
ASTR 4017/8007: Diffuse Matter in the Universe

Class 8 Notes: Ionisation and Recombination Processes

In this class we will discuss the processes that ionise interstellar and intergalactic gas, and
the processes that allow it to recombine. In the next class we will use this information
to calculate the mean ionisation state of gas. Our goal at the end of this to be able to
understand the ionisation state of the various phases of the ISM.

I. Ionisation Processes

We will consider an atom of species X, and discuss the ways it can change its ionisation
state to X+. Broadly speaking, we can break ionisation processes into two categories:
those that involve interaction with a photon, and those that involve interaction with a
fermion, usually but not always an electron. We refer to the former as photoionisation
and to the latter as collisional ionisation.

A. Photoionisation

1. Primary photoionisation

Photoionisation consists of an interaction between species X and a photon:

X + hν → X+ + e−. (1)

The rate at which photoionisations happen depends on a cross-section, which
is a function of the frequency of the radiation and the properties of the atom.
The simplest case, ionisation of a single-electron atom in the 1s1 electronic
state (the ground state), is solvable analytically. This is useful, since this
case includes the most important interstellar element, hydrogen. For a single-
electron atom, the ionisation rate for photons of frequency ν > Z2IH/h is

σpi(ν) = σ0

(
Z2IH

hν

)4
e4−(4 tan−1 x)/x

1− e−2π/x
, (2)

where

x =

√
hν

Z2IH

− 1 (3)

σ0 =
29π

3e4
Z−2απa2

0 = 6.304× 10−18Z−2 cm−2 (4)

Z is the charge of the nucleus, IH = 13.6 eV is the ionisation potential of
hydrogen, and α = e2/~c is the fine structure constant. The quantity σ0

is known as the ionisation potential at threshold. Note that the ionisation
potential varies with charge as Z2, not as Z. This is because the potential
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increases linearly with Z, but the expectation value of the separation for a
given quantum state of the electron also scales inversely with Z, so the net
scaling of the ionisation potential with charge is as Z2.

A variety of simple analytic approximations to this formula are given in
Draine. The important thing to note is that this function reaches a max-
imum at hν = Z2IH, and declines at higher frequencies as roughly ν−3 to
ν−3.5.

In principle we could also calculate ionisation cross section for atoms in other
electronic states n`; the threshold energy and the cross section are obviously
different if the electron is in an excited state rather than the ground state. In
practice, however, this is generally unimportant. This is because the Einstein
A’s for transitions from excited electronic states to lower states are generally
very large – these are allowed transitions, so typical values are ∼ 109 s−1.
This means that excited states have lifetimes measured in nanoseconds. By
contrast, the mean time between encounters between an atom and an ionising
photon is vastly larger than this in any realistic interstellar environment. The
implication is that, under conditions where we are interested in photoionisa-
tion, we can safely assume that the vast majority of atoms are in the ground
state. We will, however, worry about distinguishing between the different
states when it comes to recombination, below.

For multi-electron atoms there is generally no simple expression for the ioni-
sation cross section, and the frequency-dependence can be complex. In par-
ticular, one common feature for many multiple-electron atoms is that they
show a jump in the ionisation cross section at the frequency that corresponds
to the energy requires to remove an electron from the 1s shell (referred to as
the K shell in this context). This is called an absorption edge.

Given the cross section, one can compute the total photoionisation rate by
integrating over the rate at which ionising photons pass an atom:

ζpi =

∫ ∞
ν0

σpi(ν)4π
Jν
hν

dν. (5)

Here 4πJν is the radiation intensity averaged over all 4π sr. The factor of hν
in the denominator is to convert the intensity, which is in units of energy, to
number of photons.

2. Auger ionisation

If photoionisation ejects an electron from an inner rather than an outer shell,
it provides the atom with more energy than is required to remove the least
bound electron, and so the resulting ion is left in an excited state. It can
decay out of this excited state radiatively, but it is more likely to do so via
a two-electron process in which one electron drops down into the vacated
slot, and another electron is promoted into a more excited state. If there is
sufficient energy available, this more excited state may be unbound, leading
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to a second ionisation. This is referred to as the Auger effect. Formally we
can write the process as

X + hν → X+(∗) + e− → X+ + 2e−. (6)

For neutral C, N, O, and Ne, ionisations of electrons from the 1s level are
generally followed by ejection of a second electron via the Auger effect. For
more complex atoms multiple Auger electrons may be emitted if the photon
that causes the initial ionisation is sufficiently energetic. This is an important
effect for ionisation by x-rays.

