Class 11: Galactic-scale star formation rates: theory ASTR 4008 / 8008, Semester 2, 2020

Mark Krumholz

Outline

- General considerations
 - Toomre stability
 - Vertical force balance
- The top-down approach
 - Hydrodynamics plus gravity alone
 - Feedback-regulated models
 - Challenges for the top-down approach
- The bottom-up approach \bullet
 - Thermal feedback and self-gravitating gas
 - Star formation rate in self-gravitating gas
 - Challenges for the bottom-up approach

Ioomre stability Background

- galactic disc stable against self-gravity?
- Original calculation due to Alar Toomre (1964) for case of a thin stellar disc
- Basic setup: rotating, axisymmetric, thin disc
 - Most general versions of the calculation include stars, finite gas cooling time, finite thickness, non-axisymmetric modes
 - We will do the zeroth-order version: gas only (no stars), isothermal (no cooling), infinitely thin, axisymmetric modes only
 - Lots of papers extending to more general cases

An important consideration for galactic discs: under what conditions is a

loomre stability Background state

- Consider an infinitely thin, axisymmetric gas disc of surface density $\Sigma(r)$ occupying the plane z = 0; it rotates with angular velocity $\Omega(r) = \Omega \hat{z}$; gas is isothermal with sound speed C_s, and starts at rest (apart from rotation)
- Work in reference frame co-rotating with disc at radius r₀; set up Cartesian coordinate system so x = radially outward, y = direction aligned with rotation, origin = centre of local box

loomre stability Basic equations

Poisson equation

Mass conservation $\frac{\partial \Sigma}{\partial t} + \nabla \cdot (\Sigma \mathbf{v}) = 0$ Pressure

In the coordinate system we have just describe, equations of motion are:

Toomre stability Linearised equations

- Substitute in and linearise system, as for Jeans instability: $\frac{\partial \Sigma_1}{\partial t} + \Sigma_0 \nabla \cdot \mathbf{v_1} + \nabla \cdot (\Sigma_1 \mathbf{v_0}) = 0$
- keep because derivatives of \mathbf{v}_0 are non-zero

Background state plus perturbation: $\Sigma = \Sigma_0 + \varepsilon \Sigma_1$, $\phi = \phi_0 + \varepsilon \phi_1$, $\mathbf{v} = \mathbf{v}_0 + \varepsilon \mathbf{v}_1$

 $\frac{\partial \mathbf{v}_1}{\partial t} + \mathbf{v}_0 \cdot \nabla \mathbf{v}_1 + \mathbf{v}_1 \cdot \nabla \mathbf{v}_0 = -c_s^2 \frac{\nabla \Sigma_1}{\Sigma_0} - \nabla \phi_1 - 2\mathbf{\Omega} \times \mathbf{v}_1$ $\nabla^2 \phi_1 = 4\pi G \Sigma_1 \delta(z)$

Centrifugal term cancels because gravity = centrifugal force in rotating frame

• Cannot set $\mathbf{v}_0 = 0$, because this holds at x = y = 0, but not elsewhere; need to

Toomre stability Fourier analysis I

- Substitute into Poisson eqn: $\phi_a \nabla^2 e^{i(kx-\omega t)-|kz|} = 4\pi G \Sigma_a e^{i(kx-\omega t)} \delta(z)$
- Solve by integrating both sides in z from $-\zeta$ to ζ , taking limit as $\zeta \rightarrow 0$:

$$\phi_a \lim_{\zeta \to 0} \int_{-\zeta}^{\zeta} \frac{\partial^2}{\partial z^2} e^{-|kz|} dz = 4\pi G \Sigma_a$$

$$\phi_a \lim_{\zeta \to 0} \left[\left(\frac{d}{dz} e^{-|kz|} \right)_{z=\zeta} - \left(\frac{d}{dz} e^{-|kz|} \right)_{z=-\zeta} \right] = 4\pi G \Sigma_a$$

$$-2\phi_a |k| = 4\pi G \Sigma_a$$

$$\phi_a = -\frac{2\pi G \Sigma_a}{|k|}$$

• Try axisymmetric Fourier mode, modified in z direction: $\phi_1 = \phi_a e^{i(kx - \omega t) - |kz|}$

