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Theory of the IMF

General considerations

 The IMF consists of two main parts: a broad plateau centred at ~0.2-0.3 Mo,
and a power law tail at high mass

* These features may vary slightly with environment, but, if so, by a surprisingly
small amount — e.g., the slope may be ~0.2 flatter in the densest star clusters

in the local universe, or the mass to light ratio in ellipticals may be a factor of
~2 higher than in spirals

* A successful theoretical model must explain both parts of the IMF, and also

why they vary so little in response to many order of magnitude changes in
density, redshift, galactic environment, etc.



Limits of isothermal models
Part |

» Basic equations for a magnetised, self-gravitating, isothermal fluid:
o _

5 =V (ov)
|
ot A7
%_]? = -V x (B x v)
Vo = ArGp

« Define characteristic length L, velocity V, mean density po, mean magnetic
fleld Bo, make change of variables:
x=x'L t=t(L)V) p=rpg B=bB v=uV ¢=19GpyL?



Class exercise: write down the equations of
motion with this change of variable. What
dimensionless ratios appear in your equations?



Limits of isothermal models
Part i

 Non-dimensional equations are:
or
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* [he dimensionless quantities appearing in these equations are:
M:V/CS MA:V/VA:V\/47TpQ/BQ Oévir:VQ/G,O()LQ

* The evolution is entirely determined by these quantities + the initial conditions



Limits of isothermal models
Part i

* Suppose a star forms in an isothermal cloud, with the material going into the
star coming from a volume bounded by some Iinitial surface S at time t = 0.

The mass of the staris  ; _ / o dPr = polL? / 3
) )

 Now consider an identical cloud that has just been rescaled by a factor y, with
L'=yL py=po/y° By=Boly V' =V
* One can verify by direct substitution that the rescaled cloud has exactly the
same values of M. M4 0., SO the evolution Is identical — same star forms
po L
 However, the resulting star has mass p(())LS . SO0 the mass of the
star is not the same — it can be changed arbitrarily by the choice of y

M/




Limits of isothermal models

Implications

* [he conclusion to draw Is that isothermal gas does not have a mass scale —

the characteristic masses of any stars it forms are not set by the physics of
the cloud, but by the initial conditions

* Thus isothermal gas is capable of producing stars with a scale free (powerlaw)
mass distribution, but if it produces a distribution that has a scale (like the
IMF), that scale has to be set by the initial conditions

* This realisation motivates separate consideration of the IMF tail (which can
potentially arise in purely isothermal gas) from the IMF peak (which must
depend either on the initial conditions in GMCs, or on deviations from
isothermal behaviour)



Numerical confirmation

[sothermality
breaks down

Brown dwarf limit
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The power law tall

Basic approaches

 Two natural candidate scale-free processes:

» Accretion of gas by stars that form near the IMF peak — “competitive
accretion”

* Collapse of a distribution of structures with different masses that are
created by turbulent flow — “turbulent fragmentation”

» Reality iIs almost certainly somewhere between these two extremes, but they
provide useful ways of thinking about the problem



The competitive accretion model
Key papers: Bonnell+ (1997), Bonnell+ (2001), Bate+ (2005), Bate (2009)

 Consider a population of “seed” stars formed by fragmentation, all with
similar initial masses, that gain mass by accreting additional gas

e Suppose accretion rate depends on current mass as dm/dt ~ m;, for example,

for a point mass accreting gas from a uniform, infinite medium, Bondi & Hoyle
showed that this holds with = 2

Dimensionless time parameter Starting accretion rate Starting mass

= (- )AYO, g P

h = tn
' exp(r), p=1 where 7 = tmg/mg

e Mass some time later is m(t) = mg 4

 Suppose all stars start at mass mo, but have different starting accretion rates
(e.g. because they are in gas of different density) or accrete for different
amounts of time (e.g. because some form earlier) — what is resulting IMF?



Competitive accretion
Predicted IMF

« Varying initial accretion rate or time corresponds to varying r

e For a distribution of = values dn / dz, resulting mass distribution is

dn  dn/dt dn .
e — — —_— 144
dm  dm/dr dt

« Thus accretion converts an initial 6-distribution in mass (all stars at mass mo)
iInto a power law distribution

« BH accretion (y = 2) is a bit too shallow compared to observed IMF, but in a

crowded environment likely to have somewhat larger n due to tidal truncation
of feeding zones — plausible explanation for IMF slope



Turbulent fragmentation

Key papers: Padoan & Nordlund (2002), Hennebelle & Chabrier (2008), Hopkins (2012)

« Basic idea: consider density field smoothed at some size scale 7, and imagine
drawing iso-density contours at density p

* Define mass m enclosed by each contour — typically most numerous
contours will be as small as possible on the smoothing scale, so m ~ p#3

