
is

fd = γρnρi(vi − vn), (40)

where the subscript i and n refer to ions and neutrals, respectively, and γ
is the drag coefficient, which can be computed from the microphysics of the
plasma. In a very weakly ionised fluid, the neutrals and ions very quickly
reach terminal velocity with respect to one another, so the drag force and
the Lorentz force must balance. Equating our expressions and solving for
vd = vi − vn, the drift velocity, we get

vd =
1

4πγρnρi
(∇×B)×B (41)

To figure out how this affects the fluid, we write down the equation of mag-
netic field evolution under the assumption that the field is perfectly frozen
into the ions:

∂B

∂t
+∇× (B× vi) = 0. (42)

To figure out how the field behaves with respect to the neutrals, which con-
stitute most of the mass, we simply use our expression for the drift speed vd

to eliminate vi. With a little algebra, the result is

∂B

∂t
+∇× (B× vn) = ∇×

{
B

4πγρnρi
× [B× (∇×B)]

}
. (43)

Referring back to the induction equation (22), we can see that the resistivity
produced by ion-neutral drift is not a scalar, and that it is non-linear, in the
sense that it depends on B itself.

However, our scaling analysis still applies. The magnitude of the resistivity
produced by ion-neutral drift is

ηAD =
B2

4πρiρnγ
. (44)

Thus, the magnetic Reynolds number is

Rm =
LV

ηAD

=
4πLV ρiρnγ

B2
≈ 4πLV ρ2xγ

B2
, (45)

12



where x = ni/nn is the ion fraction, which we’ve assumed is ≪ 1 in the last
step. Ion-neutral drift will allow the magnetic field lines to drift through the
fluid on length scales L such that Rm ≲ 1. Thus, we can define a characteristic
length scale for ambipolar diffusion by

LAD =
B2

4πρ2xγV
. (46)

In order to evaluate this numerically, we must calculate the ion-neutral drag
coefficient γ. The dominant effect at low speeds is that ions induce a dipole
moment in nearby neutrals, which allows them to undergo a Coulomb in-
teraction. This greatly enhances the cross-section relative to the geometric
value. We will not go into details of that calculation, and will simply adopt
the results: γ ≈ 9.2× 1013 cm3 s−1 g−1 (Smith & Mac Low, 1997, A&A, 326,
801). Thus we have

Rm ∼ 20

(
L

pc

)(
V

km s−1

)( n

1 cm3

)2 ( x

10−2

)(
B

µG

)−2

, (47)

where n is the number density of H nuclei. Thus we see that the atomic ISM,
which tends to have x ∼ 10−2, L ∼ 10− 100 pc, and n ∼ 1 cm−3 is safely in
the ideal MHD regime, Rm ≫ 1. The situation is less clear for the molecular
ISM, which is much more weakly ionised, x ∼ 10−6, and tends to have much
smaller scale structures and stronger magnetic fields. In the molecular ISM,
non-ideal MHD effects can become significant on small scales.
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