
ASTR 4017/8007: Diffuse Matter in the Universe

Class 5 Notes: The 21 cm line

Now that we have gotten the basics of radiative transfer and radiation-matter interaction,
we are ready to examine the most important astronomical applications of these ideas. This
will occupy us for the next three classes. This class is devoted to the hydrogen 21 cm line,
the next to absorption lines and absorption spectroscopy, and the third to the continuum
emission processes that occur in a plasma.

I. Physics of the 21 cm line

We will begin with what is likely the simplest emission and absorption system, the
21 cm line of neutral hydrogen. To remind you, this line arises from the hyperfine
splitting of the ground electronic state of hydrogen. Not only is this the simplest case,
it is one of the most important for studying the ISM.

A. Emissivity and attenuation coefficient

The 21 cm line occurs because in the ground electronic state of neutral hydrogen,
the state with the proton and electron spins parallel differs in energy from the
state with them antiparallel by Eu` = 5.87 × 10−6 eV. The anti-parallel lower
energy state has total spin S = 0, so its degeneracy is g` = 2S + 1 = 1. The
upper state has total spin S = 1, so gu = 3. The Einstein spontaneous emission
coefficient is Au` = 2.8843× 10−15 s−1, or 1/(11.0 Myr).

The energy difference between the two state is corresponds to a temperature
Tu` = Eu`/k = 0.0682 K. The excitation temperature, also known as the spin
temperature for this particular transition, will depend on the region, but under
any normal circumstances it cannot be lower than the CMB temperature, since all
interstellar hydrogen has had an essentially infinite amount of time to be heated
by CMB photons. Thus Tspin > TCMB = 2.72 K. Since Tspin � Tu`, the Boltzmann
factor e−Eu`/kTspin ≈ 1, and the levels are populated simply in proportion to their
degeneracy:

nu
n`

=
gu
g`
e−Eu`/kTspin ≈ 3. (1)

Thus at any given time we expect 3/4 of atoms to be in the upper hyperfine state,
and 1/4 to be in the lower state. This has the important implication that the
emissivity is independent of temperature:

jν =
hνu`
4π

nuAu`φν ≈
3

16π
hνu`nHAu`φν , (2)

where nH is the total number density of atomic hydrogen.
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The attenuation coefficient is similarly easy to compute. Recall that last time we
showed

κν =
hν

4π
n`B`uφν

(
1− e−Eu`/kTspin

)
=

3

8π
n`Au`λ

2
u`φν

(
1− e−Eu`/kTspin

)
, (3)

where λu` = c/νu`, and in the last step we used the relationship between the
Einstein coefficients to rewrite everything in terms of Au`. Note that, since
Eu`/kTspin � 1, the term in parentheses is nearly zero: stimulated emissions
almost exactly balance absorptions. To find the difference, we can Taylor expand
the exponential. Doing so and also setting n` = nH/4, we find

κν ≈
3

32π
Au`

hcλu`
kTspin

nHφν . (4)

To get a sense of the level of opacity, it is helpful to compute the optical depth of
a slab of hydrogen of length L, which is simply

τν = κνL =
3

32π
Au`

hcλu`
kTspin

NHφν , (5)

where NH = nHL is the column density of H atoms. If we take the line profile
function to be a Gaussian (which is usually a good approximation, since the
column density is almost never high enough to see the damping wings), then we
have

φν =
1√
2π

λu`
σV

e−v
2/2σ2

v , (6)

where σv is the velocity dispersion. Plugging this in and putting in some numerical
values typical of the ISM in the Galaxy, we have

τν = 2.19

(
NH

1021 cm−2

)(
100 K

Tspin

)(
km s−1

σv

)
e−v

2/2σ2
v . (7)

Thus we see that the 21 cm line can be marginally optically thick along typical
sightlines through the ISM of the Milky Way and similar galaxies. Fortunately
for us we will see that much of the H i mass of the Milky Way and other galaxies
is actually in a warm component with Tspin of several thousand K and σv ∼ 10
km s−1, and this gas is optically thin. Self-absorption by H i is a concern only for
the cold, low velocity dispersion component.

