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Motivation: since line emission IS our
most powerful observational tool, we
nheed to understand how it works In detalil.




Outline

 Radiation fields and photon occupation numbers
 Radiative transition rates and Einstein coefficients
o Statistical equilibrium for multi-level atoms

e Critical densities for multi-level atoms



Quick primer on radiation fields

(We will assert rather than prove much of this, since it is covered in other courses)

* A general radiation field is described in terms of the intensity, which specifies
how much energy at photon frequency v is flowing in a particular direction n

(where n is a unit vector); this quantity is generally written /,(n)

e /(n) has units of energy per time per area per frequency per solid angle; that
s, /,(n) df dA dv d£Q is the energy that a receiver with area dA, viewing a solid
angle of the sky d«2 through a filter with bandpass dv receives over a time dt

* |n local thermodynamic equilibrium at temperature 7, the intensity is equal to
the Planck function:



Photon occupation numbers

* |n quantum statistical mechanics, it is more convenient to work with a related
quantity: the photon occupation number n,(v,n) = (c2 / 2hv3) | (n)

 |In LTE, we therefore have

« Clearly n, is dimensionless, and it has a simple physical interpretation: it is the
expected number a photons in a particular mode.

* |n non-relativistic problems were generally don’t care about the direction of
the photons, so we commonly work with the photon occupation number

averaged over direction:



Radiative transitions and Einstein coefficients
Part |

 We now consider an atom / molecule of species X, which has a higher energy
state u and a lower energy state /; these need not be its only states. The
states have energies E, and E;, and degeneracies gy and g;

 Radiative transitions between these states occur via: (1) spontaneous
emission of photons from particles in u, (2) absorption of photons by particles
in state /, and (3) stimulated emission of photons by particles in state u

« The photons involved in these transitions have frequency vu = (Ev — E)) / h

 Our goal is to write down rates at which processes (1), (2), and (3) occur



Radiative transitions and Einstein coefficients
Part i

* We have already written down spontaneous emission: (drn, / df)se = —Au Ny

* The rates of absorption and stimulated emission must be proportional to the
numbers of atoms in the initial state and the photon occupation numbers at

the relevant frequencies: thus (dny / di)stime = —=Cu nun,)(vu) and (dny / di)aps =
~Cuw nikn)(vu), where Cy and Cy, are constants to be determined

* Thus the total rate of change in the number density in the upper state is



Radiative transition and Einstein coefficients
Part i

* Jo figure out the values of and Cy,, consider atoms at very low density, so
collisions occur negligibly often. We place these atoms in a radiation field that
IS In LTE, so the photon occupation number is

* |In steady state in LTE, the number densities of atoms in states v and / follow
the Boltzmann distribution,

« |f we substitute nn,, ny, and n; into our equation for , we get



Radiative transitions and Einstein coefficients
Part IV

o Starting from:

« High temperature limit, vy < kT In this case exponential terms all approach

1, so denominators of C terms go to zero, and these terms dominate.
Satisfying the equation in this limit requires Ci, = (g, / g)) Cu

« Low temperature limit, Hvu > kT In this case exponential terms in

denominator are large, so drop —-1’s. Also, drop e "v./kI"C,; comared to Cy..
Satisfying the equation in this limit requires Ci, = (9. / g)) Au



Radiative transitions and Einstein coefficients
PartV

e Final conclusion:

Einstein Spontaneous R/—J
Simulated

coefficient emission Hid
emission Absorption

* Adding in collisions:
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Multilevel atoms
Problem set up

 We now consider an atom X with an arbitrary number of energy states, which we
number 0, 1, 2, ... from lowest to highest energy. We let:

* £ =energy of state

* g; = degeneracy of state s

* E£j=Ei—- Ej=energy difference between states

 vj=Ej/ h=1frequency of photons associated with energy difference
* Aj = Einstein coefficient for transitions from i toj (= 0 for/ <)

o = = photon occupation number at frequency v

= collision rate coefficient for transitions from/ to
= number density of colliding particles causing transitions
= number density of atoms X in state /
= Y n; = total number density of atoms X in all quantum states

 Fundamental question: in statistical equilibrium, what are the values of n;?



Multilevel atoms

Collision rates

e Rate at which collisions remove atoms from state /:

 Rate at which collisions put atoms from other states into state /:



Multilevel atoms

Spontaneous emission rates

 Rate at which spontaneous emissions remove atoms from state r:

 Rate at which spontaneous emissions put atoms from other states into state i



Multilevel atoms

Stimulated emission and absorption rates

 Rate at which stimulated emissions and absorptions remove atoms from state
I

 Rate at which stimulated emissions and absorptions put atoms into state r:



Multilevel atoms
Putting it all together

o Statistical equilibrium amounts to saying that the sum of all the terms we have
just written down is zero.T his Is a linear system: we have some terms that are
linearly proportional to n;, and a bunch of terms that don’t depend on it.

* This Is best expressed as a matrix problem: M-n = n, where n is the vector of n;
values, and M Is a matrix whose elements are:

* The solution is just the eigenvector of M that has an eigenvalue of 1. There are
multiple packages (RADEX, DESPOTIC) that take data on collision rates and
Einstein coefficients and solve this problem.



Critical densities for multi-level atoms
Part |

* With this formalism, we can now extend the definition of critical density to
multi-level atoms. We consider a state / that is populated primarily from
below, I.e., there are many more transitions from state jto/forj <ithanj > 1.

* |n this case the rate equation becomes

* In steady state, dn;/ dt = 0, we can solve immediately:



Critical densities for multi-level atoms
Part I

 We now define the critical density in analogy to the two-level case, as the
ratio of the radiative and collisional de-excitation rate coefficients:

» Putting this into the equation for the equilibrium solution, we have

Collisional term — V

dominates for n » Nerit,i Radiative term —

dominates for n < Nerit,i



