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Theory of the IMF
General considerations

• The IMF consists of two main parts: a broad plateau centred at ~0.2-0.3 M⊙, 
and a power law tail at high mass


• These features may vary slightly with environment, but, if so, by a surprisingly 
small amount — e.g., the slope may be ~0.2 flatter in the densest star clusters 
in the local universe, or the mass to light ratio in ellipticals may be a factor of 
~2 higher than in spirals


• A successful theoretical model must explain both parts of the IMF, and also 
why they vary so little in response to many order of magnitude changes in 
density, redshift, galactic environment, etc.



Limits of isothermal models
Part I

• Basic equations for a magnetised, self-gravitating, isothermal fluid:


• Define characteristic length L, velocity V, mean density 𝜌0, mean magnetic 
field B0, make change of variables: 
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Class exercise: write down the equations of 
motion with this change of variable. What 

dimensionless ratios appear in your equations?



Limits of isothermal models
Part II

• Non-dimensional equations are:


• The dimensionless quantities appearing in these equations are:


• The evolution is entirely determined by these quantities + the initial conditions
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Limits of isothermal models
Part III

• Suppose a star forms in an isothermal cloud, with the material going into the 
star coming from a volume bounded by some initial surface S at time t = 0. 
The mass of the star is 


• Now consider an identical cloud that has just been rescaled by a factor y, with


• One can verify by direct substitution that the rescaled cloud has exactly the 
same values of                 , so the evolution is identical — same star forms


• However, the resulting star has mass                            , so the mass of the 
star is not the same — it can be changed arbitrarily by the choice of y
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Limits of isothermal models
Implications 

• The conclusion to draw is that isothermal gas does not have a mass scale — 
the characteristic masses of any stars it forms are not set by the physics of 
the cloud, but by the initial conditions


• Thus isothermal gas is capable of producing stars with a scale free (powerlaw) 
mass distribution, but if it produces a distribution that has a scale (like the 
IMF), that scale has to be set by the initial conditions


• This realisation motivates separate consideration of the IMF tail (which can 
potentially arise in purely isothermal gas) from the IMF peak (which must 
depend either on the initial conditions in GMCs, or on deviations from 
isothermal behaviour)



Numerical confirmation
5076 D. Guszejnov et al.

Figure 1. Surface density maps from a simulation of a 2 × 105 M⊙ GMC that includes isothermal turbulence and MHD (M2e5 R30 , see Table 1), at about
8 per cent star formation efficiency. The colour scale is logarithmic and the circles represent sink particles (stars) that form in high-density regions where
fragmentation can no longer be resolved, their size increasing with mass. This simulation resolves a dynamic range from ∼50 pc to ∼30 au.

3 R ESULTS

We carried out a suite of simulations in the αturb,0–M–µ parameter
space at various resolutions, up to M0/"m = 2 × 108 (see Table 1 for
details and Fig. 1 for a demonstration of the dynamic range). This
is the highest mass resolution yet achieved in any 3D simulation of
resolved star cluster formation.

Once the simulation begins, we find that the clouds quickly develop
a filamentary structure similar to observations (Andre et al. 2010) that
collapses and forms stars (see Fig. 2). Fig. 3 shows that all our clouds
turn roughly 10 per cent of their gas into stars in a freefall time. At
low Mach numbers (M < 10), we find a rough trend of SFE ∝ t2

(consistent with the results of Lee, Chang & Murray 2015 who
simulated a M = 9 cloud), while for all highly supersonic clouds
(M > 10) the relation becomes steeper, consistent with SFE ∝ t3.
This does not necessarily contradict the theory of Murray & Chang
(2015), who derived Ṁ⋆ ∝ t2 for a single star accreting in a turbulent
medium – our star formation history is the sum of many individual
stellar accretion histories.