3. Secondary ionisation

In addition to the Auger effect, another way of getting more than one ion-
isation out of a single photon is for the ejected electron to produce more
ionisation. If the primary photon has much more energy than the minimum
required to eject the electron, the bulk of the remaining photon energy goes
into the kinetic energy of the ejected electron. For an x-ray, this excess energy
can easily be hundreds or thousands of eV, so that the electron then carries
more than enough energy to cause a second ionisation, or possibly even more.

Calculating the number of secondary ionisations is a complex problem that
depends not just on the energy of the ejected electron, but also on the state
of the gas. In a mostly ionised gas the ejected electron will rapidly lose
energy via Coulomb interactions with other electrons, so it may not find a
neutral atom before thermalizing and losing the ability to ionise again. In a
neutral gas, the electron may lose energy via interactions that excite but do
not ionise the particles with which it collides. In general the problem must
be solved numerically, though analytic fitting formulae are given in Draine
and elsewhere.

B. Collisional ionisation

1. Thermal electrons

The second main ionisation process in the ISM is collisional ionisation, usually
due to a collision with a free electron. Electrons usually dominate because
their masses are so small compared to other particles, which maximizes their
speed and leads to a stronger perturbation to the wavefunctions of bound
electrons than would a slower interaction with a more massive particle.

As with other collisional processes, we describe the rate at which collisional
ionisation happens in terms of a cross section and a rate coefficient, using our
standard formula for collisional processes:

kci =

∫ ∞
I

σci(E)vfE dE =

(
8kT

πme

)1/2 ∫ ∞
I/kT

σci(x)xe−x dx, (7)

3



where I is the ionisation potential for the atom in question and x = E/kT .
Note that this implicitly assumes that the electrons have a Maxwellian ve-
locity distribution, which is generally as safe assumption, but fails in some
circumstances – we’ll get to those in a bit. The total number of collisional
ionisations per unit volume per unit time is then

ζci = kcinenI , (8)

where nI is the number density of particles being ionised.

Unlike photoionisation, where the cross section is at maximum at the thresh-
old and declines at higher energies, for collisional ionisation the cross section
is zero at threshold and rises smoothly as the energy increases, before falling
off at even higher energies.

The behavior at low energies can be understood as follows. If an electron
arrives with energy E, then after ionisation the two free electrons must have
total energy E − I. The volume in phase space that is allowed therefore
depends on E − I, and as E → I it shrinks to zero. Since the transition
probability is proportional to the volume in phase space the electrons are
allowed to occupy after ionisation, it must go to zero as this volume goes
to zero. This is different that photoionisation, because after photoionisation
there is only one electron, and a single free particle has a formally infinite
number of quantum states accessible to it regardless of its energy.

At low energies, E <∼ 3I, this behavior can be approximated by a cross section

σci(E) = Cπa2
0

(
1− I

E

)
, (9)

where C is a constant of order unity. For hydrogen, C = 1.07. Plugging this
into the integral gives

kci ≈ Cπa2
0

(
8kT

πme

)1/2

e−I/kT (10)

At higher but still non-relativistic electron energies, the collisional ionisation
cross section falls off as 1/E. This is because, as we showed toward the
beginning of class, the momentum transfer due to a Coulomb interaction
scales as ∆p⊥ ∝ 1/bv ∝ 1/bE1/2, where p is the impact parameter. Thus to
transfer a fixed amount of momentum and energy and ionise the electron, the
impact parameter must vary as E−1/2, and the cross section as σ ∝ b2 ∝ 1/E.
However, by the time thermal electrons are moving fast enough to be in the
1/E regime, ionisation is generally near complete anyway.

2. Cosmic rays

Most electrons and ions in the ISM have a Maxwellian velocity distribution,
but there is a population of much faster, relativistic particles known as cosmic
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rays as well. There are particularly important in environments such as the
interiors of dense clouds, where other ionisation processes are ineffective –
the gas is too cold for collisional ionisations, and there is too much extinction
to photoionising photons to penetrate. Cosmic rays, on the other hand, can
have very long mean free paths, even through dense gas.

