- 1. It is sometimes convenient to write down a simple analytic expression for the rate of cooling in the neutral ISM.
 - (a) We will start with C⁺ cooling. Make the following assumptions: (1) only collisions between C⁺ and H are significant; (2) the collisional *de*-excitation rate coefficient for such collisions, $k_{C^+,de}$ is a constant that is independent of temperature; (3) the density is much less than the critical density of C⁺; (4) all carbon is C⁺. Under these assumptions, give a simple analytic formula for the C⁺ cooling rate in gas with H number density $n_{\rm H}$ and C/H ratio $\delta_{\rm C}$.
 - (b) Plot the cooling function you have just derived as a function of temperature. Use $\delta_{\rm C} = 10^{-4}$, and you can get a numerical value for $k_{\rm C^+,de}$ from the Leiden Atomic and Molecular Database.
 - (c) Produce a similar analytic expression and plot for cooling by O, but for O assume that the de-excitation rate coefficients for the two upper states scale with temperature as $k_{\text{O,de},0}\sqrt{T/T_0}$.
- 2. One additional feature we can add to our model of vertical hydrostatic equilibrium is a layer of dense material near the midplane, which might for example represent dense molecular clouds. Suppose that we have a layer of atomic hydrogen with total surface density Σ_g and constant velocity dispersion σ_g , and also an infinitesimally thin layer of material with surface density $\Sigma_{\rm mp}$ located at the midplane.
 - (a) Write down the equation of hydrostatic balance including the midplane material.
 - (b) Make the same transformation from ρ_q to s_q as your variable that we did in class.
 - (c) Solve in the limits $\Sigma_{\rm mp} \ll \Sigma_g$ and $\Sigma_{\rm mp} \gg g$.
 - (d) Show that, for $z \to \infty$, the solution is the same in both limits, as long as $\Sigma_{\rm g} + \Sigma_{\rm mp}$ remains constant.