Toomre stability Fourier analysis II

- rotating frame $\mathbf{v}_0 \approx x r_0 (d\Omega/dr)_0 \hat{y}$
- Can now put Fourier modes into equations of mass and momentum conservation: $\Sigma_1 = \Sigma_a e^{i(kx - \omega t)}$, $V_{1,x} = V_{a,x} e^{i(kx - \omega t)}$, $V_{1,y} = V_{a,y} e^{i(kx - \omega t)}$

• Write out Ω_0 and \mathbf{v}_0 near target radius r_0 using first-order Taylor expansion: $\Omega \approx \Omega_0 + x (d\Omega/dr)_0$, and inertial frame $v_\phi = r\Omega \approx r_0 [\Omega_0 + x (d\Omega/dr)_0]$, so in co-

Exercise: obtain the linearised equations of mass and momentum conservation

Ioomre stability Fourier analysis II

- rotating frame $\mathbf{v}_0 \approx x r_0 (d\Omega/dr)_0 \hat{y}$
- Can now put Fourier modes into equations of mass and momentum conservation: $\Sigma_1 = \Sigma_a e^{i(kx - \omega t)}$, $V_{1,x} = V_{a,x} e^{i(kx - \omega t)}$, $V_{1,y} = V_{a,y} e^{i(kx - \omega t)}$
- **Result:**

Mass $-i\omega\Sigma_a = -ik\Sigma_0 v_{a,x}$

• Write out Ω_0 and \mathbf{v}_0 near target radius r_0 using first-order Taylor expansion: $\Omega \approx \Omega_0 + x (d\Omega/dr)_0$, and inertial frame $v_{\phi} = r\Omega \approx r_0 [\Omega_0 + x (d\Omega/dr)_0]$, so in co-

x momentum $-i\omega v_{a,x} = -ikc_s^2 \frac{\Sigma_a}{\Sigma_0} + ik \frac{2\pi G \Sigma_a}{|k|} + 2\Omega_0 v_{a,y}$ y momentum $-i\omega v_{a,y} = -\left[2\Omega_0 + r_0 \left(d\Omega/dr\right)_0\right] v_{a,x}$

Toomre stability Dispersion relation I

matrix form:

$$\begin{bmatrix} ik(2\pi G/|k| - c_s^2/\Sigma_0) & i\omega & 2\Omega_0 \\ 0 & -2\Omega_0 - r_0(d\Omega/dr)_0 & i\omega \\ -i\omega & ik\Sigma_0 & 0 \end{bmatrix} \begin{bmatrix} \Sigma_0 \\ v_{a,x} \\ v_{a,y} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- Equation has a non-trivial solution only if determinant of matrix is $0 \rightarrow 0$
- RHS is a quadratic in |k|, has minimum at $|k| = \pi G \Sigma_0 / c_s^2$

• This three linear equations in three unknowns; easiest to solve by rewriting in

 $\omega^2 = \left| 2 \left(2 + \frac{r}{\Omega} \frac{d\Omega}{dr} \right) \Omega^2 \right|_{\Omega} - 2\pi G \Sigma_0 |k| + k^2 c_s^2 \right|_{\Omega}$

Ioomre stability Dispersion relation II

- Instability exists if $\omega^2 < 0$ for any k, so plug in k that gives smallest ω^2
- Result is $\omega^2 = \left| 2 \left(2 + \frac{r}{\Omega} \frac{d\Omega}{dr} \right) \Omega^2 \right|_0 \left(\frac{\pi G}{c} \right)$
- Condition $\omega^2 < 0$ therefore reduces to

- Interpretation: gas is stabilised by shear (κ term) and pressure (c_s) term, destabilised by gravity ($G\Sigma_0$ term); if gravity wins, system is unstable
- Secondary interpretation: $Q \sim 1 \leftrightarrow$ free-fall time $t_{\rm ff} \sim$ orbital time Ω^{-1}

$$\left(\frac{\Sigma_0}{c_s}\right)^2 = \kappa^2 - \left(\frac{\pi G \Sigma_0}{c_s}\right)^2$$

