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Outline

* The virial theorem (keynote keeps trying to autocorrect this to “viral” — not
helpful right now!)

* “Virial” competition
o Gravity vs. thermal support: the Jeans instability
» (Gravity vs. magnetic support: the magnetic critical mass
* Gravity vs. turbulence: the virial parameter

* Pressureless collapse



The virial theorem
What is it and why use it

* The virial theorem is a volume-integrated version of the equations of motion

* |t can be used to describe the overall expansion or contraction of a volume —
we will define what we mean by this more precisely as we proceed

 From our standpoint it is mostly a tool to understand which forces promote

collapse and which forces oppose it, and to get rough estimates under what
circumstances those forces should prevall



Vinal theorem

Derivation |

e Start from equations of mass and momentum conservation, omitting
dissipative terms (viscosity, resistivity) since they are small on large scales:

@——V-(pV)

ot Pressure Lorentz force Gravity
0 1 — Gravitational potential

5, (V) ==V - (pvv) = VP + —(Vx B) x B - pV¢

* First step: rewrite in manifestly tensorial form:
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Virial theorem

Derivation Il

* Define arbitrary fixed volume V, define

moment of inertia 7 - / or? dV
vV

 Compute rate of change of I

0 P V not time-variable so take

2
I = —r°dV time derivative inside integral
L Ot

Use mass

— —/ V y (,OV)T2 dV conservation
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Vinal theorem

Derivation Il

* Now take time derivative a second time

]_ _i (,OV dS—I—/ a pV rdV Te}ketime.derivative Inside

integral in second term

U t
— T / IOV - dS — / [v ' (H _ TM) + ,OV¢] dVv consZ?vr;t(i)o?e:ng’]cion

* Next prove a simple tensor identity (tensor analog to divergence theorem):

/ r -V -TdV = / miiT- AV Rewrite in index notation
v 1%

axj tj (for convenience)

0
= / e (x;T35) dV —/ Tii—x; dV Bring x; inside derivative
v 0; 14

1]
0x ;
_ T dS.: — T..8:: dV Apply divergence theorem to first term,
S v orthogonality of unit vectors in second term
= / r-T - -dS — / TrT dV Rewrite in vector notation
S v \Trace = sum of diagonal elements



Vinal theorem

Derivation IV

« Use identity to evaluate divergence, noting Tr II = 3P + pv2, Tr Ty = —B2 / 8x:

1 .. 1 d "
5]—2(7'—75)+B+W 2Olt/S(,OVT')-alS

* [erms appearing here:

/S stress at surface

W — _/ or - Vo dV Gravitational
, 1%

,7% _ r.II. dS Fluid pressure /

¢ Magnetic energy

| Kinetic+ /1 '3
. thermal energy T = / <2:0U2 T 5 > dVv
|4 .
! + magnetic stress b= — B dV +

Z 87T V4

at surface S 3

Terms that generally oppose collapse (positive terms) Terms that generally promote collapse (hegative terms)

potential energy

Change due to advection . | Terms that can have
across surface § either sign




Thermal pressure versus gravity

Jeans analysis

 Most basic force opposing collapse is pressure

 Consider spherical cloud of mass M, radius R, with constant sound speed cs;

T Constant of order unity, depends on
Vlrlal theOrem terms are /density profile; forL; I=):;onst, a=23/5
3 2
T = / PdV——/pcde:§Mc§ W = aG?{J

GM Cs

2 or equivalently 7 = er

* Physical interpretation: for a fixed cloud mass, if cloud gets too compressed,
gravity wins and collapse likely; equivalently, for a fixed gas density, if region
IS too large, gravity wins

e Gravity should winif & <



Jeans stability analysis
Part |

* Consider a uniform, infinite, isothermal medium; governing equations:
dp

Ot

%(pv) V - (pVV) — VP — pv¢ Momentum conservation

-V - (pv) =0 Mass conservation

V2¢ — 47TG,0 Poisson equation

e “Jeans swindle”: this isn’t really a proper background state, because potential
IS undefined for a uniform, infinite medium, but ignore that...

« Consider a small perturbation on this: p = po + ep1, Vv = evi, ¢ = po + €1, € < 1

« Treat perturbations as a Fourier mode: p1 = paexpl i (kx —wt) |



Jeans stability analysis
Part i

o Substitute perturbation into Poisson equation: V:(¢o + 1) = 4nG(po + ep1)

« Parts involving po, ¢o cancel because they are solution to unperturbed egn;
remaining part is  vZs, — arp citewt g = TCPe i)

k2
 Next repeat process for mass conservation equation:
0
ot (po +€p1) + V- [(po +€p1) (ev1)] =0 Substitute in
0 0 2
apo | E@tpl + eV - (pov1) =0  Drop terms of order e
0 Background densit
apl + V- (pOVl) =0 anog:OconstaentS ’