 What is the distribution of m values? Can estimate from the density PDF: total
mass dM of objects with density from pto p + dp is dM ~ p p(p) dp

d dM 1
« Thus number of contours of mass m must follow - = “~ ~ /p(p) dp

dm m /3



Turbulent fragmentation

The barrier function

* Not all of the identified contours will be gravitationally bound, so not all will make
stars; IMF will come from distribution of bound contour masses

o Contour of mass m, size scale 7 is bound if Gm?2/ ¢ =z mo(£)?
e Can express this condition in terms of a minimum density: p = o(£)?2/ G2
e Using LWStogeto(®)=cs(Z/Cs)V2: p=zcs?/ GECs

« [his sets lower limit to integral over PDF; integrate over all smoothing scales 7,
and, given model for smoothed PDF, calculate resulting IMF; result is a power law



The IMF peak

Basic approaches

 Mass scale of IMF peak must be set by two possible mechanisms:
* “Initial conditions”, i.e., properties of molecular clouds at the Galactic scale

* Deviations from isothermal behaviour caused by additional physical
processes

 Numerous papers published using both approaches, but consensus seems to
be moving toward deviations from isothermality, for reasons that will become
clear as we go through the arguments



The peak from initial conditions
Key papers: Bate+ (2005), Hennebelle & Chabrier (2008), Hopkins (2012)

o Simplest hypothesis is that peak mass set by Jeans mass in molecular cloud
at largest scale: Mpeak ~ Cs3 / (G3p)1/2

 Problem: mean density p in molecular clouds varies by a lot from galaxy to

galaxy, and even within galaxies

 Example: mean GMC density near Sun is n ~ 100 cm-3, but near MW centre
n ~ 104 cm-3

* Predicted change in Mpeak by factor of ~10 — ruled out by observations

 Can be partly compensated by change in cs, but requires considerable fine-
tuning to explain the small amount of observed variation in IMF peak mass



The peak from initial conditions

Revised version

* More refined hypothesis: peak mass set by sound speed and sonic length,
Mpeak ~ Cszfs/ G

* Can rewrite in terms of dimensionless parameters using LWS plus definition of
virial parameter, o(L) = ¢cs (L / £s)12 and awir ~ 62L / GM — Mpeak ~ Cs*/ onirG 22

* Advantage of this approach: predicts constant peak mass in GMCs of fixed
surface density and virial parameter, so predicts no variation in Milky Way

 However, still has problems with external galaxies where GMCs can have
(much) higher X, but no big changes in peak mass are observed



The IMF peak from non-isothermality
Key papers: Larson (2005), Krumholz+ (2006, 2011, 2012), Bate (2009, 2012)

« Jeans mass depends on density and temperature as My ~ (73/p)1/2, so as long
as [ ~ constant, Jeans mass decrease without limit as gas compresses

« However, Iif T starts to increase as p decreases, fragmentation can be slowed
or halted (depending on how strongly T rises with p)

* Thus any physical process that makes T start increasing at some
characteristic density p can “freeze in” a mass scale at the value of M,

evaluated at the (p, T) where the temperature increase starts



Origin of non-isothermality

Stellar radiation

e Main source of deviation from isothermal behaviour
IS radiation from forming stars

e Once a small star forms, accretion onto it releases
energy, which comes out as radiation, and heats
the surrounding gas

log M [arbitrary units]

Simulation

» Simulations including this effect =8 . Observed
reproduce observed IMF well

~18 —16 —14
-3
log p [g cm™]

Krumholz+ 2012



Universality of the IMF from stellar radiation
Part |

 Consider a protostar with luminosity L; temperature of material a distance R
from it will be approximately given by L = 47 osg R2 T4

e Jeans mass My = [ (kT / umn@G)3 / p|1/2

» Consider spherical regions of increasing radius R around a seed star; as R
Increases, I and My fall and enclosed mass rises

* Hypothesis: characteristic mass where fragmentation suppressed set by
condition that enclosed mass = My

1/10 6/5 3/10
e Result: M( | ) ( kb > (L> 1/5

36—7T G,LLTTLH OSB




Universality of the IMF from stellar radiation
Part i

* Luminosity comes from accretion; we will show later in the course that energy
yield from accretion ~constant for all protostars, L = y (dM/dt), w = 1014 erg/g

e Accretion time must be ~tx, so dM / dt ~ M (Gp)1/2

e Substitute in for L and solve for M-

. 1 1/7 kn O\ 127 o 3/7 i g 5 ( - )_1/14 y
367 Gumpg OSB . ~\100 cm—3 -

* This is nearly independent of environmental conditions; basic reason: higher
density favours fragmentation (lowers M,) but also higher accretion rate and
thus higher temperature (raises M), and effects almost perfectly cancel




