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Toomre stability
Background

* An important consideration for galactic discs: under what conditions is a
galactic disc stable against self-gravity?

* Original calculation due to Alar Toomre (1964) for case of a thin stellar disc

» Basic setup: rotating, axisymmetric, thin disc

 Most general versions of the calculation include stars, finite gas cooling
time, finite thickness, non-axisymmetric modes

 We will do the zeroth-order version: gas only (no stars), isothermal (no
cooling), infinitely thin, axisymmetric modes only

» |ots of papers extending to more general cases



Rotation at angular
velocity Q(r)

Entire galactic disc

Toomre stability

Background state

* Consider an infinitely thin, axisymmetric —
gas disc of surface density 2(r) occupying
the plane z = O; It rotates with angular
velocity Q(r) = Q2 z; gas is isothermal with
sound speed cs, and starts at rest (apart
from rotation)

 Work in reference frame co-rotating with
disc at radius ro; set up Cartesian
coordinate system so x = radially outward,
y = direction aligned with rotation, origin =
centre of local box

Local rotation
speed vo(X)

Local patch



Toomre stability

Basic equations

* |n the coordinate system we have just describe, equations of motion are:

0>’

Mass conservation | v () v) = ()
a t ( ) Pressure Gravity Coriolis Centrifugal
ov VX
Momentum conservation at | (V . V) V = —C? Z v¢ — ZQ X V —+ QQ (iUi' -+ y?))
Poisson equation v2¢ — 47TGZ5(Z) \

6 function since disc is infinitely thin



Toomre stability

Linearised equations

« Background state plus perturbation: > = 2o + €21, ¢ = ¢po + EP1, V = Vo + EVH

» Substitute in and linearise system, as for Jeans instability:

0>
(%1 F YoV v+ V- (2ve) =0
0 >
M | V()'VVl—I—V1°VV():—C§v ! v¢1—29XV1
ot 2.0

V29, = ArG¥16(2)
* Centrifugal term cancels because gravity = centrifugal force in rotating frame

 Cannot set vo = 0, because this holds at x = y = 0, but not elsewhere; need to
keep because derivatives of vp are non-zero



Toomre stability

Fourier analysis |

o Try axisymmetric Fourier mode, modified in z direction: ¢1 = ¢4 ilkx - o) - |kz]
« Substitute into Poisson eqn: ¢, VZe'" <07l — 4r Gy, e et §(2)

e Solve by integrating both sides in z from —-{ to ¢, taking limit as { — O:

| q 5?2 .
b %5% . @e—l ldy = 47GY,

e ] _
O, lim <€kz> - <€kz> — 47 G,

¢—0 i dz 2=C dz —
—2¢q|k| = 4G,

2w,
¢a —
ki




Toomre stability

Fourier analysis Il

« Write out ©0 and vo near target radius ro using first-order Taylor expansion:
Q = Qo + x (d€2/dr)o, and inertial frame v, = rQ = ro [0 + x (d€2/dr)o], SO IN CO-
rotating frame vo = x ro (d€2/dr)o y

 Can now put Fourier modes into equations of mass and momentum
conservation: >4 = 2 elltx—ol) vy = v xellx —ol) vy, = vy, ellx = ol)



Exercise: obtain the linearised equations
of mass and momentum conservation




Toomre stability

Fourier analysis Il

« Write out ©0 and vo near target radius ro using first-order Taylor expansion:
Q = Qo + x (d€2/dr)o, and inertial frame v, = rQ = ro [0 + x (d€2/dr)o], SO IN CO-
rotating frame vo = x ro (d2/dr)o y

 Can now put Fourier modes into equations of mass and momentum
conservation: 31 = 25 elltx—ol) vy = vg xellx—ol) vy, = vy, ellx - ol)

e Result: vese | W2 = —1k20Vq 4
| o 2
X momentum _/vaajx — _chg - | Zk - | 2Sl()fUCL,y
240 k|

y momentum _iwva’y

— 120 + 7o (dQ2/dr)y| Voo



Toomre stability

Dispersion relation |

* This three linear equations in three unknowns; easiest to solve by rewriting Iin
matrix form;:

k(2G| — 2 /X)) iw 20 | [ X | [0
0 —2Q0 — ro(dQ/dr)y  iw Vaz | = | O
i — W ZkZ() 0 1 | Va,y . i 0 )

 Equation has a non-trivial solution only if determinant of matrix is 0 —

_ o -
= 2(24+ 20 ) 02| — 2nGNolk| + K22
(2 dr IR

« RHS is a quadratic in |k|, has minimum at k| = = GXo / cs2




Toomre stability

Dispersion relation li

« |nstability exists if w? < 0 for any k, so plug in k that gives smallest w?

x = epicyclic frequency: frequency with which

- - % N 2 . .
 Resultis o= [2(20 [ )ar| (7O 0T (1O g s

I () dr 1 Cq Csq
« Condition w? < 0 therefore reduces to

RCg
=) <1
(s Z()

