
ASTR 4020 / 8020: Diffuse Matter and Star Formation

Class 1 Notes: Collisional processes

The subject of this class is the low density gas between the stars and galaxies. Our goal
will be to develop a physical understanding of how this material works. The physics that
governs it is all familiar and has been understood for at least the last fifty years – gas
dynamics, radiation, some quantum mechanics – but the low densities found in interstellar
space provide a completely novel context far removed from any other physical regime we’re
used to thinking about. For this reason, many of the familiar behaviours we expect are
absent or altered in the interstellar context. This makes the ISM a wonderfully complex and
challenging problem.

The class is roughly divided into three parts. The first third covers the physics of the ISM,
developing theories for the important processes that occur in low density gas. The second
third applies those models to understand the behaviour of the major constituents of the ISM
and IGM. What we will cover does not even come close to being exhaustive. The ISM is
still a young and rapidly-developing field of study. The last third of the course will focus
on how the self-gravitating portion of the ISM, and the process by which it transforms into
new stars.

Finally, a note on nomenclature: because saying “ISM and IGM” repeatedly would be tire-
some, I am simply going to say “ISM” most of the time, with the understanding that this
encompasses the IGM as well. I will try to be clear when I am saying something that applies
only to the ISM or the IGM.

I. Components of the ISM

As we will learn later on in the course, the ISM is made up of a range of components:
solid particles, several distinct phases of gas, and radiation fields. Although we will
be starting with ISM physics and only later getting into applications, it is helpful to
have in mind a rough phenomenology to guide us in picking characteristic numbers
and scales, and in suggesting what problems are interesting.

A. Dust

A significant fraction of the refractory elements, i.e., those whose solid forms
vaporise at temperature ∼ 1000 K rather than ∼ 100 K, exist in interstellar space
in the form of small dust grains. Much of the carbon, silicon, iron, and similar
elements that exist in the ISM are in grain form. The exact fraction in grain
rather than gas form varies with the ambient density and temperature, ranging
from a majority of material being in grain form in dense and cold environments
to almost none of it in hot environments. However even in extremely hot gas
at temperatures of ∼ 106 − 107 K some dust grains survive, mainly because the
grains are not necessarily heated to anything close to the gas temperature – a
point we will return to later in the course.
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The size distribution of grain is somewhat uncertain, but it can be constrained by
observations of the grains’ absorption, scattering, and emission properties, since
these are closely correlated with size. Roughly speaking the cross-section of a grain
to light reaches a maximum for light whose wavelength is comparable to the grain
size. For light of shorter wavelengths grain cross-sections are simply their physical
sizes, while for light of longer wavelengths the cross-section declines roughly as
the square of the ratio of grain size to wavelength. We will also return to this
discussion later on. Based on these observations, the typical size of interstellar
dust grains must be less than ∼ 1 µm in size.

B. Cosmic rays

The gas in interstellar space mostly has a Maxwellian velocity distribution. How-
ever, there are also ions and electrons that have much larger, typically relativistic
velocities. These are referred to as cosmic rays. The most energetic ones detected
have energies of ∼ 1021 eV, but most of the energy is rests in protons with kinetic
energies of ∼ 1 GeV. The total energy density in these particles in the Milky Way
is ∼ 1 eV cm−3.

The mechanism by which cosmic rays are accelerated to such speeds is still not
completely understood, but it is thought to involve high-speed shocks produced
by supernovae, massive star winds, or similar phenomena. Regardless of the accel-
eration mechanism, though, once launched cosmic rays propagate long distances
through the ISM. We will not discuss CRs much in this class, because they are
covered extensively in other courses, except when they become important for
understanding the way the ISM and IGM behave.

C. Photons

The ISM is also pervaded by photons of various frequencies. In addition to the
ubiquitous CMB, there is mostly optical and UV light from stars, infrared radi-
ation from dust grains, radio emission from hot gas, synchrotron radiation from
relativistic gas, and numerous line photons at frequencies ranging from radio to
gamma rays produced by a huge number of molecules, atoms, ions, and nuclei.

In terms of energy, in the Milky Way the dominant component of interstellar
energy is in starlight at near-IR to near-UV wavelengths. The energy density of
this light is of order an eV cm−3, similar to the cosmic rays. Infrared radiation,
produced when starlight photons interact with dust, is a close second.