The cosmic ray ionisation rate is given by the usual collision integral, gener-
alised to include a non-Maxwellian velocity distribution:

ζCR = 4π

∫ ∞
Emin

σci(E)E
dF

dE
· dE
E
. (11)

Here dF/dE is the flux per unit solid angle of cosmic rays with energies from
E to E+ dE. The cross section for photoionisations by extremely relativistic
particles of charge Ze and velocity βc is approximately

σci = 0.285
2πe4Z2

mec2IHβ2

{
ln

[
2mec

2β2

IH(1− β2)

]
+ 3.04− β2

}
. (12)

Of course this is only good to the extent that we know dF/dE, which is set
by complicated processes of cosmic ray injection, transport, energy loss, and
escape from the galaxy. In practice this means that we are generally trying
to evaluate this using empirically-determined cosmic ray spectra.

As with photoionisation, cosmic ray ionisations often yield fast electrons that
can induce secondary ionisation. The mean energy of the secondary photo-
electrons produced in this process is nearly independent of the energy of the
primary cosmic ray, and is typically around 35 eV, although there is a tail to
much higher energies. In neutral gas this yields ∼ 0.67 secondary ionisations
per primary ionisation, with the number decreasing with the ionisation frac-
tion of the ambient gas for the reasons we discussed earlier. Draine gives an
approximation formula for this decline.

II. Recombination processes

Now we turn to recombination processes, which are those that change a charge state
from X+ to X.

A. Radiative recombination

Radiative recombinations take the form

X+ + e− → X + hν, (13)

with the electron being captured into an electronic state n` that was formerly
unoccupied.

1. The Milne Relation and recombination rates
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The recombination rate via this process can be written in terms of a cross-
section, and we can relate this cross section to the ionisation cross section
using the law of mass action, since these two processes are inverses. The
resulting relation is known as the Milne Relation. Consider an atom of species
X in state `, and it can absorb a photon, transitioning to species X+ in state
u and emitting an electron. The reaction is

X` + hν ↔ X+
u + e−. (14)

The difference in energy between the ionised and unionised states is IX,u`.

Let σpi(E) be the photoionisation cross section to a photon of energy E, and
σrr(E) be the radiative recombination cross section for an atom encountering
an electron with relative energy E. In LTE, the rate per unit volume with
which photons with energies in the range (E,E+dE) are absorbed by atoms
must be equal to the rate at which they are created by radiative recombi-
nations. As we have already written down, the total photoionisation rate
is

ζpi =

∫ ∞
ν0

σpi(ν)4π
Bν

hν
dν, (15)

where we have taken Bν = Jν since we are in LTE. The rate per unit volume is
simply ζpinX`

, i.e. the photoionisation rate multiplied by the density of target
particles. To figure out the rate at which photoionisation creates electrons
in a given energy range, we simply have to differentiate this with respect to
energy, obtaining

absorptions cm−3 erg−1 = 4πnX`

Bν

hν
σpi(hν) d(hν). (16)

The radiative recombination rate is slightly more complicated, because we
must figure out what electron energy will give rise to a photon of frequency
ν. Conservation of energy requires that the electron energy E be related to
the photon energy hν by

E = hν − IX,u`. (17)

Thus an electron of 0 energy produces a photon of frequency IX,u`/h. The
recombination rate therefore is

recombinations cm−3 erg−1 = nX+
u
nevfE(hν−IX,u`)σrr(hν−IX,u`)(1+nγ)h dν.

(18)
Here fE(hν − IX,u`) is the value of the Maxwellian distribution of electron
energies evaluated at energy E = hν−IX,u`. The 1+nγ term is the correction
for stimulated recombination; in LTE, the photon occupation number is

nγ =
1

ehν/kT − 1
. (19)
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Now we can set absorptions equal to recombinations. Doing so and solving
for σrr gives

σrr(hν − IX,u`) =
4πBν

hν

1

vfE(hν − IX,u`)(1 + nγ)h

(
nX`

nX+
u
ne

)
σpi(hν). (20)