B. Optically thin emission

If we observe an optically thin object in the 21 cm line, we can use this theoret-
ical treatment to compute its mass from the 21 cm flux that we observe. This
calculation is the basis for all estimate of the atomic gas masses of galaxies. For
an optically thin line of sight, we can ignore absorption, and the transfer equation
is trivial to integrate:∫

dIν =

∫
jν ds =⇒ Iν = Iν(0) +

3

16π
Au`hνu`φνNH, (8)
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where NH =
∫
nH ds. If we are looking at a line of sight where there is no

background object, then the background intensity Iν(0) is simply the intensity of
the CMB, which we can compute from the Planck function. We know that the
integral of φν is unity, so if we integrate over frequency then we have

NH =
16π

3Au`hνu`

∫
[Iν − Iν(0)] dν. (9)

Thus, given a measured Iν , we can solve for NH. In practice the background
intensity is generally small, so we can drop the Iν(0) term.

Since this is a radio observation, it is common to work with antenna tempera-
ture instead of intensity, and with velocity instead of frequency. We define the
antenna temperature in the usual way, TA = (c2/2kν2)Iν , and we relate velocity
to frequency via the Doppler shift: ν = νu`(1 − v/c). With these definitions, we
can define the velocity-integrated antenna temperature by∫

[TA − TA(0)] dv =

∫
c2

2kν2
[Iν − Iν(0)]

c

ν
dν =

3

32π

hcλ2
u`

k
Au`NH (10)

Plugging in the constants, we have∫
[TA − TA(0)] dv = 54.89 K km s−1

(
NH

1020 cm−2

)
. (11)

Thus for optically thin H i, we have a direct method of measuring its column
density – simply point a radio antenna tuned to 21 cm off the source to measure
the background antenna temperature TA(0), then point it at the source and mea-
sure TA. Do this for a range in frequencies / velocities and add, and the result
immediately gives you the H i column density.

If the emitting object is unresolved, by measuring the total flux inside a radio
beam we can measure the mass, at least for an object of known distance. To figure
out the total flux observed in a radio beam, we need to integrate the intensity over
the unresolved solid angle occupied by the object. The total frequency-integrated
flux observed is

F =

∫
Iν dν dΩ =

∫
Iν dν

dA

D2
(12)

where we understand that the intensity Iν is a function of position on the sky.
In the second step we have taken dΩ = dA/D2, where D is the distance to the
object and dA is the area element on the emitting object that subtends the solid
angle dΩ. (If the object is at cosmological distance D should be replaced by
the luminosity distance DL, which accounts for relativistic effects.) Dropping the
background term for simplicity, we can substitute to obtain

F =
3Au`hνu`
16πD2

∫
NH dA =

3Au`hνu`
16πD2

MH

mH

, (13)
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where mH is the mass of a hydrogen atom and MH = mH

∫
NH dA is the total

hydrogen mass of the emitting object. Plugging in and solving, we have

MH =
16πmH

3Au`hνu`
D2F = 4.95× 107M�

(
D

Mpc

)2(
F

Jy MHz

)
, (14)

where 1 Jy = 10−23 erg s−1 cm−2 Hz−1 is the standard unit of flux used in radio
astronomy.

II. Absorption in the 21 cm line

We can learn considerably more from the 21 cm line if the background intensity is
not tiny, and instead we have a relatively bright background source. There are two
prominent cases where this situation is realised: when we see neutral hydrogen in the
foreground against a background radio quasar, and when we cold H i in absorption as
a foreground in front of brighter warm H i in the background.