D. Magnetic fields

As we shall see later on, much of the ISM is occupied by ionised gas, and even
in regions where the gas is mostly neutral there is usually some weak residual
ionisation produced by a number of processes we will discuss later. This means
that the ISM can generally be thought of as an ideal plasma. Plasmas have the
property that they can sustain magnetic fields, and any moving plasma invariably
generates fields. The ISM is not exception.
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Evidence for the magnetic field arises from numerous sources. First, we observe
that light from interstellar dust is polarised – both the light it emits, and the
light it absorbs from background stars. The most natural explanation for this is
that dust grains are not perfectly spherical, and in the presence of a magnetic
field they will line up in preferred orientations relative to the field like little bar
magnets, which will produce polarisation.

Second, there are a number of atomic and molecular emission lines that are mag-
netically sensitive, meaning that the line shape, polarisation, or some other prop-
erty of the line changes in the presence of a magnetic field. Such lines do generally
indicate that a field is present.

The strength of the interstellar magnetic field is ∼ 5 − 10 µG. This makes the
magnetic energy density also about an eV cm−3, comparable to photons and
cosmic rays.

E. Gas

The bulk of the ISM by mass consists of hydrogen and helium gas. For reasons we
will come to understand through this course, the gas naturally segregates itself
into a series of distinct phases.

1. Hot gas (HIM)

The hottest component, and the dominant one outside the discs of galaxies
and into the IGM, is hot gas, or HIM. This gas is also found within the galactic
disk in places where the gas has been shocked by supernova blast waves, and
it may occupy several tens of percent of the volume of the galactic disk.

Typical temperatures in this gas are 106 K or more. As these temperatures
hydrogen is collisionally ionised, and numerous highly-ionised species of heavy
elements are also present, for example O vi. The high temperatures ensure
that the gas is able to expand easily until it reaches low densities, typically
∼ 10−3 cm−3 within the disc of the Galaxy and even lower outside it.

At these temperatures the gas emits mostly in X-rays and UV, and by radio
synchrotron emission from free electrons. X-ray emission also provides the
main channel by which this gas is able to cool, although the cooling times
can be extremely long due to the low densities. For much of the IGM, the
cooling time is longer than the Hubble time.

2. Warm ionised gas (WIM) / H ii

The next hottest phase, called the warm ionised medium or H ii regions, is
gas at temperatures of ∼ 104 K. At this temperature kBT ∼ 1 eV, so the gas
is not moving gas enough for the typical collision to induce ionisation (since
the hydrogen ionisation potential is 13.6 eV). Instead, WIM gas is found
near hot stars that provide high energy photons to photoionise the hydrogen.
Regions in this state occupy ∼ 10% of the volume of the Galactic disc, and
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their typical densities are 1 − 100 cm−3, although there is a huge range of
variation.

The photons that ionise the gas also provide the major source of energy to it.
Each time an ionisation occurs by a photon that has an energy a bit above
13.6 eV, the resulting free electron acquires some excess kinetic energy, which
it then thermalises by bouncing off the surrounding ions.

Countering this heating, gas at these temperatures cools by numerous pro-
cesses. These include recombination radiation, which is produced when ionised
hydrogen recombines into an excited state and then radiatively decays to the
ground state, free-free emission from free electrons, and also a great deal
of line emission produced by collisions between free electrons and partially
ionised metal atoms. The line radiation produces spectacular optical emis-
sion, and for this reason H ii regions are some of the most visually spectacular
objects around.

In addition to the visually spectacular H ii regions, which represent the dens-
est parts of the WIM, there are also numerous diffuse, low-density regions of
ionised gas. These are not necessarily associated with young hot stars, and
instead represent places where the gas was ionised once, and the density is
low enough that only a little radiation is needed to keep it ionised, or where
the recombination has not yet had time to occur.

3. Warm neutral gas (WNM)

In the absence of a local heat source like a hot star or a supernova blast,
interstellar gas tends to become neutral, which brings us to our next phase:
WNM, or warm neutral medium. The gas in this phase is generally at tem-
peratures of 5, 000−10, 000 K, and has a density not very different from that
of the H ii regions, ∼ 0.1−1 cm−3. Gas in this state occupies a large fraction
of the volume of the Galactic disc, ∼ 40%.

In this gas there are no photons above 13.6 eV to provide energy, but photons
at somewhat lower energies provide a similar heating mechanism. Although
such lower energy photons cannot ionise hydrogen, then can knock electrons
off dust grains via the photoelectric effect, and this proves to be the dominant
heating source.

Countering this heating, the WNM also contains numerous weakly ionised
or neutral metal atoms that can be collisionally excited much like those in
H ii regions. Since there are few free electrons to collide with, and the metal
atoms are more weakly ionised and thus tend to have lower energy scales,
most of this line emission is in the infrared rather than the visible. The 158
µm line observed by ALMA is an example of this sort of emission.