 This is called the linearised equation



Exercise: obtain the linearised
momentum equation




Jeans stability analysis
Part lli

. . . 0
* Linearised momentum equation: - (pov1) = =¢Vpi = poVer

e Substitute Fourier modes into mass conservation equation:

O . .
a (paez(kx—wt)) 1V - (povaez(kx—wt) — 0

_Z-wpaei(kx—wt) 4 ikp()va,xei(kx_wt) — 0

—Wpa + kpova,e =0

WPa
kpo

Va,x

 Same process for linearised momentum equation: wpov, . =k (¢2ps + poda)



Jeans stability analysis

Jeans length and Jeans mass

e Substitute ¢a and vax into linearised momentum equation wpov... =k (¢2po + pocda)

* Result is a dispersion relation: w? = ?k? — 472G,

e Critical value of k =k, = \/47rGpy/c?
e k> ky — w real, so amplitude of perturbation constant, varying phase

e kK< ky— wimaginary, amplitude of perturbation grows exponentially
« Jeans wavelength A, = 2xn/ky = cs (# / Gpo)'/2, mass My ~ po A3 ~ cs3 / (G3p)1/2

o Growth time of unstable mode tyr ~ 1/ |w| ~ (Gpo)-172



Magnetic pressure vs. gravity

Magnetic critical mass

 Magnetic and gravitational terms in virial theorem:

|
B:—/BQdV /r-TM-dS W:—/pr-qudV
3T Jy S 1%

* Consider spherical cloud of mass M, radius R, with uniform field B, surface
fleld much weaker than field in cloud, so we can neglect surface term; then

~ B2R3 (I)QB\MagnetiC flux &g = 7R?B; GM2

B ~ — : W — a
6 67T2R constant under ideal MHD R

 Both terms ~ 1/R, so relative strength depends only on mass: gravity wins if

M > My, where My Is called the magnetic critical mass, Iy \F( O
V2 37TG1/2>




Turbulence vs. gravity

The virial parameter

« Uniform spherical cloud with velocity dispersion o; VI terms are

- 1 2 - 1 2 GM?
T—/V2,0U dV—2MO' W:—CL R
502R
e Define the virial ratio: o.;, =
V1r GM

e Gravity wins if avir < 1

 However, even if turbulence inhibits global collapse, it does not prevent local
collapse, in places where velocity field is converging — in terms of the VT, this

shows up in the surface term s



Pressureless collapse

Basic considerations

* |n any place where gravity wins, it tends to “run away” due to the 1/R

dependence in the virial theorem — it wins a little at first, but then becomes
iIncreasingly dominant as collapse proceeds

* This motivates exploration of the limiting case where there are no significant
forces opposing gravity: pressureless collapse

* This has the advantage that it can easily be solved analytically; analytic

solutions exist for some other cases too (as you will show in your homework),
but this is the most straightforward



Pressureless collapse

Shell dynamics

 Work in terms of mass shells; let M(r) = mass interior to r, dM/dr = 4z r?p

 Equation of mass conservation for mass shells:

M T
a— — 417 / r! 2 @ dr’ Take derivative inside integral
ot . ot

(A
— —47/ r'°\ . (,OV) dr’  Use equation of mass conservation
O

"0 9 / Write ogt divergence in
— — A7 ) (T ,OU) dr spherical symmetry
o Or
2
= —A47r pU Fundamental theorem of calculus
oM
() Definition of M

or

\II

Radial velocity



Pressureless collapse

L CRICEREURNE

Lagrangian derivative (taken

/' following a particular shell)

« Momentum equation in Lagrangian form: p%‘t’ = ZP pGM
N

» Consider collapse with zero pressure starting from rest at r = ro; solution is

dr 1 1\ Y2 dr
YTt v2G (r r()) » Vro/r —1

72

* Integrate again (done by trig substitution): ¢ = \/ 7y <§+ L in 25) . - =cos?¢
2G M 2 T0

e Shell reaches r = 0 (corresponds to & = #/2) at

F— te = 7T\/ 7“8 : S

Free-fall time interiortoroatt=0



Implications of pressureless collapse

» Maximum mass of pressure-supported object is ~ My ~ po 18 ~ ¢s3 / (G3p)'/2,

so If collapse starts from such an object, mean accretion rate (dM/dt) ~ My / ts
~Ccs2/ G ~106Moyr-Tat T =10 K, independent of density!

* Time to reach origin depends only on density interior to starting radius:
* Uniform-density clouds collapse all at once

 Centrally concentrated clouds collapse “inside-out™. density p = pc (r/ rec)=
gives collapse time for shell starting at ro of t(ro) = tr(pc) (ro / rec)*/?

 Once a given shell reachesr « ro, v = vir = (2GM / 1)1/2

. . OM OM M
® : i — f— —4 - — _3/2
Density profile near star oy o e Worelvdd