A. 21 cm absorption

This generally occurs when a bright quasar sits behind a cloud of H i. Since
quasars usually occupy a small angular extent, we can often observe the same
object on two parallel but slightly offset lines of sight, one of which hits the
background quasar and one of which does not. Since the separation of the two
lines of sight is small, we assume that the foreground H i cloud is the same along
the two lines of sight. We refer to the line of sight that hits the quasar as on-source,
and the one that does not as off-source.

This is the problem of radiative transfer through a uniform-temperature slab that
we solved a while ago. Recall that the solution is

Iν(τν) = Iν(0)e−τν +Bν(Tspin)(1− e−τν ). (15)

Since kTspin � hν for the 21 cm line, we can simplify this by Taylor-expanding
the Planck function:

Bν(Tspin) =
2hν3

c2

1

exp(hν/kTspin)− 1
≈ 2kν2

c2
Tspin (16)

Plugging this into the intensity equation and converting to antenna temperature,
we obtain

TA(τν) = TA(0)e−τν + Tspin(1− e−τν ). (17)

Although we have suppressed the subscript, recall that TA does still depend on
frequency / velocity.

Applying this equation to the two lines of sight, we have

T on
A = TQSOe

−τν + Tspin(1− e−τν ) (18)

T off
A = Tskye

−τν + Tspin(1− e−τν ), (19)
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where TQSO is the antenna temperature of the QSO, and Tsky is that of the blank
sky. We can solve these two equations for Tspin and τν :

τν = ln

(
TQSO − Tsky

T on
A − T off

A

)
(20)

Tspin =
T off
A TQSO − T on

A Tsky

(TQSO − Tsky)− (T on
A − T off

A )
(21)

We can usually measure TQSO by measuring the intensity of emission from the
QSO on either side of the 21 cm line, i.e. far from the absorption feature, and
fitting a line between the two sides. We can measure Tsky by measuring the blank
sky away from the hydrogen cloud. Thus every quantity on the right hand side
is directly measurable, and we can simultaneously solve for the optical depth and
the spin temperature.

B. H i self-absorption (HISA)

As we have shown, the optically thin limit applies when the temperature is high
and/or the velocity dispersion is large. For the CNM, however, velocity dispersion
can be < 1 km s−1 and temperatures can be below 100 K, and in this case the H i
becomes optically thick. In this case the cloud is likely to be very dim in emission.
To see why, compare two clouds of equal column density NH, one consisting of
optically thick cold gas at temperature Tc, and the other consisting of optically
thin warm gas at temperature Tw. The transfer equation for both clouds is the
same:

TA(τν) = TA(0)e−τν + Tspin(1− e−τν ). (22)

For τν � 1, clearly TA(τν) → Tspin = Tc. Thus the antenna temperature will
simply be Tc at line center, and will fall off at frequencies far enough from line
center so that the cloud is optically thin.

For the warm optically thin cloud we have τν � 1, and we can series expand the
exponentials. Assuming TA(0) = 0, i.e. there is no background source behind the
warm cloud, we obtain

TA(τν) = Twτν . (23)

Plugging into our earlier formula for τν , we have

TA =
3

32π
Au`

hcλu`
k

NHφν = 220 K

(
NH

1021 cm−2

)(
km s−1

σv

)
e−v

2/2σ2
v . (24)

Notice that the result is independent of Tw, consistent with our earlier result
that optically thin emission depends only on the total column of H i, not on its
temperature.

The problem with observing cold H i in emission now becomes clear. Typical
values for Tc are at most 100 K, and are often lower, producing a brightness
temperature of no more than that. In contrast, even a relatively modest column
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of warm, optically thin H i will produce a brightness temperature twice as high.
Thus it is often hard to see cold H i in emission.