Although these IR emission lines can be used to study the WNM, as can
optical and UV absorption lines, by far the most common tool is the 21 cm
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hyperfine transition of the hydrogen itself. This is present everywhere, and
has numerous favourable features that we will discuss.

4. Cold neutral gas (CNM)

Neutral gas can be warm, but it can also be cold. The cold neutral medium,
or CNM, is similar in ionisation state and energy balance to the WNM, but
it is found at much lower temperatures, ∼ 100 K, and much higher densities,
∼ 10 cm−3. Because of its high density, it has a much lower volume filling
fraction, ∼ 1% of the Galactic disc. Nonetheless, it contains an amount of
mass not much smaller than the mass of the WNM.

5. Diffuse molecular gas

In the densest, coldest parts of the CNM, hydrogen can become molecular.
Like the transition from H i to H ii this is a process driven by photons.
Gas goes from neutral to ionised when there are hot stars around to provide
photons above 13.6 eV. It goes from atomic to molecular regions where there
is enough absorption to exclude photons with energies of above ∼ 10 eV. Only
the densest and coldest regions of CNM do this, so H2 is found only in gas at
densities ∼ 100 cm−3 and at temperatures ∼ 50 K. The volume occupied by
these regions is tiny, ∼ 0.1% of the disc.

Despite the transition from atomic to molecular, in the diffuse H2 clouds the
energetics are quite similar to those in CNM or WNM. Molecular hydrogen
does not provide much of a source of heating or cooling, for reasons we will
discuss. For the same reason, observing these regions is hard – the 21 cm H i
line is unavailable, and H2 is hard to see. The main way we know about this
gas is via UV absorption lines of H2, which are available only when there is
a conveniently-located background star.

6. Dense molecular gas / GMCs

The final, densest phase is the dense molecular gas. In this part of the ISM
the temperature falls to ∼ 10 K or even a little lower, and the density is at
least 100 cm−3, and often more. Most of the gas in this state is organised in
structures known as giant molecular clouds. These clouds occupy only ∼ 10−4

of the volume of the Galactic disc, but constitute ∼ 20− 30% of its total gas
mass. In some other galaxies that fraction is even higher. These clouds are
also where star formation occurs.

The change that occurs between diffuse and dense molecular gas that causes
this change in properties is the appearance of molecules. Whereas in the
diffuse molecular gas and all the less dense phases most of the carbon, oxygen,
and other species are either atomic or in dust grains, in the dense molecular
gas significant fractions of these atoms end up in diatomic and polyatomic
molecules, the most prominent of which is CO.

The appearance of these molecules is significant because, unlike H2, these
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molecules are strong emitters, capable of cooling the gas to temperatures of
∼ 10 K. These molecular transitions also provide the most common way of
studying the dense molecular gas, particularly the rotational levels of CO.
Other methods include mm emission by cold dust grains, and infrared ab-
sorption of background starlight.

II. Collisional processes

With that brief tour of the ISM completed, we will begin to build the theoretical
tools we will need to understand the behaviour of the ISM. The first goal will be an
understanding of collisions between particles. In the materials we’re used to, collisions
occur so frequently that we don’t usually worry about them, and we simply assume that
they occur frequently enough for distributions to reach thermodynamic equilibrium.
In the ISM we cannot safely make this assumption, and so we must worry about
calculating the rates of collisions.

A. The collision rate coefficient

Consider an interaction between two particles A and B, which we write in the
general form

A+B → products (1)

Depending on the type of interaction, the products that appear on the right hand
side can be many different things. Simple elastic scattering is a trivial case, for
which products is simply A+B again. For inelastic scattering, where either A or
B is left in an excited state after the encounter, it might be A∗ + B or A + B∗,
with the asterisk indicating an excited state. If a chemical reaction occurs, it
might be an entirely different species C. For now, the exact identity of the right
hand side does not matter.

We wish to compute the rate at which the given reaction / collision occurs in a
gas that contains species A and B with number densities nA and nB, respectively.
The dependence of the densities is fairly obvious. Suppose we imagine a beam
of particles of type A being fired at a static grid of particles of type B. Clearly
the rate of collisions will be linearly proportional to both the density of targets
and the density of particles in the beam. Thus we expect to have a rate per unit
volume that varies as nAnB. We rate the rate as

rate per unit volume = nAnBkAB, (2)

where kAB is the rate coefficient for the reaction. It has units of cm3 s−1.