3.1 Sink mass distribution (IMF)

Fig. 4 shows that varying the initial conditions (in this case the
virial parameter αturb,0 and Mach number M) significantly changes
the mass distribution of sink particles. At high masses, the sink
distribution is consistent with a dN/dlog M ∝ M−1 power law, similar
to the observed IMF (Salpeter 1955; Offner et al. 2014). Meanwhile,
at low masses, the distribution becomes shallower, consistent with
dN/dlog M ∼ const. This is significantly shallower than the low-
mass end of the observed IMF (dN/dlog M ∼ M0.7 in the Kroupa
2002 form), leading to an excess of brown dwarfs, which should
only make up ∼ 30 per cent of the stellar population (Andersen
et al. 2006). Meanwhile, the turnover from the high-mass power-

law behaviour shows that the sink mass distribution does have a
mass scale inherited from initial conditions. For simplicity, we adopt
the mass-weighted median mass of sinks M50 as the characteristic
mass scale of sinks in our subsequent analysis (similar to Krumholz,
Klein & McKee 2012), as it roughly corresponds to this turnover
mass (see Fig. 4). This characteristic mass M50 monotonically
increases as more gas is turned into stars (see Figs 5 and A2 for
values).

3.2 Effects of turbulent driving and boundary conditions (Box
versus Sphere)

While the global parameters of the initial conditions (αturb,0, M, M0)
affect the mass spectrum of sink particles, we find no significant
difference between Sphere and Box runs (see Fig. 5), despite the
difference in initial cloud shape, turbulent driving, density, and
magnetic fields.34 The insensitivity of the sink mass spectrum to
the specifics of the initial conditions is similar to the findings of Bate
(2009b), Liptai et al. (2017), and Lee & Hennebelle (2018a).

Note that studies simulating dense, centrally concentrated clouds
found that the final sink masses depend on the initial condition
(Girichidis et al. 2011). These initial conditions, however, are quite
different from what is observed in GMCs. Furthermore, Girichidis
et al. (2011) simulated isothermal turbulence without magnetic fields,

3It should be noted that while the exact magnitude of magnetic support on
large scales appears to be irrelevant, having finite (non-zero) magnetic fields
is crucial because, in the limit of no magnetic fields, clouds undergo an
infinite fragmentation cascade, see Section 3.4 and Guszejnov et al. (2018b)
for details.
4Note that we use αturb,0 based on equation (12) similar to other studies in
the literature. For a periodic box, this can significantly differ from the value
αturb from equation (2) (Federrath & Klessen 2012).
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Figure 10. Mass PDF of sink particles at 5 per cent SFE for the M2e5 R30
run (M0 = 2 × 105 M⊙, αturb, 0 = 2, M = 29, see Table 1) at various mass
resolutions (M0/"m). Note that unlike Fig. 4, here we plot the full range
of sink particle masses. We shaded the region where non-isothermal effects
are expected to suppress the formation of new sinks (Bate 2009a; Offner
et al. 2009; Lee & Hennebelle 2018b) and mark the brown dwarf regime
(M < 0.08 M⊙, dashed line). While the high mass end (that contains most
of the mass) is insensitive to resolution (see Fig. 8), a resolution sensitive
peak forms near the resolution limit for M0/"m → ∞, leading to an excess
of brown dwarfs.

scale both the base and maximum AMR resolution levels to achieve
convergence.

Note that while it only contains a small fraction of the total IMF
mass in these simulations, the low-mass end of the IMF is clearly
not converged and depends strongly on resolution in our simulations.
Plotting the full IMF as a function of resolution in Fig. 10 we see
that the ‘brown dwarf excess’ predicted by ideal MHD physics alone
becomes more severe as our resolution increases. So we emphasize
that our conclusions about M50 and resolution-independence apply
only to the relatively large masses containing most of the mass in
the IMFs here. Note that it is unclear if this would still be true
at much higher mass resolutions (M0/"m ∼ 1010), but probing
that regime is prohibitively expensive with our current code. We
find that this large number of very low mass sinks originate from
dense regions around massive stars. Note that in these regions our
assumption of isothermality is expected to break down, preventing
further fragmentation in the gas and the formation of this ‘brown
dwarf excess’ (for discussion see Section 4.3.1). Furthermore, we
find that this region of the IMF is sensitive to the details of our
angular momentum return algorithm, but the conclusions of our study
is not.

4 D ISCUSSION

4.1 Comparison with other simulation studies

There have been several studies in recent years that investigated
the sink particle mass spectrum in simulations including MHD
turbulence and gravity. In Table 2, we apply our fitting functions from
equations (17) and (21) to the initial conditions of their simulations

and compare them with the mass-weighted median and maximum
sink mass in their reported IMFs. Haugbølle et al. (2018), Lee
et al. (2019), and Federrath et al. (2017) all used a simulation
set-up essentially identical to our Box simulation suite, simulating
isothermal MHD with gravity and sink particles with the RAMSES,
ORION2, and FLASH codes, respectively. Compared to ours, these
studies have subtle differences in the details of turbulence driving,
but our results suggest these are unlikely to strongly affect the IMF
(Fig. 5).