However, it is possible to see it in absorption against warm H i behind the cloud.
Consider a background of warm H i with a small cold cloud in front of it, and, as
in the QSO case, consider two lines of sight – one passing through the cold cloud
and one not. Assume that the background warm gas is relatively smooth, so the
column density (and thus the antenna temperature) of the warm background gas
is the same along the two lines of sight. In this case along the line of sight that
misses the cold cloud, we see an antenna temperature as we computed above for
pure warm H i:

T off
A = 220 K

(
NH

1021 cm−2

)(
km s−1

σv

)
e−v

2/2σ2
v . (25)

Along the line of sight that hits the cold cloud, we have TA(0) = T off
A , so the

resulting antenna temperature is

T on
A = T off

A e−τν + Tc(1− e−τν ). (26)

Since Tc < T off
A , the result is an absorption feature. This is known as H i self-

absorption (HISA).

Unfortunately it is not easy to use HISA measurements to constrain cold H i
masses. The most favorable situation is when Tc is known. This can be from
observations of some other species that is co-located with the cold H i, for example.
In this case one can observe T on

A and T off
A and solve for τν and thence for NH for

the cold cloud.

III. 21 cm cosmology

The final application of the 21 cm line that we will consider today is in cosmological
contexts, where substantial efforts are underway, in Australia and elsewhere, to measure
redshifted 21 cm radiation from neutral hydrogen in the early universe. In some ways
this analogous to the cases we have just considered, in that it is a problem of H i
absorption against a backlight. In this case, however, the backlight is the CMB, and
we exploit the fact that the 21 cm line is spread out in frequency by the expansion of
the universe to probe different epochs in cosmic history.

A. The 21 cm optical depth

The starting basis for 21 cm cosmology is the fundamental equation we have
already used repeatedly:

TA = Tbge
−τν + Tspin(1− e−τν ), (27)

where the background temperature Tbg is the temperature of the the CMB. The
first step in working out how 21 cm absorption behaves is figuring out the optical
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depth τν , which, as always is given by

τν =
3

32π
Au`

hcλu`
kTspin

NHφν . (28)

The question is, in the cosmological context, what are the column density NH and
the line shape function φν?

To figure this out, we need to think a bit about Doppler shifting and cosmol-
ogy. Hydrogen atoms always absorb radiation at a wavelength of 21 cm in their
rest frame, but when this radiation reaches us it will have been redshifted to a
wavelength that is longer by a factor of (1 + z), where z is the redshift. Thus we
can relate the observed frequency ν to the redshift at which that absorption was
generated via

ν =
ν0

1 + z
, (29)

where ν0 = 1.42 GHz is the rest frequency of the line. This means that, if we
observe at frequency ν, then we must care about the density of hydrogen nH(z)
at z = (ν0/ν)− 1.

To deal with the column density and the line shape function, we can make what is
known as the Sobolev, or large velocity gradient, approximation. The basic idea
is as follows: we had previously computed the line shape function by assuming
that the gas has a thermal velocity distribution, but in the cosmological context
(and in some other places), this is not the case, because there are bulk veloci-
ties that greatly exceed the sound speed. We will therefore make the opposite
approximation, and neglect the thermal velocity in comparison to the bulk flow.

In the case of cosmology, the main bulk flow that we have to worry about is just
the Hubble flow. We can therefore reason as follows. Suppose we focus on the
redshift z that corresponds to our chosen observing frequency, and then consider
gas slightly further away, by a distance ds. This gas will have a velocity that is
larger by an amount dv = H(z) ds, where H(z) is the Hubble constant at redshift
z. In turn, this means that its absorption will be Doppler shifted to a frequency
that is lower by an amount dν = (ν/c)H(z) ds. This is what we need to compute
the line shape function, because recall that the line shape function is supposed
to tell us how much of the column is absorbing or emitting per unit frequency
interval dν. Thus we can approximate the product of the column density and the
line shape function as

NHφν ≈
nH(z) ds

(ν/c)H(z) ds
=
nH(z)c

νH(z)
(30)

In practice τν is always small, so we can Taylor expand and write out an expression
for the change in temperature that we will observe relative to the CMB, ∆T . This
is