» Interpretation: gas is stabilised by shear (x term) and pressure (cs) term,
destabilised by gravity (G2o term); if gravity wins, system is unstable

e Secondary interpretation: Q ~ 1 « free-fall time tx ~ orbital time Q-



Toomre instability

Implications and questions

* |[f Q< 1, disc is unstable to develop self-gravitating rings (which then tend to
break up into self-gravitating clumps)

* Observed galactic discs sit near Q = 1; no clear correlation of Q with star
formation, but may be due to observational error given small observed range

 Mechanism for forcing Q = 1 not entirely clear

150 Myr 300 Myr 450 Myr 600 Myr

Simulation of a Toomre-
unstable disc;
Goldbaum+ 2015




Vertical force balance

General considerations

* Toomre instability describes effect of self-gravity in plane of disc
* Also important to consider force balance in the vertical direction

* Neutral gas in Milky Way disc has scale height ~150 pc, similar for other disc
galaxies — this sets density at midplane, and thus is plausibly related to SFR

» Scale height likely set by balance between gravity and pressure, with
significant pressure contributions from thermal pressure, turbulent pressure,

magnetic pressure, and possibly cosmic ray pressure



Vertical force balance

Derivation |

o Start with momentum equation in tensor form:

D iwy= V- (pwvrpPh+ v (BB-21) 4
Y PV ) = PVV |47_‘_ 9 P8

Pressure plus advection Lorentz force Gravity

* Set up coordinate system with disc centred on z = 0 plane, take z component:

0 dP 1 1 d

9t (pU2> = -V (,OVUZ) 7~ | 47Tv ' (BBZ)

B? i
7T dz trg

 Consider an area A bounded by a curve S, lying at constant z; for any quantity
Q, define <Q) = (1/A) [a Q dA; integrate both sides over A to get

) o APy 1 1 d,
S = =5 [ Ve(ve) da= S v o [ V(BB dA— - (57 + (0.




Vertical force balance

Derivation Il

» Separate xy from z components in divergences:

% 1 d d(P)
| 1 d 1 d

; . .(BB.) dA - B? B’ 2

47TA/AVy (B5:) tras (B T gr g (BT e

* Apply divergence theorem to xy integrals:

O d , . d (P) 1 d 5 1 d
— {pv,) = | b
Ot \Pvz) dz <UZ> dz 4 dz< Z> ST dz
1 1
— — [ vypv-ndl- /BZB n d/¢
S

Unit vector orthogonal to S



Exercise: come up with an argument why, in steady
state, the line integral terms in the momentum
equation should have an average value of zero.



Vertical force balance

Derivation Il

* Line integral terms represent transport of z momentum across S by gas flows
and by magnetic forces — but if we pick a large enough portion of a galaxy

disc, these must vanish on average

* Thus in steady state, equation of vertical momentum balance reads:

d P + pv? A B2> ! <B—§>—<pgz>=0

dz \ 47

// \\

Support by: gas pressure turbulence magnetic pressure Confinement by: magnetic tension  gravity

e For special case of gravity due to an infinite thin slab of surface density 2

! <P+pv : BQ> ! <B—'§>—27TGE<,0>—O

dz 7T dz \ 4



Approaches to the problem

Top-down vs. bottom-up

 (Goal is to explain observed correlation between galaxy properties (mass
traced by CO, HCN, or HI, galaxy rotation curve, stars, etc.) and SFR

* Big questions to answer: (1) why is star formation so slow / inefficient? (2) why
does star formation correlate with molecular phase”?

 [wo main approaches:

* Top-down: attempt to model galactic disc as a whole, explain SFR based
on properties of the disc; properties of individual GMCs maybe added later

* Bottom-up: start from modelling formation of GMCs, try to understand SFR
of them; build-up galaxy-scale star formation relation as sum of GMCs



Hydro + gravity only models

The baseline

 Simplest case is isothermal gas, hydro +
gravity only; no cooling, no feedback

* |In this case, SFR correlated with Q; for
high enough Q, can get low SFR

e However, this is artificial, because In
absence of star formation, no mechanism
exists to keep gas isothermal

* |If gas can coal, initially high Q goes down
IN < 1 galactic orbit

Li+ 2005



Feedback!

e Most common solution to
this problem: add
feedback

\Y!

>,

pc

SN are dominant
feedback; in galaxy-scale

simulations, usually
implemented by adding
momentum directly to gas

Projected Density

Simulations with feedback
seem to produce
reasonable SFRs for Milky
Way-like galaxies

Goldbaum+ 2016



Feedback-regulated models

The basic idea

o Start from averaged, time-steady z momentum equation:

d B* d /| B?
— ( P+ pv: A —2 ) —27GY (p) =
dz < e 87 > dz < 47 > G p) =0

* Assume magnetic tension term is small, and that turbulent + (magnetic) Scate heiont
pressure term is set by balance between SF feedback and dissipation Velocity

dispersion

/

* Dissipation rate / volume ~ (energy / volume) / crossing time: Eg.. ~ E/(H/5)