First, we compare with Haugbølle et al. (2018). Most of these
simulations included a prescription to model protostellar outflows,
by having sink particles accrete only half of the inflowing mass and
delete the rest, so we compare with the IMF from their acc test
run that does have this prescription (their fig. 14). We find that our
predicted M50 = 7.5 M⊙ and M⋆, max = 19 are quite close to their
values of 4.2 M⊙ and 17 M⊙, both <2σ compatible if we estimate
errors by bootstrapping their mass distribution and taking the RMS
error of our fit. We find even better agreement with the values in Lee
et al. (2019).

Our prediction for M⋆,max matches the results of the HighResIso
simulation in Federrath et al. (2017), but for those initial conditions
we predict M50 = 11 M⊙, much greater than their M50 = 1.9 M⊙.
This simulation produced 23 objects of mass > 1 M⊙, so while the
sampling of the IMF is certainly sparse, the numbers are not so small
that we can readily attribute a factor of ∼5 discrepancy to statistical
variations. One difference between our respective calculations is that
they used a mixture of compressive and solenoidal driving, versus
the purely solenoidal driving used in our BOX simulations. However
given the robustness of our results to the details of turbulent forcing,
this is unlikely to strongly affect the result either. We are left with no
clear explanation for the discrepancy.

Wurster et al. (2019) simulated a 50 M⊙ dense clump akin to
our Sphere suite, with both ideal and non-ideal smoothed-particle
radiation MHD; we compare with their µ = 5, ideal MHD model,
but note that they found that the IMF is not strongly affected by µ or
non-ideal MHD effects. Our predictions of M50 ∼M⋆,max ∼1 M⊙
agrees very well with their results. As such, while it has been shown
that accounting for full radiation transfer is important for suppressing
brown dwarf formation (Bate 2009a; Offner et al. 2009), isothermal
MHD may be a sufficient approximation to predict M50 and M⋆,max.

Finally, we compare with Padoan et al. (2019), who ran a 250 pc
Box-type set-up containing 1.9 × 106 M⊙, but with turbulence driven
by supernova explosions. We derive approximate RMS M and
αturb,0 values of 66 and 4.7, respectively, from the energy statistics
given in Padoan et al. (2016), however we emphasize that these
are rough values because (1) their ISM is not isothermal but rather
multiphase, (2) the energetics are highly variable, and (3) the results
in Padoan et al. (2019) are from a different, higher-resolution
simulation with the same physical parameters. Nevertheless we
predict M50 = 36 M⊙, within a factor of 2 of their value of ∼20 M⊙.
They attribute this overprediction of the IMF turnover to a lack of
numerical resolution, but our results suggest that they are actually
close to the ‘converged’ value. Rather, we believe other, important
processes that shape the IMF were neglected, as we will argue further
in this section.

In summary, we find that our simulations predict M50 and M⋆,max in
very good agreement with the predictions of other codes running sim-
ilar problems, with the exception perhaps of the FLASH simulations
in Federrath et al. (2017). Whether this represents any meaningful
difference in code behaviours, or sensitivity to prescriptions, can
ultimately only be answered by a controlled code comparison study
(e.g. Federrath et al. 2010b). Overall the good agreement between the
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The power law tail
Basic approaches

• Two natural candidate scale-free processes:

• Accretion of gas by stars that form near the IMF peak — “competitive 

accretion”

• Collapse of a distribution of structures with different masses that are 

created by turbulent flow — “turbulent fragmentation”


• Reality is almost certainly somewhere between these two extremes, but they 
provide useful ways of thinking about the problem



The competitive accretion model
Key papers: Bonnell+ (1997), Bonnell+ (2001), Bate+ (2005), Bate (2009)

• Consider a population of “seed” stars formed by fragmentation, all with 
similar initial masses, that gain mass by accreting additional gas


• Suppose accretion rate depends on current mass as dm/dt ~ m𝜂; for example, 
for a point mass accreting gas from a uniform, infinite medium, Bondi & Hoyle 
showed that this holds with 𝜂 = 2


• Mass some time later is


• Suppose all stars start at mass m0, but have different starting accretion rates 
(e.g. because they are in gas of different density) or accrete for different 
amounts of time (e.g. because some form earlier) — what is resulting IMF?
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Competitive accretion
Predicted IMF

