- 1. We have computed the wavelength-dependence of the absorption and scattering coefficients for a single grain of fixed size, but in reality we know that there is a distribution of grain sizes. It is therefore useful to derive the wavelength-dependence for such a mixture.
 - (a) Consider a population of spherical grains, where *a* is the grain radius. Write down an approximate expression for the scaling of the absorption and scattering coefficients $C_{\rm abs}$ and $C_{\rm sca}$ as a function of *a* and wavelength of light λ , which is valid in both the long wavelength ($\lambda \gg 2\pi a$) and short wavelength ($\lambda \ll 2\pi a$) limits. You can leave the overall normalisation unspecified we just want to know the scalings and you can just paste together approximations valid in the two limits; no need to do something fancy to handle the regime $\lambda \sim 2\pi a$.
 - (b) Now suppose the grain population has a distribution of grain radii $dn/da \propto a^{-p}$ over a range of radii from a_0 to a_1 for some index p > 0. How does the scattering and absorption opacity of the grain population vary with wavelength λ ? Again, we're just interested in the scaling with λ , not the overall normalisation.
 - (c) For sufficiently large p, show that the opacities do not depend on a_0 or a_1 for wavelengths $2\pi a_0 \ll \lambda \ll 2\pi a_1$. In this limit, what is the scaling of the opacities with wavelength?
- 2. Consider dust grains being heated by a nearby star, which has surface temperature T_* and radius R_* . Approximate the stellar spectrum as a black body.
 - (a) First consider grains of radius a so small that $2\pi a \ll hc/kT_*$. For such grains, estimate their equilibrium temperature.
 - (b) Repeat the calculation for larger grains with $2\pi a \gg hc/kT_*$, but which still have $2\pi a \ll hc/kT_{\rm gr}$, where $T_{\rm gr}$ is the grain temperature.
 - (c) How do the answers to the previous two parts differ, and why? Give a physical interpretation.