* |njection rate / volume ~ (SFR / volume) (momentum / SFR) (velocity scale) ~
Ein ~ (X./H) (p/M.) 0

Momentum / mass due to SNe ~

D > / 3000 km/s/M, for isolated SNe

M,

2
* |mplied steady state: <P+pv§ D > ~ E~ Y, <

ST




Feedback-regulated models

Implications

 Solve momentum balance equation for SFR / area:

BQ
<P+pv§ | 3 >~27TGE<,0>H
(s

—1
. D 5
Die ~ 2 G

X

)3
~0.1M =2 Myr !
o P i (100 Mg p02>

* Quantitatively, this is in the right ballpark compared to observations

 Model does not automatically enforce Q ~ 1, but can additionally hypothesise
that scale height / volume density is set to the value required to satisfy this



Feedback-regulated models

Challenges and problems

* Predicted index of KS relation is 2 — too steep compared to observations,
even with strong assumptions about aco

 Enforcing Q =1 requires ts ~ 1/02 — p ~ 2, but with some algebra can show
this implies that e+ ~ Qo — & must vary with ¢; also not observed

* |n general no explanation for observed non-variation of ¢; if SF Is regulated
by SN, why don’t clouds that don’t contain SN collapse at free-fall?

* No explanation for phase-dependence: if SFR just set by balance between
ISM weight and SN momentum, why does gas phase matter at all?



Bottom-up models

Basic idea

o Step 1: figure out where in a galaxy there will be “GMCs” (i.e., gas that is
capable of forming stars)

o Step 2: figure out star formation rate in the GMCs

* Build galaxy-scale star formation law out of these two pieces



Where can the ISM form stars?
And how is this related to ISM phase?

* Basic idea: only H2> forms stars due to effects of shielding — Ho2 represents
phase of the ISM where gas is shielded from interstellar radiation field (ISRF)

* Heating vs. cooling balance in regions cooled by C+: Dust metalicity nommalised o MW
4  Dust optical depth
MW unshielded FUV heating—

4*
— /
rate, ~ 4 x 10-26 erg s-1 F FUV OXUV Zde Td —|— FCRC < CR ionisation rate normalised to MW
— CR heating rate normalised to MW,

ISFR strength —
— — ~ 2 x 10-27 ~1
normalised to MW A k CT /T5C kB TC"‘ nH\ 8 19 s
Collisional de-excitation rate, = 8 x 10-10cms3 s-1 \ H number density
C abundance, = 1.1 x 10-4 for MW Temperature of cooling level, = 91 K
1o+

* Solve for equality: 7 =

In (0.36xuve " + 0.018¢'/Z") — In (ng /100 cm—3)

UV heating term CR heating term



Why phase matters
CR vs. FUV heating

* Result depends on whether UV or CR heating term
dominates; changeover occurs at 7qg ~ 3

 [emperatures at 100 cm-3;
91 K - 23 K

T =~ ~
1.0+ 79 —Inxpoy 1.0 — 0.251n(¢'/Z,)

(CR)

 Factor of ~10 temperature difference — factor of 30
difference in Jeans mass — big difference in SFR

e Only form H2 at high z4: this is why stars form in Ho,
and why metallicity matters

Glover & Clark 2011



The SFR in GMCs

Why €4 Is so small

» Consider turbulent medium with LWS relation ¢ = cs (£ / 4s)1/2

« Maximum mass that can be held up by thermal pressure: MV, ~ pAJ3;
corresponding potential energy 7 ~ -G M2 / Ay~ —(cs® / G3p)1/2

« Compare to turbulent energy, evaluated using LWS: 9 ~ Myc? ~ —(Ay/ As)W
« Key insight: in typical GMC, at mean density, 1, > 1s, SO most gas is unbound

« (Gas is bound only if density » mean (— Ay <« mean)



Calculation of the critical density

 Mean-density Jeans length is A0 = (zcs? / G{p»)"/2, and at relative log density
s=1In(p/ {p)), Jeans length is i 0 = Ay0 €572

e Thus gas is bound for s > scit = 2 In (Ay0/ As)

e For cloud of mass M, radius R, sound speed Cs, A0 = 27Cs (R3 / 3GM)1/2, and
As = 2R / 4?; combine to get Ssciit = In (avir 42)

e Estimate g ~ fraction of mass above Scrit:

EfF ~ / pr(s)ds =
Scrit

1+erf(

1 _2501‘1‘5 =+ 0-3 _
2 -

23/2¢

e For avir ~ 2, 4 ~ 30, resulting e~ 0.01, as required



Bottom-up models

Challenges and problems

 Bottom-up models do not address vertical force balance or Toomre Q); these
need to be added (but can be, as paper we are reading shows)

* Turbulence alone only keeps &+t low as long as PDF is lognormal

 However, simulations show that, in a self-gravitating medium, without
feedback a power law tail develops that causes € to rise over time

* Therefore, need local feedback process to keep low efficiency; exact nature
of this local feedback (e.g., protostellac outflows) still not entirely clear