• Varying initial accretion rate or time corresponds to varying 𝜏


• For a distribution of 𝜏 values dn / d𝜏, resulting mass distribution is


• Thus accretion converts an initial 𝛿-distribution in mass (all stars at mass m0) 
into a power law distribution


• BH accretion (𝜂 = 2) is a bit too shallow compared to observed IMF, but in a 
crowded environment likely to have somewhat larger 𝜂 due to tidal truncation 
of feeding zones — plausible explanation for IMF slope
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Turbulent fragmentation
Key papers: Padoan & Nordlund (2002), Hennebelle & Chabrier (2008), Hopkins (2012)

• Basic idea: consider density field smoothed at some size scale 𝓁, and imagine 
drawing iso-density contours at density 𝜌


• Define mass m enclosed by each contour — typically most numerous 
contours will be as small as possible on the smoothing scale, so m ~ 𝜌𝓁3


• What is the distribution of m values? Can estimate from the density PDF: total 
mass dM of objects with density from 𝜌 to 𝜌 + d𝜌 is dM ~ 𝜌 p(𝜌) d𝜌


• Thus number of contours of mass m must follow
<latexit sha1_base64="kS6+rWI+iejMIKyl/WA8O5VZ3C0="></latexit>
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Turbulent fragmentation
The barrier function

• Not all of the identified contours will be gravitationally bound, so not all will make 
stars; IMF will come from distribution of bound contour masses


• Contour of mass m, size scale 𝓁 is bound if Gm2 / 𝓁 ≳ m𝜎(𝓁)2


• Can express this condition in terms of a minimum density: 𝜌 ≳ 𝜎(𝓁)2 / G𝓁2


• Using LWS to get 𝜎(𝓁) = cs (𝓁 / 𝓁s)1/2: 𝜌 ≳ cs2 / G𝓁𝓁s


• This sets lower limit to integral over PDF; integrate over all smoothing scales 𝓁, 
and, given model for smoothed PDF, calculate resulting IMF; result is a power law



The IMF peak
Basic approaches

• Mass scale of IMF peak must be set by two possible mechanisms:

• “Initial conditions”, i.e., properties of molecular clouds at the Galactic scale

• Deviations from isothermal behaviour caused by additional physical 

processes


• Numerous papers published using both approaches, but consensus seems to 
be moving toward deviations from isothermality, for reasons that will become 
clear as we go through the arguments



The peak from initial conditions
Key papers: Bate+ (2005), Hennebelle & Chabrier (2008), Hopkins (2012)

• Simplest hypothesis is that peak mass set by Jeans mass in molecular cloud 
at largest scale: Mpeak ~ cs3 / (G3𝜌)1/2


• Problem: mean density 𝜌 in molecular clouds varies by a lot from galaxy to 
galaxy, and even within galaxies

• Example: mean GMC density near Sun is n ~ 100 cm−3, but near MW centre 

n  ~ 104 cm−3 

• Predicted change in Mpeak by factor of ~10 — ruled out by observations


• Can be partly compensated by change in cs, but requires considerable fine-
tuning to explain the small amount of observed variation in IMF peak mass



The peak from initial conditions
Revised version

• More refined hypothesis: peak mass set by sound speed and sonic length, 
Mpeak ~ cs2𝓁s / G 

• Can rewrite in terms of dimensionless parameters using LWS plus definition of 
virial parameter, 𝜎(L) = cs (L / 𝓁s)1/2 and 𝛼vir ~ 𝜎2L / GM → Mpeak ~ cs4 / 𝛼virG𝛴2


• Advantage of this approach: predicts constant peak mass in GMCs of fixed 
surface density and virial parameter, so predicts no variation in Milky Way


• However, still has problems with external galaxies where GMCs can have 
(much) higher 𝛴, but no big changes in peak mass are observed



The IMF peak from non-isothermality
Key papers: Larson (2005), Krumholz+ (2006, 2011, 2012), Bate (2009, 2012)

• Jeans mass depends on density and temperature as MJ ~ (T3/𝜌)1/2, so as long 
as T ~ constant, Jeans mass decrease without limit as gas compresses


• However, if T starts to increase as 𝜌 decreases, fragmentation can be slowed 
or halted (depending on how strongly T rises with 𝜌)