By analogy one can also define three-body collision rate coefficients, for reactions
involving three species such that the rate per unit volume is nAnBnCkABC . In
practice the low density of the ISM implies that three-body processes are only
very rarely important.

B. Calculation of rate coefficients

6



To figure out kAB, we can roughly divide it into two parts: the “internal” part that
has to do with the physical properties of the colliding particles and the quantum
mechanical probabilities of a given interaction producing a given outcome, and
the “external” part that has to do with the kinematics of particles running into
one another.

To see how the external part works, we can first return to the easier-to-picture
case of a beam of particles directed at a static grid of targets. Clearly if the beam
moves faster, more particles per unit time will go through the array of targets,
so the collision rate will be linearly proportional to the relative velocity of the
targets and the beam. In the more realistic case of two interacting species mixed
together, we need to integrate over all possible reaction velocities. Thus we can
write

kAB =
∫ ∞

0
vfvσAB(v) dv = ⟨σv⟩AB, (3)

where v is the relative velocity, fv is the fraction of particle pairs that have that
relative velocity, and σAB(v) is the velocity-dependent interaction cross-section.
This encapsulates all the internal information about particle sizes and quantum
transition probabilities. The angle brackets indicate an average over collision
velocities.

We can compute fv from the Boltzmann distribution, under the assumption
(which we’ll check later) that the particles follow this distribution. To remind
you: the Boltzmann distribution says that in a system with temperature T , the
probability of finding a particle in a state with energy E is proportional to e−E/kBT .
Thus the probability of having a given vector velocity v = (vx, vy, vz) is propor-

tional to e−mv2/(2kBT ), where m is the particle mass and v =
√
v2x + v2y + v2z , and

we have
d3f

dvx dvy dvz
=
(

m

2πkBT

)3/2

e−mv2/(2kBT ). (4)

The normalisation constant in front has been chosen to ensure that the integral
of d3f/(dvx dvy dvz) over all possible velocities is unity.

This is the velocity distribution for individual particles. In other words, it applies
separately to A and B, and we have

d3fA
dvx,A dvy,A dvz,A

=
(

mA

2πkBT

)3/2

e−mAv2A/(2kBT ) (5)

and similarly for B. We want to know what the probability that a randomly
chosen pair of particles has relative velocity v. To compute this, first note that
the probability of a given velocity combination vA,vB is the just the product of
the individual probabilities, the same as for any independent pair of events. Thus

d6f(vA,vB)

dvA dvB

∝
(√

mAmB

2πkBT

)3

e−(mAv2A+mBv2B)/(2kBT ). (6)
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This is a six-dimensional probability distribution function that gives us the prob-
ability of picking a given sextuplet of values (vA,vB). What we want to know
is the probability of picking a sextuplet that has the particular property that
|vA − vB| = v, since that is the definition of fv. Thus we want to compute∫

e−(mAv2A+mBv2B)/(2kBT )δ(|vA − vB| − v) d3vA d3vB. (7)

We’ve dropped the leading constants because we’re only interested in the de-
pendence on velocities – other coefficients we can recompute at the end just by
requiring that our integrated probability be unity.

This integral can be evaluated by making a change of variables. Let v = vA−vB,
and vCM = (mAvA +mBvB)/(mA +mB), or equivalently

vA =
µ

mA

v + vCM vB = − µ

mB

v + vCM µ =
mAmB

mA +mB

(8)

First hold v and vA fixed and substitute for vB in terms of vCM; in this case
d3vB = −(µ/mB)

3d3vCM, and the integral becomes

∫
exp

[
−mAv

2
A +mB|(µ/mB)v − vCM|2

2kBT

]
δ
(∣∣∣∣vA +

µ

mB

v − vCM

∣∣∣∣− v
)
d3vA d3vCM,

(9)
where we have again dropped leading constants that don’t depend on velocity.
Now hold vCM fixed and substitute for vA using v. Thus d3vA = (µ/mA)

3d3v,
and the integral becomes

∫
exp

[
−mA|(µ/mA)v + vCM|2 +mB|(µ/mB)v − vCM|2

2kBT

]
δ (|v| − v) d3v d3vCM.