∆T ≈ Tspin − Tbg

1 + z
τν , (31)
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where the 1 + z factor comes from the fact that the temperature shift will be
redshifted by this factor, i.e., if the temperature shift is 1 K at redshift z = 9,
this will be reduced to 0.1 K by the time we observe it at z = 0. Putting this
all together, and substituting in some cosmological variables for the density and
H(z), we can write the temperature shift as

∆T ≈ 25 mKxHI

(
Ωbh

0.03

)(
Ωm

0.3

)−1/2(
1 + z

10

)1/2
Tspin − Tbg

Tspin

, (32)

where xHI is the fraction of hydrogen that is neutral, Ωb is the baryon density
of the universe, Ωm is the matter density of the universe, and h is the Hubble
constant at z = 0 scaled to 100 km s−1 Mpc−1. Thus a measurement of the
temperature shift relative to the CMB tells us about the abundance of neutral
hydrogen and the evolution of the spin temperature.

B. What sets the spin temperature

The 21 cm cosmological signal has yet to be observed, but we can write down
some qualitative expectations as to what it will look like. At redshifts . 7− 10,
we expect the signal to vanish, because the IGM is mostly ionised, so xHI � 1.
At higher redshift, on the other hand, xHI ≈ 1, and the signal will be determined
by the evolution of the spin temperature, since everything else in the expression
is constant. Note that, at high redshift, we cannot just assume Tspin � Tbg, since
the CMB temperature may be quite high: Tbg ∝ 1 + z.

The spin temperature in turn evolves in response to three main effects: interac-
tions of H i with the CMB, collisions of H i with other H i and with free electrons,
and interactions with Lyman α photons. Thus if we let nu be the number den-
sity of Hi atoms in the upper state, we can write the condition of equilibrium
schematically as (

dnu
dt

)
CMB

+

(
dnu
dt

)
coll

+

(
dnu
dt

)
Lyα

= 0 (33)

Let us now try to write down each of these rates, starting with the CMB. We
have shown previously that the rate of change in the upper state density nu due
to interaction with a background radiation field can be written as(
dnu
dt

)
CMB

= −nuAu` − nu〈nγ〉Au` +
gu
g`
n`〈nγ〉Au` = Au`

[
gu
g`
n` − (1 + 〈nγ〉)nu

]
(34)

It is convenient to rewrite this expression in terms of the spin temperature and
the CMB temperature. As usual, we can write

n` =
g`

Z(Tspin)
nH nu =

gue
−Eu`/kTspin

Z(Tspin)
nH Z(Tspin) = g` + gue

−Eu`/kTspin ,

(35)
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where nH is the total density of H. Similarly, since the CMB is a blackbody, we
can write out the direction-averaged photon occupation number 〈nγ〉 very simply:

〈nγ〉 =
c2

2hν3
u`

Bν(TCMB =
1

exp (Eu`/kTCMB)− 1
(36)

If we substitute these two expressions in, and simplify a bit by Taylor expanding
the exponentials in the limit Eu` � kTspin and Eu` � kTCMB (both of which are
certainly the case), then we get(

dnu
dt

)
CMB

= Au`nH
gu

g` + gu

TCMB − Tspin

Tspin

(37)

Note that this gives the result we expect: if interaction with the CMB were the
only process occurring, so this term had to be zero, then the solution is that
Tspin = TCMB.

Next consider collisions; the rate at which the density of H atoms in the upper
state changes due to collisions with some species i (where here the significant
species are H, e−, and p) is(

dnu
dt

)
coll

= −ku`ninu + k`unin`, (38)

where the first term represents collisional de-excitations out of state u to state
`, and the second term represents the reverse process. Our first step here is to
rewrite the excitation coefficient k`u in terms of the de-excitation rate coefficient
ku`, using the relationship we proved from detailed balance:

k`u =
gu
g`
ku`e

−Eu`/kTK . (39)

