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Outline
• Fundamental numbers: the Reynolds number and the Mach number


• Statistics of turbulence


• Power spectra and autocorrelation functions


• The Kolmogorov model


• Supersonic turbulence


• Velocity statistics


• Density statistics



Fluid dynamics
A very condensed introduction

• Basic equations relevant for us are conservation of mass and momentum:


• Momentum equation in index notation: 


• Key role of viscosity: viscous term is the only one that dissipates into heat
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Characteristic scales
Really all we know how to do in fluids…

• Suppose we consider a system of characteristic size scale L, velocity scale V, 
sound speed cs; natural time scale is T = L / V


• How big (order of magnitude) are terms in momentum equation:


• Answer: 
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Define V / cs = ℳ, Mach number

Define LV / 𝜈 = Re, Reynolds number



What are ℳ and Re?
Typical molecular cloud values

• We saw earlier that typical length, speed values are L ~ 10 pc, V ~ few km s−1


• Sound speed cs = (kT / 𝜇mH)1/2 ≈ 0.2 km s−1 at T = 10 K, 𝜇 = 2.33 ⇒ ℳ ~ 10


• Viscosity of ideal gas 𝜈 = 2urms𝜆mfp, urms = RMS particle speed ≈ cs, 𝜆mfp = 
mean free path = 1 / n𝜎, where n = number density ~ 100 cm−3, 𝜎 = cross 
section, typically ~(1 nm)2 for neutral molecules ⇒ 𝜈 ~ 1016 cm2 s−1, Re ~ 109


• Thus molecular clouds are highly supersonic, very high Re ⇒ pressure and 
viscous forces largely unimportant



Why Re matters
High Re flows are inevitably turbulent

NSF Fluid 
Mechanics 
Film Series, 
https://
www.youtube.
com/playlist?
list=PL0EC652
7BE871ABA3

Re ~ 0.05 Re ~ 10 Re ~ 200 Re ~ 3000

Molecular clouds, 
Re ~ 109
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Exercise for class: estimate the Reynolds 
number of the air in this room. Do you 

expect air flows in this room to be turbulent?



Turbulence statistics
Velocities

• Let v(x) be the velocity at position x in some volume of interest V


• Define the auto-correlation function (ACF):


• Fourier space equivalent: power spectral density (PSD):                       , where


• ACF and PDF both measure how quickly velocity changes with separation; if 
turbulence is isotropic, ACF depends only on r = |r|; PDF depends on k = |k|


• Define the turbulent power spectrum

A(r) ⌘ 1

V

Z
v(x) · v(x+ r) dx
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PSD and ACF
Two sides of the same coin

• PDF and ACF are closely related, and both measure power in turbulent 
motions on different size scales


• Wiener-Khinchin Theorem:


• Parseval’s theorem:


• Physical meaning: ACF and PSD are just each other’s Fourier transforms, and 
integral of power spectrum gives total power, which is the same in either real 
or Fourier space
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The linewidth-size relation
Observable manifestation of power spectra

• We cannot measure the power spectrum directly in the ISM; what we can 
measure is the linewidth-size relation (LWS): measure the velocity dispersion 
𝜎(𝓁) (linewidth) in regions of varying size 𝓁, and plot the correlation


• LWS related to power spectrum: consider a power spectrum P(k) ~ k−n


• To compute the LWS, look at KE per unit mass of material in a box of size 𝓁: 
KE ~ 𝜎(𝓁)2, and also


• Therefore 𝜎(𝓁) = cs (𝓁 / 𝓁s)(n−1)/2, where 𝓁s = sonic length

KE ⇠
Z 1

2⇡/`
P (k) dk / `n�1
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The Kolmogorov model
for subsonic turbulence

• Basic picture: in the absence of shocks, equations of hydrodynamics in Fourier 
space are local, i.e., energy is transferred only between adjacent k values


• Viscosity only important on scales Ldiss small enough that Re = LdissV / 𝜈 ~ 1


• Energy injected at a much larger scales Linj


• In between injection and dissipation scale is inertial range, 1/Linj ≪ k ≪ 1/Ldiss: 
in this range of k, energy flows through, but no sources or sinks of energy