In LTE the quantity in parentheses can be computed from the law of mass
action as well. If the states are interested in are the ground states of their
respective ionisation states, we can use the Saha equation:

nX+
u
ne

nX`

=

[
(2πmekT )3/2

h3

]
gu
g`
e−IX,u`/kT . (21)

If the states are not ground states, a more general form of this equation follows
from the law of mass action. Plugging this in, along with the Maxwellian
velocity distribution

vfE =

(
8

πµkT

)1/2
E

kT
e−E/kT , (22)

and solving, we arrive at the Milne relation:

σrr(E) =
g`
gu

(IX,u` + E)2

Emec2
σpi(hν = IX,u` + E). (23)

Thus, given the photoionisation cross-section, we can directly calculate the
radiative recombination rate cross section.

Once we know the recombination cross section, we can solve for the recom-
bination rate using the usual method of integrating over the velocity distri-
bution to obtain a rate coefficient. We normally write rate coefficients for
radiative recombination with the letter α:

αn`(T ) =

(
8kT

πme

)1/2 ∫ ∞
0

σrr,n`(E)xe−x dx, (24)

where x = E/kT , and the subscripts n` are to remind us that this is the
rate for recombination to a given n` electronic level. Values of αn`(T ) for
hydrogen are given in Draine.

As with our other applications of the law of mass action, note that, although
we derive this result in LTE, the value of σrr(E) is a purely quantum mechan-
ical constant that does not depend on anything but internal properties of the
ion in question. Thus the result is general. For αn`, we have assumed that
the electrons have a Maxwellian velocity distribution, but that is the only
assumption.

2. Case A and case B recombination
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If we want to know the total recombination rate, we can simply sum the αn`
values over all possible levels of the newly-bound atom. However, there is
a complication, which comes from radiative transfer. Suppose that we have
a hydrogen recombination that goes directly to the ground state, 1s. The
resulting photon will have an energy of at least 13.6 eV. The cross section of
neutral hydrogen atoms to photons of this energy is very high: 6.3 × 10−18

cm−2 at threshold. This means that even if a region is mostly ionised, even
a small fraction of neutral hydrogen is likely to render it optically thick to
photons with energies above 13.6 eV. This means that every such photon that
is emitted will be re-absorbed by a neutral hydrogen atom nearby, ionising it
and resulting in no net recombinations.

If the region in question is sufficiently hot, low density, or small, then it will
have so little neutral gas as to be optically thin even to ionising photons. We
refer to this as case A. The opposite limit is when the gas is assumed to be
optically thick to ionising photons, and we refer to this as case B. Generally
speaking, coronal and IGM gas with temperatures >∼ 106 K is case A, and
H ii regions around O and B stars are case B.

In case A, the total recombination rate is exactly what one would naively
have guessed, a sum of recombinations to all levels of the bound atom:

αA(T ) =
∞∑
n=1

n−1∑
`=0

αn`(T ). (25)

A typical number to keep in mind for case A is αA ≈ 4.1 × 10−13 cm3 s−1

for hydrogen at 104 K. More accurate approximation formulae are given in
Draine.

In case B, on the other hand, only recombinations to excited states “count”
for producing recombinations, since the photons emitted in this case are now
too low energy to cause further ionisations. For case B, the net recombination
rate is simply the case A rate, but omitting n = 1:

αB(T ) =
∞∑
n=2

n−1∑
`=0

αn`(T ) = αA(T )− α1s(T ) (26)

For hydrogen at 104 K, αB ≈ 2.5× 10−13 cm3 s−1.

B. The recombination spectrum for hydrogen

While we now know the recombination rate, we have not yet worked out something
that is more important from an observational standpoint: the spectrum of the
emitted radiation. Knowing this spectrum proves to be the basis for a large
fraction of our understanding of star formation, among other phenomena. Some of
the emitted energy will be in the form of a continuum coming from the continuous
energy distribution of free electrons. The rest will come in the form of lines emitted
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as atoms that recombine into excited states undergo spontaneous decays into less
excited states and eventually reach ground. While the continuum is energetically
important, it is less important from an observational standpoint than the line
emission, since lines are easy to pick out observationally, and since continuum
recombination radiation is apt to be confused with continuum radiation at similar
frequencies produced by other sources. Therefore we will focus on the line part
of the spectrum.