Note that the temperature that appears here is the kinetic temperature TK , which
describes the distribution of particle velocities – this is not necessarily the same
as the spin temperature or the CMB temperature! If we substitute this in, rewrite
nu and n` in terms of Tspin and nH as before, and again expand in the limit of
small Eu`, with a bit of algebra we get(

dnu
dt

)
coll

= ku`ninH
gu

g` + gu

(
Eu`
kTK

)
TK − Tspin

Tspin

(40)

Note how similar this is to the functional form for coupling to the CMB. Indeed,
it is informative to write down the solution if this and the CMB are the only
significant effects. In this case we have

Au`nH
gu

g` + gu

TCMB − Tspin

Tspin

+
∑
i

ku`,ininH
gu

g` + gu

(
Eu`
kTK

)
TK − Tspin

Tspin

= 0, (41)
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where the sum runs over all species i with which collisions occur. Clearly the
degeneracy factors and nH drop out, and the solution is

Tspin =
1 + xc

T−1
CMB + xcT

−1
K

(42)

where xc =
∑

i ku`,iniEu`/Au`kTCMB. We can see that, for xc � 1, the solution
approaches TCMB, while for xc � 1 it approaches TK ; thus the parameter xc
tells us whether collisions or the CMB are more important in setting the spin
temperature.

The final effect is a bit more subtle. The underlying physical process is as follows:
Lyman α photons can excite H atoms from the n = 1 state to the n = 2 state.
When the atoms then de-excite by emitting a Lyman α photon, they are not
guaranteed to go back into the same spin state from which they started. Thus if
there are a large number of Lyman α photons around, then can induce changes
in the spin temperature. This phenomenon is known as the Wouthuysen-Field
Effect.

It turns out that the spin temperature towards which this drives the H atoms is
determined by the colour temperature of the Lyman α photons, where the colour
temperature here is defined as the ratio of number of photons at the very slightly
different energies corresponding to the different transitions between the two spin-
substates. When this effect is included, the solution we have written down is
modified to

Tspin =
1 + xc + xα

T−1
CMB + xcT

−1
K + xαT−1

α

, (43)

where Tα is the Lyman α colour temperature and xα is another dimensionless
parameter, this one describing the relative importance of Lyman α photons com-
pared to CMB photons.

C. Expected signal

Now that we know the physical mechanisms that set the spin temperature, we can
sketch out, at least roughly, how we expect the 21 cm signal from cosmological
distances to behave. Starting at very high redshift, z & 200, the density is high
and thus xc � 1; there are no Lyman α photons, so xα � 1. The spin temperature
therefore equals the gas kinetic temperature. However, at these high redshifts it
also turns out that Compton scattering of CMB photons by free electrons in
the gas forces the gas and CMB temperatures to match, so the system is in
equilibrium, and Tspin = TK = TCMB. Thus there is no detectable signal.

At z . 200, the gas begins to drop below the CMB temperature, because cos-
mological expansion causes its temperature to fall as TK ∝ (1 + z)2, whereas
radiation only cools as TCMB ∝ 1 + z. Since TK < TCMB, and xc is not negligibly
small, we have Tspin < TCMB, and we expect the redshifted 21 cm line to be seen in
absorption. The amount of absorption drops as the expansion continues, because
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density and thus xc are dropping, so Tspin rises toward TCMB again; by z ∼ 40 the
absorption is almost gone.

That remains the state of affairs until the first stars and quasars turn on, at
which point Lyman α photons begin to appear. These produce xα � 1, so the
spin temperature becomes locked to the Lyman α colour temperature. However,
the Lyman α photons are also coupled to the gas by collisions, so Tα ≈ TK , and
as a result we have Tspin ≈ TK < TCMB. Thus we see absorption again.

At that point the evolution becomes more uncertain, and measuring it is one of
the goals of the current experiments. Generically, we expect that radiation from
stars and galaxies will start heating up the gas and we will see the 21 cm line in
emission. However, in places the gas is also become ionised, at which point the
signal vanishes. The evolution is a competition between these effects. Eventually
ionisation wins, and the 21 cm signal vanishes.
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