(10)

Now it’s just a matter of algebra to evaluate the integral. The term in the expo-
nential can be expanded to

mA

∣∣∣∣ µ

mA

v + vCM

∣∣∣∣2 +mB

∣∣∣∣ µ

mB

v − vCM

∣∣∣∣2 =
µ2v2

mA

+
µ2v2

mB

+ (mA +mB)v
2
CM(11)

= µv2 + (mA +mB)v
2
CM, (12)

and if we substitute this in we get

∫
exp

[
− µv2

2kBT

]
exp

[
−(mA +mB)v

2
CM

2kBT

]
δ (|v| − v) d3v d3vCM (13)

The part that depends on v and not vCM is now trivial to evaluate thanks to the
δ function, which just gives us a v2 dependence:

v2 exp

(
− µv2

2kBT

)∫
exp

[
−(mA +mB)v

2
CM

2kBT

]
d3vCM (14)
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The remaining integral is just a number that does not depend on velocity, and so
we’ve arrived at the fundamental dependence we were after: fv ∝ v2e−µv2/2kBT .
Inserting the appropriate normalization factor to ensure that the integral over all
velocities gives unity, we have

fv = 4π
(

µ

2πkBT

)3/2

v2e−µv2/2kBT . (15)

The two-body collision rate coefficient therefore is

kAB = 4π
(

µ

2πkBT

)3/2 ∫ ∞

0
v3e−µv2/2kBTσAB(v) dv. (16)

Alternately, it is sometimes helpful to write things in terms of the energy of
the collision in the center of mass frame instead of the relative velocity. The
distribution in energy is just given by the fundamental rule for the transformation
of probabilities: fv dv = fE dE, i.e. since E is a monotonic function of v, the
probability of measuring a velocity between v and v + dv must be the same as
the probability of measuring an energy between E and E + dE. Since E = µv2/2

and v =
√
2E/µ, we have dE = µv dv, and plugging in we get

kAB =

√
8kBT

πµ

∫ ∞

0
xe−xσAB(xkBT ) dx, (17)

where x = E/kBT . This is often the most practical form for computation.

The function we have just written down already carries an important point. Sup-
pose we have a cross section that is not highly velocity- or energy-dependent. In
this case σAB is a constant and comes out of the integral. The remaining part,
the integral of xe−x from 0 to ∞, trivially evaluates to 1, and we have

kAB =

√
8kBT

πµ
σAB. (18)

This gives us a simple formula to evaluate any reaction coefficient with a constant
cross section, and shows us that such reactions proceed at a rate that varies as
T 1/2. In practice it turns out that there are reasonably large number of colli-
sional processes where the cross section is indeed not very energy-dependent, so
in practice many rate coefficients do vary as close to T 1/2.

C. Cross sections and rate coefficients for varying reactant types

Now that we have a general framework, we are in a position to work out reaction
rate coefficients for a variety of interaction types.

1. Neutral-neutral scattering

The simplest case to consider is scattering of one neutral species off another.
For now we will not worry if the interaction is elastic or not, and we will simply
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compute the overall collision rate; the elastic and inelastic interaction rates
will each be a fraction of this total rate. This collision rate is particularly
important because interactions of this sort are responsible for establishing
a Boltzmann distribution of velocities among a population of neutral parti-
cles, which is what we assumed existed for the purposes of computing rate
coefficients.

At large distances the only force between two neutral particles is a van der
Waals attraction, produced when fluctuations in the electric dipole moment
of one particle induce a corresponding electric dipole in the other. Since the
dipole electric field of the first particle varies as 1/r3, so does the strength of
the dipole in the second particle. The potential then varies as the product
of the two dipoles, giving rise to an overall potential that varies as 1/r6.
Moreover, since the dipole is only due to fluctuations, the coefficient is quite
small. When the two particles get within ∼ 1 Å of one another, i.e. when
the separation is comparable to the total sizes of the interacting molecules
or atoms, the electron clouds of the two neutrals begin to repel one another,
and the force becomes very strongly repulsive.

This combination of very weak attraction at large radii, coupled with a sudden
transition to strong repulsion at small separations, can be modeled reasonably
well as a “hard sphere” interaction. We simply think of the two neutrals as
balls with a physical size of rA = rB = 1 Å; if they get closer than 2 Å they
collide, and otherwise they do not. Thus

σAB = π(rA + rB)
2 = 1.2× 10−15 cm2. (19)

Plugging this into our trivial expression for the rate coefficient when the cross
section is constant, we get

kAB = 1.81× 10−10
(

T

100K

)1/2
(
mH

µ

)1/2 (
rA + rB

2 Å

)2

cm3 s−1. (20)

We can think of this as a generic, order-of-magnitude estimate for the collision
rate coefficient for any process where the particles are neutral and there are
no chemical reactions involved, just scattering.