• Thus any physical process that makes T start increasing at some 
characteristic density 𝜌 can “freeze in” a mass scale at the value of MJ 
evaluated at the (𝜌, T) where the temperature increase starts



The Astrophysical Journal, 754:71 (18pp), 2012 July 20 Krumholz, Klein, & McKee

Figure 8. Same as Figure 7, but showing differential rather than cumulative mass distributions. The histogram value in each bin shows the total fraction of all stellar
mass (for the top panels) or the total fraction of the number of stars (for the bottom panels) falling within that bin. Thick colored lines indicate the simulation result,
and gray lines indicate the results of drawing an equal mass stellar population from the Da Rio et al. (2012) IMF. For the gray histogram, the histogram values give
the median result, and the vertical lines indicate the range from the 10th to the 90th percentile. We omit the Chabrier (2005) IMF here to reduce clutter.
(A color version of this figure is available in the online journal.)
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Origin of non-isothermality
Stellar radiation

• Main source of deviation from isothermal behaviour 
is radiation from forming stars


• Once a small star forms, accretion onto it releases 
energy, which comes out as radiation, and heats 
the surrounding gas


• Simulations including this effect                   
reproduce observed IMF well

The Astrophysical Journal, 754:71 (18pp), 2012 July 20 Krumholz, Klein, & McKee

Figure 10. Phase diagrams of the three runs at different times. The three columns correspond to runs SmNW, TuNW, and TuW, as indicated. The three rows correspond
to times t/tff = 0.75, 1.0, and 1.25. In each panel, the color indicates the gas mass in a given bin of density and temperature; bins are 0.025 dex wide in both ρ and
T. The color scale is normalized so that the bin containing the largest amount of mass is 1.0. The long-dashed line indicates the locus in density and temperature at
which the code inserts sink particles. The short-dashed lines indicate the locus in density and temperature where the Bonnor–Ebert mass is 0.01 M⊙, 0.1 M⊙, and
1 M⊙ as indicated. Note that gas in the winds is run TuW is heated to ∼104 K, well above the temperature range shown here, but there is relatively little mass at these
temperatures.
(A color version of this figure is available in the online journal.)

or whether all stars are born from cores with masses !1 M⊙,
and massive stars subsequently grow from these small seeds
by Bondi–Hoyle accretion (Bonnell et al. 1997, 2001a, 2001b,
2004, 2006; Bonnell & Bate 2002, 2006; Bate & Bonnell 2005;
Smith et al. 2009a, 2009b). A number of authors have also pro-
posed hybrid models, in which massive stars form from gravita-
tionally bound gas structures, but these structures are assembled
and fed from larger scales at the same time as they form mas-
sive stars (Peretto et al. 2006; Wang et al. 2010). To address
this question, we examine the four most massive stars present
at the end of run TuW; these have masses of 10.8, 9.8, 8.8, and
8.3 M⊙, respectively, and thus each is large enough that, even
if it were to accrete no further, it would be expected to end its
life as a supernova. For comparison, we also examine the four
stars whose masses are closest to the median mass at the end
of the simulation, 0.34 M⊙. For each of these stars, we identify
the point in space and time at which that star first appeared in
our simulations, and examine the gas density distribution in its
vicinity.

We show the results in Figure 11 for the high-mass cores
and Figure 12 for the low-mass cores. To facilitate comparison
with observations, in addition to showing the true gas density
distribution, we show the distribution smeared with a 1700 AU
Gaussian beam; we choose this size scale because it is approxi-
mately the spatial resolution of the highest published resolution

maps of massive cores (e.g., Beuther & Schilke 2004; Bon-
temps et al. 2010), though the Atacama Large Millimeter Array
(ALMA) will soon produce images at significantly higher res-
olution. Figure 11 demonstrates that the massive stars in our
simulation form in distinct, massive overdensities that can be
identified as cores. Their characteristic sizes, determined from
visual inspection, are roughly 0.01 pc. Comparing the gravita-
tional and kinetic energies in this structures shows that they are
roughly gravitationally bound and virialized. The flows within
them are highly supersonic, producing a filamentary morphol-
ogy. Nonetheless, these objects are not highly sub-fragmented.
There are at most one or two density maxima in each one, not
many density maxima. These structures look much like the tur-
bulent cores posited in the McKee & Tan (2003) theory for
massive star formation. When smeared on a resolution of 1700
AU, distinct centrally condensed structures remain visible for
three of the four massive stars, indicating that these objects
would be detectable as massive cores in an observation.