1. Case A

Let’s start with case A, where we assume that the region is optically thin.
The rate at which recombinations create neutral hydrogen atoms in state n`
is given by nenH+α(n`), where α(n`) is the recombination rate coefficient for
that state. For n` 6= 1s, the atom will then undergo radiative decays to lower
states, and these produce the line photons that we’re interested in.

Let A(n` → n′`′) be the Einstein A coefficient for transitions from state n`
to state n′`′, which can be computed quantum mechanically. The probability
that an atom in state n` decays to n′`′, rather than into some different state,
is simply

Γ(n`→ n′`′) =
A(n`→ n′`′)∑

n′′`′′,n′′<nA(n`→ n′′`′′)
. (27)

This quantity is called the branching ratio, and is a standard quantity in par-
ticle physics. Thus, the rate at which photons corresponding to the transition
n`→ n′`′ are emitted by atoms that recombine into state n` is

nenH+α(n`)Γ(n`→ n′`′). (28)

The emissivity is simply

jν =
hν

4π
nenH+α(n`)Γ(n`→ n′`′)φν . (29)

This, however, only accounts for some of the photons emitted through the
n`→ n′`′ transition. That is because atoms in state n` can be created through
radiative decays from higher bound states, as well as through recombinations
directly to state n`. Consider atoms created by recombination in the state
(n + 1)`′. This happens at a rate nenH+α((n + 1)`′′). When these atoms
decay radiatively, a fraction Γ((n+ 1)`′′ → n`) will end up in state n`, and a
fraction Γ(n`→ n′`′) of these will also produce n`→ n′`′ photons. Including
this contribution, the emissivity becomes

jν =
hν

4π
nenH+Γ(n`→ n′`′)

[
α(n`) +

∑
`′′

α((n+ 1)`′′)Γ((n+ 1)`′′ → n`)

]
(30)

Clearly this process is recursive: recombination will leave some atoms in
state (n + 2)`′′, and some of these will end up in state n` or (n + 1)`, and
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therefore contribute photons. To avoid the expression spiraling out of control,
we simply write the photon production rate as

jν =
hν

4π
nenH+Γ(n`→ n′`′)

[
α(n`) +

∑
n′′`′′,n′′>n

α(n′′`′′)P (n′′`′′ → n`)

]
, (31)

where P is the probability that an atom created in state n′′`′′ passes through
state n` on its way to ground. This is easy enough to compute given the
known branching ratios.

2. Case B

In case B all the transition rates are the same, which one difference: photons
may not be able to escape freely. Recall that case B corresponds to a nebula
that is optically thick to ionising photons. The cross sections for resonant
absorption of Lyman series photons decrease with n, and in the limit n→∞
the cross section is equal to the absorption cross section at threshold. This
means that all the Lyman series transitions have cross sections larger than the
cross section to ionising photons, and that for small n the cross sections are
many orders of magnitude greater. Since both ionising photon and Lyman
series photons are primarily absorbed by the same species (neutral hydrogen
in the 1s state), this means that in case B the nebula must also be optically
thick to Lyman series photons.

We can approximate the effects of this with the “on-the-spot” approximation
that we already introduced to handle the total recombination rate. Since ev-
ery Lyman series photon that is emitted is immediately reabsorbed, producing
an excitation that exactly balances the de-excitation that led to photon emis-
sion, we can simply approximate the net effect by neglecting all emission in
the Lyman series. In effect, we set A(n` → n′`′) = 0 when n′`′ = 1s. The
calculation of the luminosities of all the non-Lyman lines therefore proceeds
in exactly the same manner as in case A, just with different branching ratios.

In case B the two strongest lines are Hα and Hβ. Draine gives numerical
results for the rate coefficients αHα(T ) and αHβ for production of these two
lines, and analytic approximations to them. The Hα line is particularly im-
portant because it is one of our best star formation rate indicators. As we will
see shortly, the Hα luminosity of an H ii region is directly proportional to the
ionising luminosity that produces it, with a constant a proportionality that
depends on αHα(T ). By knowing this value from pure quantum mechanical
theory, we can compute the ionising luminosity in an H ii region directly from
its Hα luminosity.

a. 2-photon emission

The n = 2 level requires special attention in case B. That is because the
only transitions allowed out of this level are Lyman transitions, so in the
approximation that A(n`→ 1s) = 0, all the recombined hydrogen atoms
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eventually accumulate in n = 2 states and would decay no further. This
level consists of the 2s and 2p states, and we can let αeff,2s and αeff,2p be
the effective rates for populating them – effective meaning that we include
not only recombinations directly to these states, but also recombinations
to higher states that eventually cascade down into 2s or 2p.