2. Charged-neutral scattering

Now let us consider the interaction of a neutral particle with a charged one.
This could be a neutral atom or molecule interacting either with an ion or
with a free electron. The main difference here is that the force when the
two particles are far apart is no longer completely negligible. Let us suppose
that the charged particle has a charge Ze, where e is the electron charge.
The electric field of the charged particle will polarize the neutral particle,
inducing a dipole moment P = αEch, where α is the polarizability of the
neutral particle and Ech is the electric field created by the charged particle.
Typical polarizabilities are of order a30, where a0 = h̄2/mee

2 = 5.29 × 10−9
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cm is the Bohr radius. These can be computed quantum mechanically or
measured in the lab fairly easily.

The attractive force that the polarized atom experiences is given by the stan-
dard formula for the force on a dipole in an electric field: F = P (dEch/dr) =
−2αZ2e2/r5. The corresponding interaction potential is

U(r) = −1

2

αZ2e2

r4
. (21)

Scattering in an r−4 potential has the property that there is a critical impact
parameter b0 (defined as the distance of closest approach that the two particles
would have if there were no force between them) below which the separation
between the two particles goes through zero exactly. (Proving this is left as
an exercise to the reader – it’s fairly easy to show simply by writing down the
Largangian for the system.) Deflections are relatively weak for larger impact
parameters.

The value of b0 depends on the relative energy of the two particles at infinity
in the center of mass frame, E. It is given by

b0 =

(
2αZ2e2

E

)1/4

= 6.62× 10−8Z1/2
(
α

αH

)1/4 (0.01 eV

E

)1/4

cm, (22)

where αH = 4.5a30 is the polarizability of neutral hydrogen. Thus we see
that in general b0 is significantly larger than the ∼ 10−8 cm geometric cross
section of the particles. This means that πb20 provides a natural estimate for
the collision cross section of an ion and a neutral, since any interaction in
which the initial impact parameter is below b0 will necessarily bring the ion
and neutral extremely close, while more distant interactions will not produce
significant interaction. Plugging this in, we have

σAB = πb20 = πZe

√
2α

E
(23)

Plugging this into our expression for the rate coefficient, we have

kAB =

√
8kBT

πµ

∫ ∞

0
xe−x

(
πZe

√
2α

xkBT

)
dx (24)

= 4Ze

√
πα

µ

∫ ∞

0
x1/2e−x dx (25)

= 2πZe

√
α

µ
(26)

= 8.98× 10−10Z

(
α

a30

)1/2 (
mH

µ

)1/2

cm3 s−1. (27)
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Note that the result is independent of temperature. This means that, even
at low temperatures where neutral-neutral collisions are very rare (due to the
T 1/2 dependence), ion-neutral collisions continue to remain common. This
makes ion-neutral reactions a critical driver of chemistry in low-temperature
gas.

3. Charged-charged collisions

Collisions between two charged particles are a bit more complicated, because
there we have a long-range force, and even at large distances there will be
some non-negligible transfer of momentum. A useful approximation in this
case is the impact approximation. The basic idea of the impact approximation
is simple: we neglect changes in particle velocities during the encounter, and
simply add up the change in transverse momentum that a projectile particle
experiences as a result of the forces exerted by the electric field of the target.
(The net change in momentum along the direction of the encounter is zero.)

The setup is simple: consider two particles of charges Z1e and Z2e, and work
in the reference frame where particle 2 is at rest. Particle 1 approaches it,
moving with velocity v1 and with impact parameter b. Following the impact
approximation, it moves in a straight line at constant velocity v1 independent
of how close it gets to particle 2. Let x be the distance between particle 1 and
the point of closest approach, and θ be the angle between the line of closest
approach at the line between the two particles at any given time.

x

1

F
perp

θ

b

1

2

F

v

At a time when the angle between the two particles is θ, the distance be-
tween them is b/ cos θ, so the total force is F = Z1Z2e

2/(b/ cos θ)2. The
component of this in the perpendicular direction is cos θ of the total, so the
total perpendicular force is

F⊥ =
Z1Z2e

2

b2
cos3 θ. (28)

To figure out the total momentum imparted over the entire encounter, we
must find out how much time the particle spends at each angle θ, since
dp/dt = F . This is easy to compute: clearly x = b tan θ, and

v1 =
dx

dt
= b

d

dt
tan θ =

b

cos2 θ

dθ

dt
⇒ dθ =

v1
b
cos2 θ dt. (29)
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Now it’s just a matter of integrating over time to get the total momentum
change:

∆p⊥ =
∫ ∞

−∞
F⊥ dt =

Z1Z2e
2

b2

∫ ∞

−∞
cos3 θ dt =

Z1Z2e
2

bv1

∫ π/2

−π/2
cos θdθ = 2

Z1Z2e
2

bv1
.

