Class 5: Gas flows and turbulence ASTR 4008 / 8008, Semester 2, 2020

Mark Krumholz

Outline

- Fundamental numbers: the Reynolds number and the Mach number
- Statistics of turbulence
 - Power spectra and autocorrelation functions
 - The Kolmogorov model
- Supersonic turbulence
 - Velocity statistics
 - **Density statistics**

Fluid dynamics A very condensed introduction

- Density Velocity Momentum density
- Momentum equation in index notation:

$$\frac{\partial}{\partial t} \left(\rho v_i \right) = -\frac{\partial}{\partial x_j} \left(\rho v_i v_j \right) - \frac{\partial}{\partial x_i} P + \rho \nu \frac{\partial^2}{\partial x_j^2} v_i$$

Basic equations relevant for us are conservation of mass and momentum:

Key role of viscosity: viscous term is the only one that dissipates into heat

Characteristic scales Really all we know how to do in fluids...

- sound speed c_s ; natural time scale is T = L / V
- How big (order of magnitude) are terms in momentum equation: $\frac{\partial}{\partial t} \left(\rho \mathbf{v} \right) = -\nabla \cdot \left(\rho \mathbf{v} \otimes \mathbf{v} \right) - \nabla P + \rho \nu \nabla^2 \mathbf{v}$
- Answer:

$$\frac{\rho V^2}{L} \sim \frac{\rho V^2}{L} + \frac{\rho c_s^2}{L} + \rho \nu$$

• Suppose we consider a system of characteristic size scale L, velocity scale V,

 $\frac{V}{L^2} \rightarrow 1 \sim 1 + \frac{c_s^2}{V^2} + \frac{\nu}{VL}$ Define $V / c_s = \mathcal{M}$, Mach number Define LV / v = Re, Reynolds number

What are *M* and Re? Typical molecular cloud values

- Viscosity of ideal gas $v = 2u_{rms}\lambda_{mfp}$, $u_{rms} = RMS$ particle speed $\approx c_s$, $\lambda_{mfp} =$
- viscous forces largely unimportant

• We saw earlier that typical length, speed values are $L \sim 10$ pc, $V \sim \text{few km s}^{-1}$ • Sound speed $c_s = (kT / \mu m_H)^{1/2} \approx 0.2 \text{ km s}^{-1}$ at $T = 10 \text{ K}, \mu = 2.33 \Rightarrow \mathcal{M} \sim 10$

mean free path = 1 / $n\sigma$, where n = number density ~ 100 cm⁻³, σ = cross section, typically ~(1 nm)² for neutral molecules $\Rightarrow v \sim 10^{16} \text{ cm}^2 \text{ s}^{-1}$, Re ~ 10⁹

• Thus molecular clouds are highly supersonic, very high $Re \Rightarrow$ pressure and

Why Re matters High Re flows are inevitably turbulent

NSF Fluid Mechanics Film Series, <u> https://</u> www.youtube. <u>com/playlist?</u> list=PL0EC652 <u>7BE871ABA3</u>

Exercise for class: estimate the Reynolds number of the air in this room. Do you expect air flows in this room to be turbulent?

Urbulence statistics Velocities

- Let $\mathbf{v}(\mathbf{x})$ be the velocity at position \mathbf{x} in some volume of interest V
- Define the auto-correlation function (ACF): $A(\mathbf{r}) \equiv \frac{1}{V} \int \mathbf{v}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x} + \mathbf{r}) d\mathbf{x}$
- Fourier space equivalent: power spectral density (PSD): $\Psi(\mathbf{k}) = |\tilde{\mathbf{v}}(\mathbf{k})|^2$, where $\tilde{\mathbf{v}}(\mathbf{k}) = \frac{1}{(2\pi)^{3/2}} \int \mathbf{v}(\mathbf{x}) e^{-i\mathbf{k}\cdot\mathbf{x}} d\mathbf{x}$

- ACF and PDF both measure how quickly velocity changes with separation; if turbulence is isotropic, ACF depends only on $r = |\mathbf{r}|$; PDF depends on $k = |\mathbf{k}|$
- Define the turbulent power spectrum $P(k) = 4\pi k^2 \Psi(k)$

PSD and ACF Two sides of the same coin

- PDF and ACF are closely related, and both measure power in turbulent motions on different size scales
- Wiener-Khinchin Theorem: $\Psi(\mathbf{k}) = \frac{1}{2}$
- Parseval's theorem: $\int P(k) dk = \int | \mathbf{r} | \mathbf{r}$
- or Fourier space

$$\frac{1}{(2\pi)^{3/2}} \int A(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}} d\mathbf{r}$$
$$\tilde{\mathbf{v}}(\mathbf{k})|^2 d\mathbf{k} = \int \mathbf{v}(\mathbf{x})^2 d\mathbf{x}$$

 Physical meaning: ACF and PSD are just each other's Fourier transforms, and integral of power spectrum gives total power, which is the same in either real

The linewidth-size relation Observable manifestation of power spectra

- We cannot measure the power spectrum directly in the ISM; what we can measure is the linewidth-size relation (LWS): measure the velocity dispersion *σ*(*ℓ*) (linewidth) in regions of varying size *ℓ*, and plot the correlation
- LWS related to power spectrum: consider a power spectrum $P(k) \sim k^{-n}$
- To compute the LWS, look at KE per unit mass of material in a box of size ℓ : KE ~ $\sigma(\ell)^2$, and also KE ~ $\int_{2\pi/\ell}^{\infty} P(k) dk \propto \ell^{n-1}$
- Therefore $\sigma(\ell) = c_s (\ell / \ell_s)^{(n-1)/2}$, where $\ell_s = \text{sonic length}$

