
ASTR 4008/8008, Problem set 2 Due: 3 September 2020

1. Magnetic fields of clouds and stars. [10 points]
Consider a 1 M� protostellar core that collapses to make a star like the Sun. A typical
observed density for such an object is 105 H2 molecules cm−3.

(a) Suppose that such an object has an initial uniform magnetic field, and that it is
governed by ideal MHD during its collapse. Make an order of magnitude estimate
of how much larger the magnetic field of the resulting star is compared to the field
of the initial core.

(b) Consult the literature and look up typical observed magnetic field strengths for star-
forming cores at a density of ∼ 105 cm−3, and for the surface magnetic fields of T
Tauri stars. Two suggested papers to consult are Johns-Krull (2007, ApJ, 664, 975)
and Crutcher (2012, ARA&A, 50, 29), but feel free to use others. Are the observed
magnetic field strengths of cores and T Tauri stars consistent with the idea that the
collapse is governed by ideal MHD? If not, by what factor must the magnetic field
be increased or decreased?

2. The singular isothermal sphere. [30 points]
The singular isothermal sphere (SIS) is a simple model for the collapse of an initially-
hydrostatic core to form a star. We consider a spherically-symmetric isothermal fluid
with sound speed cs, and work with the equations of mass and momentum conservation
in terms of mass shells as derived in class:
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where M is the mass interior to radius r. Our goal is to find a solution that starts out as
hydrostatic, but then develops a collapsing region that expands as time goes on.

(a) The initial condition for the SIS is a configuration in which the gas is at rest (v = 0)
and in force balance (∂v/∂t = 0), and the density varies with radius as ρ ∝ r−2.
Show that such a configuration is a valid solution to the equation of momentum
conservation, and derive the values of ρ and M as a function of r for this solution.

(b) We will now look for a non-static similarity solution, which approaches the hydro-
static solution at time t→ 0. As a first step, we will make a similarity transformation
by defining x = r/cst, ρ = α(x)/4πGt2, M = (c3st/G)m(x), and v = csu(x), where
α(x), m(x), and u(x) are the dimensionless density, mass, and velocity. As a first
step in this direction, use the first two equations to prove that m = x2α(x−u). Hint:
for quantities q, it is helpful to rewrite ∂q/∂t = (∂x/∂t)r(∂q/∂x)r = (−x/t)(∂q/∂x)r,
and ∂q/∂r = (∂x/∂r)t(∂q/∂x)t = (x/r)(∂q/∂x)r, where the subscript r and t indi-
cate that the partial derivative is to be evaluated at constant r or t.

(c) Next use the second and third equations, together with your result from the previous
part, to show that the non-dimensional equations describing the system can be
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(d) We now want to find a solution that approaches the hydrostatic one at x � 1
(corresponding to large radius or early time), but that approaches a collapse solution
as x→ 0. Since a finite amount of mass will have collapsed to the origin at any time
> 0, such a solution must have m → m0 as x → 0, where m0 is some constant. To
find the remainder of the solution, suppose that α and u have the limiting behaviours
α → α0x

−p and u → −u0x−q as x → 0, where the powers p and q (both > 0) and
the coefficients α0 and u0 (also both > 0) are to be determined by plugging into the
equations. Solve for p, q, α0, and u0 in terms of m0.

(e) The final step is to determine the value of m0 numerically. We can find this by
numerically integrating the equations given in part (c) inward from some starting
x� 1, using u = 0 the value of α given by the hydrostatic solution found in part (a).
This numerical integration should show that m approaches a constant value m0 as
x→ 0. Find m0. (Note: depending on your numerical integration scheme, you may
need to start u0 off with a small but non-zero negative value to get the numerical
integration to behave.)

(f) For this solution, what is the mass accretion rate onto the central object as a function
of time. Express your answer in physical rather than dimensionless units.

3. Photoionisation feedback in centrally-concentrated clouds. [20 points]
In class we derived the solution describing the expansion of a photoionised region expand-
ing into a uniform density background medium. In this problem we will generalise that
solution to the case of a photoionised region that begins expanding from the centre of a
cloud where the density as a function of radius is

ρ = ρe

(
r

re

)−k

,

where ρe and re are the density and radius at the edge of the core, and k is a constant.
The gas is initially at rest, until it is swept up by the expanding bubble, which is driven
by a source with ionising luminosity S.

(a) Argue that, even though the cloud outside the expanding bubble is centrally con-
centrated, the gas inside the photoionised region should quickly reach near-uniform
density. (Hint: think about pressure inside the ionised bubble.)

(b) Use momentum conservation to derive an equation of motion for the swept-up shell;
this should be analogous to equation 7.29 of the textbook.

(c) Find a late-time similarity solution to the equation you derived in the previous
part, applicable once the shell has expanded to a radius much larger than the initial
Strömgren radius.

(d) You should find that there is a critical value of k that separates solutions where the
shell decelerates from those where it accelerates. Only the decelerating solutions
are physically valid, since the accelerating solutions violate the assumption that the
ionised bubble sweeps up a dense shell. Find the critical value of k, and give a
physical interpretation for why this is the value that separates accelerating from
decelerating solutions.
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