
ASTR 4017/8007: Diffuse Matter in the Universe

Class 4 Notes: Radiation-matter interaction

Now that we have completed our review of the structure of atoms and molecules and de-
veloped a basic machinery to talk about how those atoms and molecules emit and absorb
photons, we are in a position to discuss the statistical properties of radiation-matter interac-
tion. We will first derive some general results that extend our Einstein coefficient framework,
and then write down the equation of radiative transfer and solve it in some simple cases.

I. Relations between Einstein coefficients

Our first goal in this lecture is to derive relationships between the Einstein coefficients.
The three Einstein coefficients are not independent of one another. We can see this
using the same trick as we did for collisions of material particles: considering detailed
balance for a system in LTE. In LTE, both the matter and the radiation field must
follow the Boltzmann distribution (or its slightly modified form for bosons in the case
of the photons). For the matter this implies

nu =
gu
g`
e−hν/kTn`, (1)

and for the radiation

Iν = Bν(T ) =
2hν3

c2
1

ehν/kT − 1
, (2)

where Bν(T ) is the Planck function. Clearly this is independent of direction, so Jν = Iν .
If we approximate φν as a δ function, so that we ignore the variation in Iν over it, then
we have

J =
∫
Jνδ(ν) dν =

2hν3u`
c2

1

ehνu`/kT − 1
. (3)

In LTE, we require that the rate of change of nu and nl be zero, and substituting in
for Iν and nu using LTE, we have

0 =

(
dnu
dt

)
abs.

+

(
dnu
dt

)
stim. emiss.

+

(
dnu
dt

)
spon. emiss.

(4)

= n`B`u
2hν3u`
c2

[
1

ehνu`/kT − 1

]
− n`

gu
g`
e−hνu`/kT

(
Au` +Bu`

2hν3u`
c2

[
1

ehνu`/kT − 1

])
.(5)

This equation is required to hold independent of T . For hνu`/kT � 1, the exponentials
approach 1, so the terms in square brackets are very large, and we can ignore the Au`
term in comparison. This immediately shows us that

B`u =
gu
g`
Bu`. (6)

1



Similarly, for hν/kT � 1, the terms in square brackets become very small, so we can
drop the Bu` term in comparison to the Au` one. Doing so and solving, we find

Bu` =
c2

2hν3u`
Au`. (7)

Thus the value of Au` and the degeneracies and energies of the two levels fully deter-
mines all the Einstein coefficients.

For convenience we sometimes define the dimensionless directionally-averaged photon
occupation number:

〈nγ〉 =
c2

2hν3u`
Jν , (8)

where the brackets indicate that we are dealing with a quantity that has been averaged
over directions. This quantity has the virtue that it allows us to express the emission
and absorption rates very simply:(
dn`
dt

)
spon. emiss.

= nuAu`

(
dn`
dt

)
stim. emiss.

= nu〈nγ〉Au`
(
dnu
dt

)
abs.

=
gu
g`
n`〈nγ〉Au`.

(9)
This definition makes clear that stimulated emission is unimportant when the photon
occupation number is � 1, and dominant when it is � 1.

II. Cross sections and line profiles

It is often convenient to recast the absorption process in terms of a cross section, using
something like the collision formalism we developed earlier in the class. Since each
photon has an energy hν, the number of photons per unit time with frequencies from ν
to ν+dν passing a given point is Jν/hν. Thus, following our example of writing reaction
rates as number density times number density times cross section times velocity, we
define the cross section σ`u(ν) by(

dnu
dt

)
abs.

= n`

∫
σ`u(ν)

4πJν
hν

dν ≈ n`Jν(νu`)
4π

hνu`

∫
σ`u(ν) dν. (10)

Here we are integrating over all photons energies or frequencies, and the factor of
4π is inserted because we are integrating over all directions as well. In the second
step, we have assumed that σ`u(ν) is very narrowly peaked around the frequency ν =
(Eu − E`)/h, so that Jν/hν is nearly constant over the range where σ`u(ν) has any
appreciable value, and we can take it out of the integral. This is almost always the
case, unless the radiation field varies extremely rapidly with frequency.

If we now equate our formula for (dnu/dt)abs in terms of σ`u with our formula with
that in terms of the Einstein coefficients, and do a little re-arranging, we obtain

∫
σ`u(ν) dν =

gu
g`

c2

8πν2u`
Au`, (11)
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where νu` = (Eu−E`)/h is the frequency corresponding to the exact energy difference
between the levels. We therefore define the line profile function φν by

σ`u(ν) =
gu
g`

c2

8πν2u`
Au`φν ,

∫
φν dν = 1. (12)

The function φν contains all the information about how σ`u depends on frequency.
Thus we see that the line profile function we introduced earlier is just a representation
of how the microphysical absorption cross section depends on frequency.