The Kolmogorov mode for subsonic turbulence

- Basic picture: in the absence of shocks, equations of hydrodynamics in Fourier space are local, i.e., energy is transferred only between adjacent k values
- Viscosity only important on scales L_{diss} small enough that $Re = L_{diss}V / v \sim 1$
- Energy injected at a much larger scales L_{inj}
- In between injection and dissipation scale is *inertial range*, $1/L_{inj} \ll k \ll 1/L_{diss}$: in this range of k, energy flows through, but no sources or sinks of energy
- In steady state, power P(k) in inertial range can only depend on k and on rate of dissipation (= rate of injection) ψ

The Kolmogorov scaling and the magic of dimensional analysis

- Since P(k) depends only on k and ψ , we have $P(k) \propto k^{\alpha} \psi^{\beta}$ for some α , β
- Kolmogorov's argument: k has units of 1/length = 1/L, ψ has units of energy per unit mass per unit time = L² / T³, and P(k) has units of energy per unit mass per unit k = L³ / T²; thus we have L³ / T² = L^{-α} (L² / T³)^β
- For units to match, only solution is $\beta = 2/3$, $\alpha = -5/3$
- Therefore $P(k) \propto k^{-5/3}$, LWS relation $\sigma \propto \ell^{1/3}$

Experimental verification of Kolmogorov model Test using turbulence from an air jet

Champagne 1978, J. Fluid Mech

Supersonic turbulence **Velocity statistics**

- Kolmogorov model does not apply to flows with $M \gg 1$, because shocks form, and shocks are not local in Fourier space
- Can still estimate P(k) from simple heuristic 1D argument, however
- Velocity near a shock is a step function: $v(x) = v_0$ for x < 0, $-v_0$ for x > 0
- Fourier transform is $\tilde{v}(k) = \frac{1}{\sqrt{2\pi}} \int v(x) dx$
- Power spectrum is $P(k) \sim |\tilde{v}|^2 \propto 1/k^2$
- Implied LWS is $\sigma \propto \ell^{1/2}$

$$e^{-ikx} dx = \sqrt{\frac{8}{\pi}} i \frac{v_0}{k} \propto 1/k$$

Numerical evidence for *k*⁻² spectrum From simulations

Federrath+ 2010

Observational evidence for *k*⁻² **spectrum** From the observed LWS

LWS of the Polaris Flare Cloud; Ossenkopf & MacLow 2002

Supersonic density statistics

- density; basic question: what is the PDF of densities?
- density to increase by a factor of M^2 ; similarly for rarefactions
- is set by repeated multiplication by random numbers equivalent to repeated addition of random numbers in log density
- Central limit theorem: the sum of a large number of random numbers is distribution from which those random numbers are drawn

In supersonic turbulence, shocks and rarefaction waves cause variations in

• Heuristic argument: if gas is isothermal, a shock of Mach number *M* causes

• If passage of shocks and rarefactions is random, density at any given location

Gaussian-distributed, regardless (within some limits) of the shape of the

The lognormal density PDF

$$p(s) = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left[-\frac{1}{\sqrt{2\pi\sigma_s^2}}\right]$$

• Since
$$\overline{\rho} = \int p(s)\rho \, ds = \overline{\rho} \int p(s)e^s \, ds$$
, if

 From numerical experiments by Federrath (2013) and others, dispersion amount of turbulent power in compressive vs. solenoidal modes:

$$\sigma_s^2 \approx \ln\left(1 + b^2 \mathcal{M}^2 \frac{\beta_0}{\beta_0 + 1}\right)$$

Central limit theorem argument suggests Gaussian PDF in log of density:

$$\frac{(s-s_0)^2}{2\sigma_s^2} \bigg], \qquad s = \ln(\rho/\overline{\rho})$$

is easy to show that $s_0 = -\sigma_s^2/2$

known to be related to Mach number, magnetic field strength (next class), and

 $\beta_0 =$ ratio of thermal to magnetic energy density

 $b \sim 1/3$ for purely solenoidal turbulence, ~1 for purely compressive, ~1/2 for natural mix

Nass versus volume PDFs

 $p_M(s) =$

 $\sqrt{2\pi}$

- PDF p(s) describes distribution in volume; can also do PDF by mass
- Consider a volume V with a volume PDF p(s); mass in density range s to s+ds occupies a volume dV = p(s) V, and therefore has mass $dM = \rho p(s) dV$
- $dM = \overline{\rho}e^s \cdot \frac{1}{\sqrt{2\pi\sigma}}$ Substitute in:

Mass PDF is therefore

$$\overline{P} = \overline{\rho}e^s \cdot \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left[-\frac{\left(s-s_0\right)^2}{2\sigma_s^2}\right] dV$$
$$= \overline{\rho}\frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left[-\frac{\left(s+s_0\right)^2}{2\sigma_s^2}\right] dV$$

$$\frac{1}{\sigma_s^2} \exp\left[-\frac{\left(s+s_0\right)^2}{2\sigma_s^2}\right]$$

Exercise

For a region with $\mathcal{M} = 10$, no magnetic field, natural turbulent mix: • What fraction of the volume is occupied by material at >100 × the

- What fraction of the volume is one mean density?
- What fraction of the mass is at >100 × the mean density?
- What is the mass-weighted mean density?

>100 × the mean density? an density?