 κ = epicyclic frequency: frequency with which a star perturbed off a circular orbit oscillates around that orbit

$\frac{\kappa c_s}{\pi G \Sigma_0} \equiv Q < 1$

Ioomre instability Implications and questions

- break up into self-gravitating clumps)
- Mechanism for forcing Q = 1 not entirely clear

• If Q < 1, disc is unstable to develop self-gravitating rings (which then tend to

Observed galactic discs sit near Q = 1; no clear correlation of Q with star formation, but may be due to observational error given small observed range

Simulation of a Toomreunstable disc; Goldbaum+ 2015

Vertical force balance General considerations

- Toomre instability describes effect of self-gravity in plane of disc
- Also important to consider force balance in the vertical direction
- Neutral gas in Milky Way disc has scale height ~150 pc, similar for other disc galaxies — this sets density at midplane, and thus is plausibly related to SFR
- Scale height likely set by balance between gravity and pressure, with significant pressure contributions from thermal pressure, turbulent pressure, magnetic pressure, and possibly cosmic ray pressure

Vertical force balance **Derivation**

• Start with momentum equation in tensor form: $\frac{\partial}{\partial t} \left(\rho \mathbf{v} \right) = -\nabla \cdot \left(\rho \mathbf{v} \mathbf{v} + P \right)$

Pressure plus advect

$$\frac{\partial}{\partial t} \left(\rho v_z\right) = -\nabla \cdot \left(\rho \mathbf{v} v_z\right) - \frac{dP}{dz} + \frac{1}{4\pi} \nabla \cdot \left(\mathbf{B}B_z\right) - \frac{1}{8\pi} \frac{d}{dz} B^2 + \rho g_z$$

Q, define $\langle Q \rangle = (1/A) \int_A Q \, dA$; integrate both sides over A to get

$$\frac{\partial}{\partial t}\left\langle \rho v_{z}\right\rangle = -\frac{1}{A}\int_{A}\nabla\cdot\left(\rho\mathbf{v}v_{z}\right)\,dA - \frac{d\left\langle P\right\rangle}{dz} + \frac{1}{4\pi A}\int_{A}\nabla\cdot\left(\mathbf{B}B_{z}\right)\,dA - \frac{1}{8\pi}\frac{d}{dz}\left\langle B^{2}\right\rangle + \left\langle\rho g_{z}\right\rangle$$

$$(\mathbf{PI}) + \frac{1}{4\pi} \nabla \cdot \left(\mathbf{BB} - \frac{B^2}{2} \mathbf{I} \right) + \rho \mathbf{g}$$

tion Lorentz force Gravity

• Set up coordinate system with disc centred on z = 0 plane, take z component:

Consider an area A bounded by a curve S, lying at constant z; for any quantity

Vertical force balance **Derivation II**

- Separate xy from z components in divergences: $\frac{\partial}{\partial t} \left\langle \rho v_z \right\rangle = -\frac{1}{A} \int_A \nabla_{xy} \cdot \left(\rho \mathbf{v} v_z \right) \, dz$ $+\frac{1}{4\pi A}\int_{A}\nabla_{xy}\cdot(\mathbf{B}B_z)$
- Apply divergence theorem to xy integrals:

$$\frac{\partial}{\partial t} \left\langle \rho v_z \right\rangle = -\frac{d}{dz} \left\langle v_z^2 \right\rangle - \frac{d \left\langle P \right\rangle}{dz} + \frac{1}{4\pi} \frac{d}{dz} \left\langle B_z^2 \right\rangle - \frac{1}{8\pi} \frac{d}{dz} \left\langle B^2 \right\rangle + \left\langle \rho g_z \right\rangle \\ -\frac{1}{A} \int_S v_z \rho \mathbf{v} \cdot \hat{\mathbf{n}} \, d\ell + \frac{1}{4\pi A} \int_S B_z \mathbf{B} \cdot \hat{\mathbf{n}} \, d\ell$$

Unit vector orthogonal to S

$$dA - \frac{d}{dz} \left\langle v_z^2 \right\rangle - \frac{d \left\langle P \right\rangle}{dz}$$

$$dA + \frac{1}{4\pi} \frac{d}{dz} \left\langle B_z^2 \right\rangle - \frac{1}{8\pi} \frac{d}{dz} \left\langle B^2 \right\rangle + \left\langle \rho g_z \right\rangle$$

Exercise: come up with an argument why, in steady state, the line integral terms in the momentum equation should have an average value of zero.