• In steady state, power P(k) in inertial range can only depend on k and on rate 
of dissipation (= rate of injection) 𝜓



The Kolmogorov scaling
and the magic of dimensional analysis

• Since P(k) depends only on k and 𝜓, we have P(k) ∝ k𝛼 𝜓𝛽 for some 𝛼, 𝛽


• Kolmogorov’s argument: k has units of 1/length = 1/L, 𝜓 has units of energy 
per unit mass per unit time = L2 / T3, and P(k) has units of energy per unit 
mass per unit k = L3 / T2; thus we have L3 / T2 = L−𝛼 (L2 / T3)𝛽


• For units to match, only solution is 𝛽 = 2/3, 𝛼 = −5/3


• Therefore P(k) ∝ k−5/3, LWS relation 𝜎 ∝ 𝓁1/3



Experimental verification of Kolmogorov model
Test using turbulence from an air jet

72 notes on star formation

The fine-scale strzcctwe of the turbulent velocity field 93 

FIGURE 14. One-dimensional energy spectra of the velocity-component fluctuations in the 
R,  = 182 wake flow. 0. u1 spectrum, F,(k,); 0 ,  u2 spectrum, F,(k,);  A, u3 spectrum, F3(kl) .  
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FIGURE 15. One-dimensional spectra of streamwise- and lateral-component velocity fluctuations 
for an nxisymmetric jet; Re = 3.7 x 106, x/d = 70, r / d  = 0. 0, F l ( k J ;  0 ,  F2(kl). 

Figure 4.2: An experimentally-
measured power spectrum for tur-
bulence generated by an air jet. The x
axis is the wavenumber, and the open
and filled points show the velocity
power spectrum for the velocity com-
ponents parallel and transverse to the
stream, respectively. Credit: Cham-
pagne, J. Fluid. Mech., 86, 67-108, 1978,
reproduced with permission.

Champagne 1978, J. Fluid Mech

Injection scale

Dissipation scale

Inertial range



Supersonic turbulence
Velocity statistics

• Kolmogorov model does not apply to flows with ℳ ≫ 1, because shocks 
form, and shocks are not local in Fourier space


• Can still estimate P(k) from simple heuristic 1D argument, however


• Velocity near a shock is a step function: v(x) = v0 for x < 0, −v0 for x > 0


• Fourier transform is


• Power spectrum is


• Implied LWS is 𝜎 ∝ 𝓁1/2

ṽ(k) =
1p
2⇡

Z
v(x)e�ikx dx =

r
8

⇡
i
v0
k

/ 1/k
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Numerical evidence for k−2 spectrum
From simulations

Federrath+ 2010

C. Federrath et al.: Turbulence forcing in simulations and observations

Fig. 14. Top panels: total, transverse (rotational) and longitudinal (compressible) velocity Fourier spectra E(k) defined in Eq. (32) and compen-
sated by k2 for solenoidal (left) and compressive forcing (right). Error bars indicate temporal variations, which account for an uncertainty of
roughly ±0.05 of all scaling slopes reported for the inertial range 5 <∼ k <∼ 15. The inferred inertial range scaling exponents for both solenoidal and
compressive forcing are consistent with independent numerical simulations and with observations of the size-linewidth relation (see text). Note
that the transverse part, Etrans falls off more steeply than the longitudinal part, Elong for both forcing types in the inertial range. Bottom panels:
ratio of the energy in longitudinal velocity modes Elong to the total energy in velocity modes Etot = Etrans + Elong. For solenoidal forcing, we obtain
Elong/Etot ≈ 1/3 in the inertial range (horizontal dash-dotted line), because compression can only occur in one of the three spatial dimensions on
average (Elmegreen & Scalo 2004; Federrath et al. 2008b). For compressive forcing, this ratio is roughly 1/2, which corresponds to an equipartition
of longitudinal and transverse velocity modes. Note however that compressive forcing can compress the gas in all three spatial dimensions directly,
whereas solenoidal forcing can only induce compression indirectly through the velocity field (Federrath et al. 2008b). The excess of longitudinal
modes at high wavenumbers k >∼ 40 stems from numerical dissipation, which is more effectively dissipating transverse than longitudinal modes
on small scales due to the discretisation onto a grid. This suggests that roughly 30 grid cells are needed to accurately resolve a vortex, while a
shock is typically resolved with roughly 3 grid cells using the piecewise parabolic method (Colella & Woodward 1984). However, for a numerical
resolution of 10243 grid cells, we find that wavenumbers k <∼ 40 are almost unaffected by the discretisation and by the parameters of the numerical
scheme (see Appendix C).