Since every recombining atom eventually winds up in one of the states,
we have αeff,2s + αeff,2p = αB, i.e. if we sum the effective α’s for the two
states, it must add up to the total recombination rate. The values of
αeff,2s and αeff,2p can be calculated by exactly the same method as all the
line strengths, i.e. just by summing up branching ratios. It turns out that
αeff,2s ≈ (1/3)αB and αeff,2p ≈ (2/3)αB; more precise numerical values are
given in Draine.

We can then ask about the fate of an atom that winds up in one of
these two levels. First consider what happens to atoms that end up in
the 2s state. The transition 2s → 1s is forbidden because ∆` = 0,
but it can happen, albeit at a very slow rate, A2s→1s = 8.23 s−1. The
decay is a two-photon process, so it produces a continuous spectrum from
ν = 0 to ν = 3IH/4 (the energy of the level), i.e. the sum of the two
photon energies must be 3IH/4, but each photon individually can have any
energy between that and zero. The spectrum can be calculated quantum
mechanically, and found in standard references. We let P

(2s)
ν (ν) be the

probability that the 2s decay results in one of the emitted photons being
in the frequency range ν to ν + dν; clearly energy conservation requires
that P

(2s)
ν (ν) = P

(2s)
ν (νLyα − ν), where νLyα = 3IH/4h. The peak is at

ν = νLyα/2. If every atom that enters the 2s state decays via this process,
then the emissivity is

jν(2s→ 1s) =
hν

4π
nenH+αeff,2sP

(2s)
ν . (32)

Because the Einstein A coefficient for this decay is so small, atoms may
have time time to leave the 2s state collisionally rather than radiatively.
Collisions that take the atom to a higher state simply restart the decay
process, and have no net effect. Collisions that take the atom to the 1s
state are possible, but that rate is quite low. Instead, the main way of
depopulating the 2s state collisionally is via collisional transitions to the
2p state. The rate coefficients for this transition are known; we denote
them qp,2s→2p and qe,2s→2p, with the first representing the rate due to
collisions with protons, and the second indicating the rate due to collisions
with electrons.

To account for collisions we can compute a branching ratio exactly as
we did for radiative decays. The rate at which atoms leave the 2s state
collisionally is neqe,2s→2p + npqp,2s→2p, and the rate at which they leave it
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radiatively is A2s→1s. Thus the branching ratio for radiative decay is

Γ(2s→ 1s) ≈ A2s→1s

A2s→1s + ne(qe,2s→2p + qp,2s→2p)
, (33)

where we have set ne ≈ np, as appropriate for a nearly fully ionised region.
We usually write this in terms of a critical density. We define

ne,crit =
A2s→1s

qe,2s→2p + qp,2s→2p

= 1880 cm−3, (34)

and with this definition the branching ratio becomes

Γ(2s→ 1s) =
1

1 + ne/ne,crit

. (35)

Physically, ne,crit is simply the electron density for which the rates of
radiative and collisional de-excitation are equal – we’ll see this again
later. With this definition, we can write the emissivity as

jν(2s→ 1s) =
hν

4π
nenH+αeff,2sΓ(2s→ 1s)P (2s)

ν =

(
hν

4π

)
nenH+αeff,2s

1 + ne/ne,crit

P (2s)
ν .