Vertical force balance Derivation III

- Line integral terms represent transport of z momentum across S by gas flows and by magnetic forces — but if we pick a large enough portion of a galaxy disc, these must vanish on average
- Thus in steady state, equation of vertical momentum balance reads:

Approaches to the problem Top-down vs. bottom-up

- Goal is to explain observed correlation between galaxy properties (mass traced by CO, HCN, or HI, galaxy rotation curve, stars, etc.) and SFR
- Big questions to answer: (1) why is star formation so slow / inefficient? (2) why does star formation correlate with molecular phase?
- Two main approaches:
 - Top-down: attempt to model galactic disc as a whole, explain SFR based on properties of the disc; properties of individual GMCs maybe added later
 - Bottom-up: start from modelling formation of GMCs, try to understand SFR of them; build-up galaxy-scale star formation relation as sum of GMCs

Hydro + gravity only models The baseline

- Simplest case is isothermal gas, hydro + gravity only; no cooling, no feedback
- In this case, SFR correlated with Q; for high enough Q, can get low SFR
- However, this is artificial, because in absence of star formation, no mechanism exists to keep gas isothermal
- If gas can cool, initially high Q goes down in < 1 galactic orbit

Feedback!

- Most common solution to this problem: add feedback
- SN are dominant feedback; in galaxy-scale simulations, usually implemented by adding momentum directly to gas
- Simulations with feedback seem to produce reasonable SFRs for Milky Way-like galaxies

Goldbaum+ 2016

Feedback-regulated models The basic idea

- Start from averaged, time-steady z momentum equation:
- Assume magnetic tension term is small, and that turbulent + (magnetic) pressure term is set by balance between SF feedback and dissipation
- $E_{\rm in} \sim (\Sigma_*/H) \langle p/M_* \rangle \sigma$
- Implied steady state: $\left\langle P + \rho v_z^2 + \frac{B^2}{8\pi} \right\rangle \sim E \sim \dot{\Sigma}_* \left\langle \frac{p}{M_*} \right\rangle$

 $\frac{d}{dz}\left\langle P + \rho v_z^2 + \frac{B^2}{8\pi} \right\rangle - \frac{d}{dz}\left\langle \frac{B_z^2}{4\pi} \right\rangle - 2\pi G\Sigma \left\langle \rho \right\rangle = 0$

Scale height Velocity

Dissipation rate / volume ~ (energy / volume) / crossing time: $\dot{E}_{diss} \sim E/(\dot{H}/\dot{\sigma})$

Injection rate / volume ~ (SFR / volume) (momentum / SFR) (velocity scale) ~

Momentum / mass due to SNe ~ 3000 km/s/M $_{\odot}$ for isolated SNe

Feedback-regulated models Implications

- Solve momentum balance equation for SFR / area: $\left\langle P + \rho v_z^2 + \frac{B^2}{8\pi} \right\rangle \sim 2\pi G \Sigma \langle \rho \rangle H$ $\dot{\Sigma}_* \sim 2\pi \left\langle \frac{p}{M_{\odot}} \right\rangle^{-1} G\Sigma^2$ $\sim 0.1 M_{\odot} \text{ pc}^{-2} \text{ Myr}^{-1} \left(\frac{\Sigma}{100 M_{\odot} \text{ pc}^{-2}} \right)$
- Quantitatively, this is in the right ballpark compared to observations

Model does not automatically enforce $Q \sim 1$, but can additionally hypothesise that scale height / volume density is set to the value required to satisfy this

Feedback-regulated models **Challenges and problems**

- even with strong assumptions about α_{CO}
- this implies that $\varepsilon_{\rm ff} \sim Q_{\sigma} \rightarrow \varepsilon_{\rm ff}$ must vary with σ ; also not observed
- by SN, why don't clouds that don't contain SN collapse at free-fall?
- ISM weight and SN momentum, why does gas phase matter at all?