It is important to understand that our analysis says nothing
about the Lagrangian trajectories of the fluid elements that
eventually coalesce to form the massive stars in our simulations,
a topic that has previously received extensive investigation by
Bonnell et al. (2004) and Smith et al. (2009a, 2009b), among
others. It may well be that particular fluid elements that are
present in the cores at the time shown in Figure 11 do not accrete
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2004, 2006; Bonnell & Bate 2002, 2006; Bate & Bonnell 2005;
Smith et al. 2009a, 2009b). A number of authors have also pro-
posed hybrid models, in which massive stars form from gravita-
tionally bound gas structures, but these structures are assembled
and fed from larger scales at the same time as they form mas-
sive stars (Peretto et al. 2006; Wang et al. 2010). To address
this question, we examine the four most massive stars present
at the end of run TuW; these have masses of 10.8, 9.8, 8.8, and
8.3 M⊙, respectively, and thus each is large enough that, even
if it were to accrete no further, it would be expected to end its
life as a supernova. For comparison, we also examine the four
stars whose masses are closest to the median mass at the end
of the simulation, 0.34 M⊙. For each of these stars, we identify
the point in space and time at which that star first appeared in
our simulations, and examine the gas density distribution in its
vicinity.

We show the results in Figure 11 for the high-mass cores
and Figure 12 for the low-mass cores. To facilitate comparison
with observations, in addition to showing the true gas density
distribution, we show the distribution smeared with a 1700 AU
Gaussian beam; we choose this size scale because it is approxi-
mately the spatial resolution of the highest published resolution

maps of massive cores (e.g., Beuther & Schilke 2004; Bon-
temps et al. 2010), though the Atacama Large Millimeter Array
(ALMA) will soon produce images at significantly higher res-
olution. Figure 11 demonstrates that the massive stars in our
simulation form in distinct, massive overdensities that can be
identified as cores. Their characteristic sizes, determined from
visual inspection, are roughly 0.01 pc. Comparing the gravita-
tional and kinetic energies in this structures shows that they are
roughly gravitationally bound and virialized. The flows within
them are highly supersonic, producing a filamentary morphol-
ogy. Nonetheless, these objects are not highly sub-fragmented.
There are at most one or two density maxima in each one, not
many density maxima. These structures look much like the tur-
bulent cores posited in the McKee & Tan (2003) theory for
massive star formation. When smeared on a resolution of 1700
AU, distinct centrally condensed structures remain visible for
three of the four massive stars, indicating that these objects
would be detectable as massive cores in an observation.

It is important to understand that our analysis says nothing
about the Lagrangian trajectories of the fluid elements that
eventually coalesce to form the massive stars in our simulations,
a topic that has previously received extensive investigation by
Bonnell et al. (2004) and Smith et al. (2009a, 2009b), among
others. It may well be that particular fluid elements that are
present in the cores at the time shown in Figure 11 do not accrete
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Universality of the IMF from stellar radiation
Part I

• Consider a protostar with luminosity L; temperature of material a distance R 
from it will be approximately given by L = 4𝜋 𝜎SB R2 T4


• Jeans mass MJ = [ (kBT / 𝜇mHG)3 / 𝜌]1/2


• Consider spherical regions of increasing radius R around a seed star; as R 
increases, T and MJ fall and enclosed mass rises


• Hypothesis: characteristic mass where fragmentation suppressed set by 
condition that enclosed mass ≈ MJ 


• Result: 
<latexit sha1_base64="Cee8j85fSNwmYd9Ot+QjI7pGZjA="></latexit>

M =
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1

36⇡
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◆3/10

⇢�1/5



Universality of the IMF from stellar radiation
Part II

• Luminosity comes from accretion; we will show later in the course that energy 
yield from accretion ~constant for all protostars, L ≈ 𝜓 (dM/dt), 𝜓 ≈ 1014 erg/g


• Accretion time must be ~tff, so dM / dt ~ M (G𝜌)1/2


• Substitute in for L and solve for M:


• This is nearly independent of environmental conditions; basic reason: higher 
density favours fragmentation (lowers MJ) but also higher accretion rate and 
thus higher temperature (raises MJ), and effects almost perfectly cancel

<latexit sha1_base64="owqpRJcCpkrD9wbhjc9ajaHAud8="></latexit>
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