compressive modes in the velocity field, which may be the result
of different turbulence forcing mechanisms, similar to the differ-
ences obtained in purely solenoidal and compressive forcings.

6. Fourier spectra

6.1. Velocity Fourier spectra

Fourier spectra of the velocity field E(k) are typically used to dis-
tinguish between Kolmogorov (1941) turbulence, E(k) ∝ k−5/3

and Burgers (1948) turbulence, E(k) ∝ k−2. For highly com-
pressible, isothermal, supersonic, turbulent flow, it has been
shown that the inertial range scaling is close to Burgers turbu-
lence. For instance, Kritsuk et al. (2007) found E(k) ∝ k−1.95

and Schmidt et al. (2009) obtained E(k) ∝ k−1.87 from high-
resolution numerical simulations.

The Fourier spectrum of a quantity provides a measure of
the scale dependence of this quantity. Velocity Fourier spectra
are thus defined as

E(k) dk =
1
2

∫
û · û∗ 4πk2 dk, (32)

where û denotes the Fourier transform of the velocity field (e.g.,
Frisch 1995). The total Fourier spectrum can be separated into
transverse (k ⊥ û) and longitudinal (k ∥ û) parts by apply-
ing a Helmholtz decomposition. Note that integrating the trans-
verse energy spectrum yields the kinetic energy in transverse
(rotational) modes, while integration of the longitudinal energy
spectrum yields the kinetic energy in longitudinal (compress-
ible) modes. Furthermore, by integrating the velocity spectrum
from k1 to k2, one obtains the kinetic energy content on length
scales corresponding to the wavenumber interval [k1, k2]. Since
the mean velocity is zero in our simulations, integration of the
total velocity Fourier spectrum E(k) over all wavenumbers yields
the total variance of velocity fluctuations σ2

v :

∫ kc

1
E(k) dk =

1
2
σ2
v . (33)

The upper bound of the integral is the cutoffwavenumber kc = N
for a cubic dataset with N3 data points. Thus, kc = 1024 for our
standard resolution of 10243 grid cells.

In Fig. 14 we show the total velocity Fourier spectra E(k)
as defined in Eq. (32) together with its decomposition into
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Observational evidence for k−2 spectrum
From the observed LWS

Dissipation scale

gas flows and turbulence 73

4.3 Supersonic Turbulence

4.3.1 Velocity Statistics

We have seen that real interstellar clouds not only have Re � 1, they
also have M � 1, and so the flows within them are supersonic. This
means that pressure is unimportant on size scales L � `s. Since
viscosity is also unimportant on large scales (since Re � 1), this
means that gas tends to move ballistically on large scales. On small
scales this will produce very sharp gradients in velocity, since fast-
moving volumes of fluid will simply overtake slower ones. Since the
viscosity term gets more important on smaller scales, the viscosity
term will eventually stop the fluid from moving ballistically. In
practice this means the formation of shocks – regions where the
flow velocity changes very rapidly, on a size scale determined by the
viscosity.2 2 In real interstellar clouds the relevant

viscosity is the magnetic one, as we
shall see in Chapter 5.

We expect that the velocity field that results in this case will look
like a series of step functions. The power spectrum of a step function
is a power law P(k) µ k�2. One can establish this easily from direct
calculation. Let us zoom in on the region around a shock, so that the
change in velocity on either side of the shock is small. The Fourier
transform of v in 1D is

ṽ(k) =
1p
2p

Z
v(x)e�ikx dx (4.23)

The integral of the periodic function e�ikx vanishes for all periods
in the regions where v is constant. It is non-zero only in the period
that includes the shock. The amplitude of

R
v(x)e�ikx dx during that

period is simply proportional to the length of the period, i.e., to 1/k.
Thus, ṽ(k) µ 1/k. It then follows that P(k) µ k�2 for a single shock.
An isotropic system of overlapping shocks should therefore also look
approximately like a power law of similar slope. This gives a velocity
dispersion versus size scale sv µ `1/2, and this is exactly what is
observed. Figure 4.3 shows an example.