(36)

Note that this has an important implication for observations: the strength
of the two-photon emission spectrum depends on the density inside the
H ii region, and is weakest when ne � ne,crit. As a result, we can use the
strength of two-photon emission as a diagnostic of H ii region density.
Low density regions have strong two-photon emission, and high density
regions have weak two-photon emission.

b. Lyman α emission

Finally, let us turn our attention to atoms that end up in the 2p state,
either via collisional excitations from the 2s state, or by direct decays
from higher n states. Collisional de-excitation out of this state occurs at
a negligible rate, so the only decay path for these atoms is via the Lyman α
transition. Given the cross-section of Lyman α absorption and assuming
a Gaussian velocity dispersion, we can write the Lyman α optical depth
as

τLyα = 8.0× 104

(
15 km s−1

b

)
τLyC, (37)

where τLyC is the Lyman continuum optical depth, i.e. the optical depth
to photons at 13.6 eV. Since case B means that τLyC > 1, clearly τLyα is
immense, at least of order 105. Thus Lyman α photons travel only a tiny
distance before being re-absorbed. The photons can eventually escape in
two ways: first, they can be absorbed by a dust grain instead of a H atom.
Second, each time they interact with a neutral H atom, the photon will be
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Doppler shifted by some small amount, depending on the atom’s random
velocity. This causes the photons to undergo a random walk in frequency.
Eventually, they walk far enough that they are either far enough from line
centre to escape, or they random walk into the frequency of another line
that lies close to Lyα, most commonly O iii, and are absorbed by one of
those atoms. This problem is treated in detail in section 1.57 of Draine.

3. Radio recombination lines

Thus far our treatment has assumed that upper states are populated only
by recombinations and radiative decays, i.e., if you find an atom with an
electron in, say, the 4p orbital, it must have gotten there because the atom
recombined directly into that state, or because it recombined into a higher n
state and then decayed. This is a good approximation for low to moderate
n. However, for very high n, & 100, there is another mechanism that can
populate levels: three-body collisions between a proton and two electrons.
Because the number of degenerate substates of a given electronic state n rises
as n2 (because the number of possible l values is n, and for each ` value
there are 2`− 1 distinct m` values), there is a lot of phase space available for
collisional recombination into high n states, and non-negligible populations
can build up at high n.

The high n atoms are rare enough that they not particularly important when
it comes to the total energy or ionisation budget, but they are significant for
observational reasons: transitions from n + 1 to n, referred to as the Hnα
transition, can produce radio photons. If one works out the energy levels of
the n+ 1 and n states, the frequency of the n+ 1→ n transition is

νn =
2n+ 1

[n(n+ 1)]2
IH

h
≈ 6.48

(
100.5

n+ 0.5

)3

GHz. (38)

Photons in this frequency range have the great advantage that (1) they can
be detected from the ground, since the atmosphere is transparent at these
frequencies, and (2) dust attenuation is essentially negligible in the radio, so
this emission can still be seen even from H ii regions whose optical light is
completely obscured by dust. The H 166α line is particularly convenient to
observe, because it just so happens to lie extremely close in frequency to the
21 cm line, so one can usually observe both at the same time.

4. Radiative recombination of heavier elements

Thus far we have only discussed hydrogen, but radiative recombination occurs
for other elements as well. The method of calculating the recombination
rates and the emitted spectrum is similar, with one exception: helium is
the only element for which we ever have to worry about case B. No other
element is abundant enough for ionised regions to become optically thick to
recombination radiation. The case of helium is treated in the book, but we
will not discuss it in class.
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C. Other recombination mechanisms

Several other recombination processes can be important in special circumstances
or for particular elements, particularly in very cool regions. We will not discuss
these in detail, just go over them briefly so that you know they exist.

In multiple-electron atoms, one such mechanism is dielectronic recombination.
The idea is that a recombination requires that energy be lost by the free elec-
tron to render it bound. In radiative recombination it goes into a photon. In a
multi-electron atom, it could also go into one of the bound electrons in the ion,
pumping that electron into an excited state, leaving the atom with two electrons
in excited states. Dielectronic recombination is most important in high temper-
ature plasmas, where there are many electrons with enough energy to produce
atoms with two electrons both in excited states. However, in some atoms there
are accessible excited states even for plasmas as cold as ∼ 104 K.

One important recombination mechanism in predominantly molecular regions is
dissociative recombination. This happens when a molecular ion, for example OH+

or H+
3 , captures a free electron. The excess energy can be dumped into vibrational

excitations of the molecule, and it is usually enough to leave the resulting molecule
in an unbound state.

A final recombination mechanism is charge exchange, in which an ion collides
with a neutral particle or a dust grain, and grabs an electron from it. This can
happen if the ionisation potential of the species grabbing the electron is greater
than that of the species losing it.

14