Predicted index of KS relation is 2 — too steep compared to observations,

• Enforcing Q = 1 requires $t_{\rm ff} \sim 1/\Omega \rightarrow \rho \sim \Omega^2$, but with some algebra can show

• In general no explanation for observed non-variation of $\varepsilon_{\rm ff}$; if SF is regulated

No explanation for phase-dependence: if SFR just set by balance between

Bottom-up models **Basic idea**

- capable of forming stars)
- Step 2: figure out star formation rate in the GMCs
- Build galaxy-scale star formation law out of these two pieces

• Step 1: figure out where in a galaxy there will be "GMCs" (i.e., gas that is

Where can the ISM form stars? And how is this related to ISM phase?

Basic idea: only H_2 forms stars due to effects of shielding – H_2 represents phase of the ISM where gas is shielded from interstellar radiation field (ISRF)

Why phase matters **CR vs. FUV heating**

- Result depends on whether UV or CR heating term dominates; changeover occurs at $\tau_d \sim 3$
- Temperatures at 100 cm⁻³: $T \approx \frac{91 \text{ K}}{1.0 + \tau_d - \ln \chi_{\text{FUV}}} \text{ (UV) } \qquad T \approx \frac{23 \text{ K}}{1.0 - 0.25 \ln(\zeta'/Z'_d)} \text{ (CR)}$
- Factor of ~10 temperature difference \rightarrow factor of 30 difference in Jeans mass — big difference in SFR
- Only form H₂ at high τ_d : this is why stars form in H₂, and why metallicity matters

Glover & Clark 2011

The SFR in GMCs Why $\varepsilon_{\rm ff}$ is so small

- Consider turbulent medium with LWS relation $\sigma = c_s (\ell / \lambda_s)^{1/2}$
- Maximum mass that can be held up by thermal pressure: $M_J \sim \rho \lambda J^3$; corresponding potential energy $\mathcal{W} \sim -G M J^2 / \lambda J \sim -(c_s^5 / G^3 \rho)^{1/2}$
- Compare to turbulent energy, evaluated using LWS: $\mathcal{T} \sim M_J \sigma^2 \sim -(\lambda_J / \lambda_s) \mathcal{W}$
- Key insight: in typical GMC, at mean density, $\lambda_J \gg \lambda_s$, so most gas is unbound
- Gas is bound only if density \gg mean ($\rightarrow \lambda_J \ll$ mean)

Calculation of the critical density

- Mean-density Jeans length is $\lambda_{J,0} = (\pi c_s^2 / G \langle \rho \rangle)^{1/2}$, and at relative log density $s = \ln (\rho / \langle \rho \rangle)$, Jeans length is $\lambda_{J,0} = \lambda_{J,0} e^{-s/2}$
- Thus gas is bound for $s > s_{crit} \approx 2 \ln (\lambda_{J,0} / \lambda_s)$
- For cloud of mass *M*, radius *R*, sound speed c_s , $\lambda_{J,0} = 2\pi c_s (R^3 / 3GM)^{1/2}$, and $\lambda_s = 2R / M^2$; combine to get $s_{crit} \approx \ln (\alpha_{vir} M^2)$
- Estimate $\varepsilon_{\rm ff} \sim \text{fraction of mass above } s_{\rm crit}$: $\epsilon_{\rm ff} \sim \int_{s_{\rm crit}}^{\infty} p_M(s) \, ds = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{-2s_{\rm crit} + \sigma_s^2}{2^{3/2} \sigma_s} \right) \right]$
- For $\alpha_{vir} \sim 2$, $\mathcal{M} \sim 30$, resulting $\varepsilon_{ff} \sim 0.01$, as required

Bottom-up models Challenges and problems

- need to be added (but can be, as paper we are reading shows)
- Turbulence alone only keeps $\varepsilon_{\rm ff}$ low as long as PDF is lognormal
 - However, simulations show that, in a self-gravitating medium, without feedback a power law tail develops that causes $\varepsilon_{\rm ff}$ to rise over time
 - Therefore, need local feedback process to keep low efficiency; exact nature of this local feedback (e.g., protostellac outflows) still not entirely clear

Bottom-up models do not address vertical force balance or Toomre Q; these