310 V. Ossenkopf and M.-M. Mac Low: Turbulent velocity structure in molecular clouds

Fig. 1. Size-linewidth relation for the Polaris Flare CO observations
with IRAM (smallest scales), KOSMA, and the CfA 1.2 m telescope
(largest scale, see Bensch et al. (2001a) for details). The diamonds
show the relation when the linewidth for a given scale is integrated
from the total linewidths at each point. The triangles represent the
widths when only the dispersions of the centroids of the lines are mea-
sured. The error bars do not represent true local errors but the two
extreme cases of the line windowing as discussed in Sect. 2.2.

exactly with the KOSMA result. Thus the shift is probably also
influenced by the di�erent noise behaviour.

For the size-linewidth relation based on the velocity cen-
troids, we find one power law stretching over three orders of
magnitude connecting the three di�erent maps. The average ve-
locity variances range from below the thermal linewidth up to
about 1 km s�1. The common slope is given by � = 0.50±0.04.
However, the data are also consistent with a reduction of the
slope down to 0.24 at the largest scales, if the full extent of the
error bars is taken into account.

In the size-linewidth relationship integrated from the full
local linewidths, there is a transition of the slope from almost
zero at scales below 10� to 0.2 at the full size of the flare. The
plot shows that the total linewidths are dominated by the line-
of-sight integration up to the largest scales.

Although the slopes measured with this method are very
shallow, they do appear to show the change of slope interpreted
by Goodman et al. (1998) as a transition to coherent behaviour
below about 0.5 pc. As the findings of Goodman et al. are
also based on the total linewidths this suggests that the change
might rather reflect the transition from a regime where single
separated clumps are identified, to measurements of a superpo-
sition of substructures at smaller scales.

3.2. Velocity probability distribution function

Another quantity characterising the velocity structure both in
observational data and in turbulence simulations is the prob-
ability distribution function (PDF) of velocities. Although it
contains no information on the spatial correlation in veloc-
ity space like the size-linewidth relation or the �-variance, it
shows complementary properties, like the degree of intermit-
tency in the turbulent structure (Falgarone & Phillips 1990).

The shape of the wings of the velocity PDF is thought to be
diagnostic of intermittency, where the increasing degrees of in-
termittency produces a transition from Gaussian to exponen-
tial wings. Two-dimensional Burgers turbulence simulations by
Chappell & Scalo (1999), neglecting pressure forces, showed
Gaussian velocity PDFs for models of decaying turbulence and
exponential wings for models driven by strong stellar winds.

Due to the limited amount of information available from
molecular lines, there is no direct way to deduce the velocity
PDF from observations. One approach to deducing the velocity
PDFs is computation of the distribution of line centroid veloci-
ties (Kleiner & Dickmann 1985; Miesch & Bally 1994; Miesch
et al. 1999). This method can also include some information
on spatial correlation as discussed in Sect. 3.3. However, the
higher moments of the centroid PDF are very sensitive to the
observational restrictions discussed in Sect. 2.2.

Another method was introduced by Falgarone & Phillips
(1990), who estimated velocity PDFs from high signal-to-noise
observations of single line profiles. Investigating the statistical
moments of profiles, Falgarone et al. (1994) found no simple
Gaussian behaviour for many observations and provided a first
comparison with three-dimensional (3D) hydrodynamic simu-
lations. Most of their PDFs could be represented by a superpo-
sition of two Gaussians where the wing component had about
three times the width of the core component. Unfortunately,
their method is only reliable for optically thin transitions at a
very high signal to noise. We test both methods here, starting
with the centroid velocity PDF.