(30)

So what does this tell us about the cross section? It tells us that we need
to think carefully about what exactly we mean. Notice that the transverse
momentum change varies as 1/b, so more distant encounters have less effect.
That’s good. However, the total area available for encounters goes as 2πb db,
i.e. there’s also more area available at large b than small b. The product of area
times effect, 2πb db ·∆p⊥, does not depend on b, and if we integrate over all
impact parameters from zero to infinity, things diverge! This means that the
encounter cross section as we’ve been thinking about it in the neutral-neutral
and neutral-charged cases is not really a meaningful concept as applied to the
charged-charged case. We need to be a bit more specific about what sort of
encounter we’re interested in.

4. Electron-ion collisions and collision strengths

One particular case of a charged-charged collision where we can be more
specific, which is one of the most important in the ISM, is a collision between
an ion or atom and an electron that induces a change in the quantum state
of the ion, either an excitation or de-excitation. (We will see in a moment
that if you know the rate of one, you automatically know the other as well.)
Such collisionally-induced changes in state, followed by radiative decay of
excited states, are responsible for most of the visually-spectacular emission
we need from ionised nebulae. We specialise to the case of an electron because
electrons generally move much faster than ions, so most collisions are electron-
ion rather than ion-ion.

Consider an encounter between an ion of charge Z and an electron. The
unperturbed ion has a potential U(r) in which the electrons move. We’ll do
the case of collisional de-exciation, so let the ion be in some excited eigenstate
u of the potential U(r), with energy Eu. We want to know the rate at which
collisions cause it to transition to a lower energy state ℓ with energy Eℓ.

We can calculate this rate up to a factor of order unity using a semi-classical
approach. Here we will not use the impact approximation, and we will include
deflection of the electron by the ion potential. Suppose the approaching
electron moves classically in the potential provided by the ion. What is
its closest approach? If the electron approaches with initial velocity v and
impact parameter b, we show in the practice problems that its distance of
closest approach rmin obeys

b = rmin

(
1 +

2Ze2

mev2rmin

)1/2

. (31)
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How close does the electron have to get to have a significant chance of inducing
a state change? At the order of magnitude level, the answer is that the
perturbation in the potential δU must be comparable to or larger than the
difference in energy between the two levels Euℓ = Eu−Eℓ. Thus we want the
distance of closest approach to obey

e2

rmin

∼ Euℓ. (32)

It is convenient to normalise the energy difference to typical energy differences
for electronic states. The typical energy scale for two electronic states is of
order the potential of an electron at a distance of order a Bohr radius, i.e.
Euℓ ∼ e2/a0 for a typical pair of electronic states. We therefore adopt a
minimum distance

rmin = Wa0, (33)

where W is a constant whose value will depend on the exact transition. For
electronic transitions that produce optical lines, we expect it to be of order
unity.

Plugging this in for rmin, we obtain a maximum impact parameter required
to have a reasonable chance of inducing a change in state:

bmax ≈ Wa0

(
1 +

2Ze2

mev2Wa0

)1/2

. (34)

The corresponding cross section is

σuℓ = πb2max = W 2π2a20

(
1 +

2Ze2

mev2W0a0

)
. (35)

Now we just have to integrate over the Maxwellian velocity distribution to
get the rate coefficient:

kuℓ = 4π
(

µ

2πkBT

)3/2 ∫ ∞

0
v3e−µv2/2kBTW 2π2a20

(
1 +

2Ze2

mev2W0a0

)
dv(36)

= πW 2a20

(
8kBT

πme

)1/2 (
1 +

Ze2

Wa0kBT

)
, (37)

were we have again set µ = me.

The term Ze2/(a0kBT ) that appears in the second parentheses has the nu-
merical value 15.78(Z/T4), where T4 is the temperature in units of 104 K.
Thus unless Z/T4 ≪ 1, which is generally not the case in optical nebulae, we
can drop the 1. Doing so and recalling that a0 = h̄2/(mee

2), we obtain

kuℓ ≈
h2

(2πme)3/2
1

(kBT )1/2
2WZ. (38)
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Thus we have written the collision rate in terms of the unknown parameter
W , which is a measure of how easy it is to perturb the atom. Based on this
argument, we formally define the dimensionless collision strength Ωuℓ of a
particular interaction by

kuℓ ≡
h2

(2πme)3/2
1

(kBT )1/2
Ωuℓ

gu
. (39)

The reason for including the factor of gu, the degeneracy of the upper state,
will become apparent momentarily. The advantage of this definition of Ωuℓ

is that it “factors out” the dependence of the reaction rate on the kinetics of
the plasma, which is essentially the same for any reaction, and isolates the
quantum-mechanical part that is reaction-specific.

