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Outline

 Fundamental numbers: the Reynolds number and the Mach number
o Statistics of turbulence

 Power spectra and autocorrelation functions

 The Kolmogorov model
e Supersonic turbulence

* \elocity statistics

* Density statistics



Fluid dynamics

A very condensed introduction

 Basic equations relevant for us are conservation of mass and momentum:
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« Momentum equation in index notation:
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» Key role of viscosity: viscous term is the only one that dissipates into heat



Characteristic scales

Really all we know how to do in fluids...

 Suppose we consider a system of characteristic size scale L, velocity scale V,
sound speed cs; natural time scaleis I =L/ V

 How big (order of magnitude) are terms in momentum equation:
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Define V / cs = .4, Mach number

Define LV / v = Re, Reynolds number



What are . # and Re?

Typical molecular cloud values

 We saw earlier that typical length, speed values are L ~ 10 pc, V ~ few km s-1
o Sound speed cs = (kT / umn)2=02kms'1atT=10K, y=2.33= %~ 10
e Viscosity of ideal gas v = 2urmsAmfp, Urms = RMS particle speed = Cs, Amfp =

mean free path = 1/ no, where n = number density ~ 100 cm-3, o = cross
section, typically ~(1 nm)2 for neutral molecules = v ~ 1016 cm2 s-1, Re ~ 109

* Thus molecular clouds are highly supersonic, very high Re = pressure and

viscous forces largely unimportant



Why Re matters

High Re flows are inevitably turbulent
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Exercise for class: estimate the Reynolds
number of the air in this room. Do you
expect air flows in this room to be turbulent?



Turbulence statistics

Velocities

* | et v(X) be the velocity at position x in some volume of interest V

é/v(x) v(x + 1) dx

» Fourier space equivalent: power spectral density (PSD): U (k) = |[v(k)|", where
1

vik) = ek /V(X)eik'X dx

e Define the auto-correlation function (ACF): A(r) =

 ACF and PDF both measure how quickly velocity changes with separation; if
turbulence is isotropic, ACF depends only on r = |r|; PDF depends on k = |k

- Define the turbulent power spectrum P(k) = 4rk*W (k)



PSD and ACF

Two sides of the same coin

 PDF and ACF are closely related, and both measure power in turbulent
motions on different size scales

 Wiener-Khinchin Theorem: V(k / A(r)e™ ™" dr
» Parseval’s theorem: / P(k)dk = / \V = / v(x)? dx

* Physical meaning: ACF and PSD are just each other’s Fourier transforms, and
integral of power spectrum gives total power, which is the same in either real
or Fourier space



The linewidth-size relation

Observable manifestation of power spectra

* We cannot measure the power spectrum directly in the ISM; what we can
measure is the linewidth-size relation (LWS): measure the velocity dispersion

o(Z) (linewidth) in regions of varying size #, and plot the correlation

| WS related to power spectrum: consider a power spectrum P(k) ~ k"

 To compute the LWS, look at KE per unit mass of material in a box of size 7

KE ~ ¢(#)?, and also KE ~ / P(k)dk o "1
27 /£

o Therefore o(?) = cs (£ / ¢s)"-1/2, where £s = sonic length



The Kolmogorov model

for subsonic turbulence

» Basic picture: in the absence of shocks, equations of hydrodynamics in Fourier
space are local, i.e., energy Is transferred only between adjacent k values

« Viscosity only important on scales Ldiss small enough that Re = LgissV'/ v ~ 1

* Energy injected at a much larger scales Lin;

* In between injection and dissipation scale is inertial range, 1/Linj < k « 1/Lgiss:
In this range of k, energy flows through, but no sources or sinks of energy

* |n steady state, power P(k) in inertial range can only depend on k and on rate
of dissipation (= rate of injection) v



The Kolmogorov scaling

and the magic of dimensional analysis

e Since P(k) depends only on k and v, we have P(k) < k«y” for some «, [

« Kolmogorov’s argument: k has units of 1/length = 1/L, y has units of energy

per unit mass per unit time = L2/ T3, and P(k) has units of energy per unit
mass per unit k = L3/ 712; thus we have L3/ 2 = L-« (L2 / T3)

e For units to match, only solution is g =2/3, a = -5/3

o Therefore P(k) o« k-5/3, LWS relation ¢ « #1/3



Experimental verification of Kolmogorov model
Test using turbulence from an air jet

Champagne 1978, J. Fluid Mech




Supersonic turbulence

Velocity statistics

* Kolmogorov model does not apply to flows with .# » 1, because shocks
form, and shocks are not local in Fourier space

* Can still estimate P(k) from simple heuristic 1D argument, however

* Velocity near a shock is a step function: v(x) = vo for x < 0, —vo for x > 0

 Fourier transform is o(k) = \/%7 /v(x)ei’“ dx = \/if;f x 1/k

« Power spectrum is P(k) ~ [3|” o 1/k?

. Implied LWS is & « /#1/2



Numerical evidence for k-2 spectrum

From simulations

1024° comp slope: —1.94 total
slope: —2.03 — — trans
slope: —1.87

Federrath+ 2010




Observational evidence for k-2 spectrum
From the observed LWS

¢ total width
A velocity centroids

LWS of the Polaris
Flare Cloud;

Ossenkopf &
MacLow 2002




Supersonic density statistics

* |n supersonic turbulence, shocks and rarefaction waves cause variations in
density; basic question: what is the PDF of densities?

* Heuristic argument: if gas is isothermal, a shock of Mach number .# causes
density to increase by a factor of .#42; similarly for rarefactions

» |f passage of shocks and rarefactions is random, density at any given location
IS set by repeated multiplication by random numbers — equivalent to
repeated addition of random numbers in log density

* Central limit theorem: the sum of a large number of random numbers is
Gaussian-distributed, regardless (within some limits) of the shape of the
distribution from which those random numbers are drawn



The lognormal density PDF

* Central limit theorem argument suggests Gaussian PDF in log of density:

| (s — sp)° _
p— — 1
p(s) Jamo? exp 5oa | s =n(p/p)
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e Since 7 = /p(s)p ds = ﬁ/p(S)es ds, it is easy to show that s) = —07/2

 From numerical experiments by Federrath (2013) and others, dispersion
known to be related to Mach number, magnetic field strength (next class), and
amount of turbulent power in compressive vs. solenoidal modes:

0

2 5 ¢ O ﬁ/\ﬁo = ratio of thermal to magnetic energy density
oy ~ In (1 + b* M >

t bo + 1
b ~ 1/3 for purely solenoidal turbulence, ~1 for purely

compressive, ~1/2 for natural mix



Mass versus volume PDFs

 PDF p(s) describes distribution in volume; can also do PDF by mass

 Consider a volume V with a volume PDF p(s); mass in density range s to s+ds
occupies a volume dV = p(s) V, and therefore has mass dMV = p p(s) dV

. . . | s — sg)°
e Substitute In: dM = pe” - Jamo? exp ( 2020> dV
_ | _ (S -+ 80)2_
e Mass PDF is therefore ] -
1 (S —+ S())

S



Exercise

For a region with .4 = 10, no magnetic field, natural turbulent mix:

* What fraction of the volume is occupied by material at >100 x the
mean density?

* What fraction of the mass is at >100 x the mean density?
 What is the mass-weighted mean density?