3.2.1. Centroid velocity PDFs

In computing the centroid velocity PDF for a map one can ei-
ther assign the same weight to each point in the map, or weight
the di�erent contributions by the intensities measured at that
point. We find that the PDFs retain similar shape and the same
wing behaviour with both methods, and therefore use inten-
sity weighting in the following analysis, as it is less influenced
by observational noise. We have also used normal histograms
here, instead of the more sophisticated Johnson PDF estimator
applied by Miesch et al. (1999) because the error bars present
from the uncertainty about the noise treatment greatly exceed
the influence of the numerical PDF estimator.

Figure 2 shows the centroid velocity PDFs for the three data
sets. We find that the IRAM and the CfA data are characterised
by an asymmetry of the velocity distribution, indicating some
kind of large-scale flow within the mapped region. Looking at
the wings of the distributions, however, all three data sets are
consistent with a Gaussian, which would appear as a parabola
in the lin-log plots shown. Only at the scale of the CfA map is
a definite conclusion not possible, due to the large error bars.

Beyond this phenomenological approach, the shape of the
PDFs can be quantified by their statistical moments. The most
frequently used moments are

�vc� =
� �

��
dvcP(vc)vc (2)

�2 =

� �

��
dvcP(vc)[vc � �vc�]2 (3)

Figure 4.3: Linewidth versus size in
the Polaris Flare Cloud obtained from
CO observations. Diamonds show
the total measured velocity width
within apertures of the size indicated
on the x axis, while triangles show
the dispersion obtained by taking the
centroid velocity in each pixel and
measuring the dispersion of centroids.
The three sets of points joined by lines
represent measurements from three
separate telescopes. Credit: Ossenkopf
& Mac Low, A&A, 390, 307, 2002,
reproduced by permission © ESO.

Note that, although the power spectrum is only slightly different
than that of subsonic turbulence (�2 versus about �5/3), there is
really an important fundamental difference between the two regimes.
Most basically, in Kolmogorov turbulence decay of energy happens
via a cascade from large to small scales, until a dissipative scale is
reached. In the supersonic case, on the other hand, the decay of
energy is via the formation of shocks, and as we have just seen a
single shock generates a power spectrum µ k�2, i.e., it non-locally
couples many scales. Thus, in supersonic turbulence there is no
locality in k-space. All scales are coupled at shocks.

LWS of the Polaris 
Flare Cloud; 
Ossenkopf & 
MacLow 2002

𝜎 ∝ 𝓁1/2



Supersonic density statistics
• In supersonic turbulence, shocks and rarefaction waves cause variations in 

density; basic question: what is the PDF of densities?


• Heuristic argument: if gas is isothermal, a shock of Mach number ℳ causes 
density to increase by a factor of ℳ2; similarly for rarefactions


• If passage of shocks and rarefactions is random, density at any given location 
is set by repeated multiplication by random numbers — equivalent to 
repeated addition of random numbers in log density


• Central limit theorem: the sum of a large number of random numbers is 
Gaussian-distributed, regardless (within some limits) of the shape of the 
distribution from which those random numbers are drawn



The lognormal density PDF
• Central limit theorem argument suggests Gaussian PDF in log of density:


• Since                                            , it is easy to show that 


• From numerical experiments by Federrath (2013) and others, dispersion 
known to be related to Mach number, magnetic field strength (next class), and 
amount of turbulent power in compressive vs. solenoidal modes: 

p(s) =
1p
2⇡�2

s

exp

"
� (s� s0)

2

2�2
s

#
, s = ln(⇢/⇢)
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b ~ 1/3 for purely solenoidal turbulence, ~1 for purely 
compressive, ~1/2 for natural mix

𝛽0 = ratio of thermal to magnetic energy density



Mass versus volume PDFs
• PDF p(s) describes distribution in volume; can also do PDF by mass


• Consider a volume V with a volume PDF p(s); mass in density range s to s+ds 
occupies a volume dV = p(s) V, and therefore has mass dM = 𝜌 p(s) dV


• Substitute in: 


• Mass PDF is therefore 
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Exercise
For a region with ℳ = 10, no magnetic field, natural turbulent mix:

• What fraction of the volume is occupied by material at >100 × the 

mean density?

• What fraction of the mass is at >100 × the mean density?

• What is the mass-weighted mean density?