Collision strengths must be calculated quantum mechanically or measured in
the laboratory. Exact values are generally known only to the ∼ 10% level,
except for a few very well-studied cases. Unfortunately many of the astro-
physically relevant collisions are quite difficult to study on Earth, because
the lines they correspond to are very weak and hard to see under terrestrial
conditions. Also note that in general Ωuℓ can be a function of temperature,
but in practice it is at most a very weak one, and the temperature dependence
can be dropped.

D. Inverse collision rates

For the case of a collision that causes a change in quantum state, we generically
have a forward process and a reverse process. That is, suppose that we have
some species X that can be in a lower state X(ℓ) or an upper state X(u), and
that can transition between these states due to collision with another species Y
– in the case we just considered Y is an electron, but the result we are about to
demonstrate is more general, and applies regardless of what type of particle Y is.
Thus we have the generic forward-backward reaction pair

X(ℓ) + Y ↔ X(u) + Y. (40)

The rates at which the left-hand reaction occurs is kℓunX(ℓ)nY , and the rate at
which the right-hand one occurs is kuℓnX(u)nY , where kℓu and kuℓ are the rate
coefficients for the excitation and de-excitation reactions. Now consider a system
that is statistical steady state, so these two reaction rates are equal:

kℓunX(ℓ)nY = kuℓnX(u)nY =⇒ kℓu = kuℓ
nX(u)

nX(ℓ)

. (41)

Now we know that if the system is in thermal equilibrium at temperature T , the
ratio of particles in state u to particles in state ℓ is not free: it must be described
by a Boltzmann factor. Thus in thermal equilibrium, we must have

kℓu = kuℓ
gu
gℓ
e−Euℓ/kBT , (42)
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where Euℓ is the difference in energy between the upper and lower states, and gu
and gℓ are the degeneracies of states u and ℓ.

Thus if we know the excitation or de-excitation rate coefficient and the gas tem-
perature T , we can immediately calculate the other one. For the specific case of
collisions between electrons and ions, substituting in our result above, we have

kℓu =
h2

(2πme)3/2
1

(kBT )1/2
Ωuℓ

gℓ
e−Euℓ/kBT . (43)

Note that the gu in the denominator in equation 41 has cancelled and turned
into a gℓ, which explains why we inserted it in the first place: doing so maintains
symmetry between the expressions for collisional excitation and de-excitation.

A further point worth making is that the relationship between kℓu and kuℓ applies
only if the particles have a Maxwellian velocity distribution, since this is required
for thermodynamic equilibrium – we can only define a temperature in the first
place if this assumption holds. However, we can make an even more general state-
ment as applied to the microphysical cross sections for the forward and backward
reactions. Recall that, from equation 17,

kuℓ =

√
8kBT

πµ

∫ ∞

0
xe−xσuℓ(x) dx, (44)

and similarly

kℓu =

√
8kBT

πµ

∫ ∞

Euℓ/kBT
xe−xσuℓ(x) dx, (45)

where x = E/kBT , and in the second integral we have set the lower limit to
Euℓ/kBT because clearly the cross section for excitation must be zero if the colli-
sion energy is smaller than the energy difference between the levels.

If we use our relationship between kuℓ and kuℓ, we immediately get∫∞
0 Ee−E/kBTσuℓ(E) dE∫∞
Euℓ

Ee−E/kBTσℓu(E) dE
=

gℓ
gu

eEuℓ/kBT . (46)

Re-arranging, we have∫ ∞

Euℓ

Ee−E/kBTσℓu(E) dE =
∫ ∞

0

gu
gℓ
Ee−(E+Euℓ)/kBT σuℓ(E)dE. (47)

For the integral on the left, let us make a change of variable E ′ = E − Euℓ. This
gives∫ ∞

0
(E ′ + Euℓ)e

−(E′+Euℓ)/kBTσℓu(E
′ + Euℓ) dE =

∫ ∞

0

gu
gℓ
Ee−(E+Euℓ)/kBT σuℓ(E)dE.

(48)
Clearly these two integrals can be equal for arbitrary T , as they must be, only if

(E + Euℓ)σℓu(E + Euℓ) =
gu
gℓ
Eσuℓ(E). (49)
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This rule applies to the energy-dependent cross section itself, which is a function
solely of the microphysical properties of the atoms in question. Thus we have
managed to constrain even atomic physics based on our statistical equilibrium
arguments.
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