
ASTR 4008/8008, Problem set 4 Due: 22 October 2020

1. Estimating α from observations. [30 points]
Download the compilation of measurements of accreting stars and discs from the course
web page. (These data are taken from Rafikov, 2017, ApJ, 837). This compilation
contains stellar masses, luminosities, and accretion rates, along with the masses of the
circumstellar discs. It does not contain disc radii, so we will assume that all discs have
radii of 100 AU, typical of protostellar discs.

(a) Using these data, estimate the range of kinematic viscosities ν in the observed discs.
Plot the stellar accretion rate Ṁ∗ versus the disc mass Md, and show curves corre-
sponding to a reasonable range of ν values in this plane.

(b) In order to turn these estimates of viscosity into estimates of α, we require knowledge
of the disc temperature. Assume that the temperature at the outer edge of the disc
is set by the balance between heating by the central star and radiative cooling of
spherical, blackbody dust grains, and that the disc is optically thin at its outer edge.
Under these assumptions, derive an estimate for the temperature T at the outer edge
of the disc; plot a histogram of T values.

(c) Estimate α for these discs, and plot a histogram of logα values. What are typical
inferred α values?

2. Steady gravity-dominated discs. [10 points]
In this problem we will find a steady-state solution for steady discs that are marginally
stable against self-gravity, Q = 1; such a configuration may be a reasonable description
of discs around more massive stars during the main accretion phase. We consider an
isothermal Keplerian disc with sound speed cs orbiting a star of mass M∗.

(a) Assuming that the disc maintains Q = 1 everywhere, compute the surface density
as a function of radius.

(b) Suppose that the disc has a constant radial inflow rate Ṁ . Find the corresponding
kinematic viscosity ν and dimensionless viscosity parameter α. (Hint: you will at
some point encounter a constant of integration. Argue that you can drop it because
it must become unimportant at large radii.)

3. Entropy evolution of protostars. [25 points]
One useful lens through which to consider low-mass protostellar evolution is by tracking
the specific entropy of the stellar material – particularly because low-mass protostars
are almost exactly n = 3/2 polytropes, which means they are isentropic. Recall that a
polytrope is defined as a star that obeys a pressure-density relation P = Kρ1+1/n for
some n, where K is called the polytropic constant.

(a) Derive the relationship betweenK and the specific entropy s of the gas in a polytropic
star, and show that for n = 3/2, s is independent of ρ or T . You may treat the
stellar material as an ideal gas, and, as usual for entropies, you may leave an arbitrary
additive constant in your answer.

(b) Consider a protostar of mass M and radius R, and assume the structure is well-
described by an n = 3/2 polytrope. Derive an expression for the specific entropy in
terms of M and R.
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(c) As the star contracts toward the main sequence along the Hayashi track, does the
specific entropy of the star increase or decrease? Justify your answer.

(d) How does the specific entropy of a typical protostar of mass M = 0.5 M�, radius
R = R� compare to the specific entropy of gas in a typical protostellar core (say
n = 106 cm−3, T = 10 K)? Is the star or the core a higher entropy state? For the
purposes of this problem, you may ignore the difference between the chemical state
of the core (molecular) and the star (fully ionised) – for simplicity just treat the core
as fully ionised too, since it makes no difference to the qualitative result.

(e) You should find that the progression from core to protostar to main sequence star is
one of decreasing specific entropy. However, the second law of thermodynamics says
that total (rather than specific entropy) can never decrease, so if the gas in the star
lost entropy, it must have gone somewhere else. Where did the entropy go?
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