Similarly, considering stimulated emission gives

nuJν(νu`)
4π

hν

∫
σu`(ν) dν =

(
dn`
dt

)
stim. emiss.

, (13)

so we can write

σu`(ν) =
c2

8πν2u`
Au`φν =

g`
gu
σ`u(ν) (14)

Note that we are implicitly assuming that the line profile function φν is the same for
absorption and stimulated emission. To see that this must be true, simply note that,
in LTE, the rates of stimulated plus spontaneous emission must balance the rate of
spontaneous emission at every frequency, and that this must be true independent of the
temperature, which of course changes the functional form of φν . This is only possible
if all three rates have the same frequency dependence.

A. Natural broadening

One might think that σ`u(ν) should be an infinitely sharp δ function; after all, how
can a photon whose energy does not precisely match the energy difference between
the two levels be absorbed? However, that ignores the uncertainty principle:
one cannot precisely determine the photon energy or the exact velocity of the
emitting particle. It also ignores the fact that, even in the absence of quantum
uncertainty, for a population of particles at finite temperature there will be a
range of velocities, and thus the Doppler effect will allow emission and absorption
of a range of frequencies.

First let’s consider the intrinsic quantum effect, which is called natural broaden-
ing. The exact line profile this produces can be computed quantum mechanically
(a full treatment is given in Rybicki & Lightman), but to good approximation
we can write it in a form that resembles the strength of response of a system to
driving near a resonance, which varies as the square of the difference between the
driving and resonant frequencies. This is the Lorentz profile:

φν ≈
4γu`

16π2(ν − νu`)2 + γ2u`
. (15)

Here γu` has units of frequency. The full width at half max of this profile is

(∆ν)FWHM =
γu`
2π
. (16)
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What is the quantity γu`? We can estimate this from the uncertainty principle.
The lifetimes of the upper and lower states are

τu =

∑
j<u

Auj

−1 τ` =

∑
j<`

A`j

−1 . (17)

The uncertainty principle states that ∆E∆t ≥ h̄, or equivalently in terms of
photon frequency ∆ν ∆t ≥ 1/2π. Since ∆t ∼ τu for the upper level, it follows
that ∆ν ∼ 1/τu =

∑
j<uAuj, and similarly for the lower one. In fact, a precise

calculation gives
γu` =

∑
j<u

Auj +
∑
j<`

A`j. (18)

Thus we can compute the natural linewidth from the Einstein A’s.

It is sometimes convenient to think of this width in terms of velocity: what
Doppler shift would be required to produce the same shift in frequency? This is
just (for non-relativistic motion)

(∆v)FWHM = c
(∆ν)FWHM

νu`
=
λu`γu`

2π
, (19)

where λu` = c/νu`. Typical linewidths for allowed UV and optical transitions are
∼ 0.01 km s−1, while for X-ray transitions they can reach ∼ 10 km s−1. The most
prominent example is Lyman α, which has (∆v)FWHM = 0.0121 km s−1.

B. Doppler broadening and the Voigt profile

The second main source of line broadening in the context of the ISM is Doppler
broadening. The effect is simply that the gas has a non-zero velocity dispersion,
so there are a range of atom velocities, each producing a different Doppler shifted
frequency of emission or absorption. In fact, except for X-ray lines, it is almost
always the case that the Doppler width is much greater than the natural width
we have just computed – since gas is usually moving around much faster than
∼ 0.01 km s−1.

For gas with a Maxwellian velocity distribution, the fraction fv of particles with
velocity between v and v + dv is

fv =
1√

2πσ2
v

e−(v−v0)
2/2σ2

v , (20)

where v0 is the mean velocity and σv =
√
kT/m is the velocity dispersion. For

convenience we sometimes use the broadening parameter b =
√

2σv in place of σv.
Since the Doppler shift is simply νu`v/c, the corresponding line profile is

φν =
1√

2πσ2
ν

e−(ν−ν0)
2/2σ2

ν , (21)

4



where σν = (σv/c)νu` and ν0 = νu`(1− v0/c).

In reality, both Doppler broadening and natural broadening operate at the same
time. Every particle at a given velocity emits a line that is naturally broadened.
As a result, the true line profile is a convolution of the Doppler and Lorentz
profiles:

φν =
1√

2πσ2
v

∫ ∞
−∞

e−v
2/2σ2

v
4γu`

16π2(ν − (1− v/c)νu`)2 + γ2u`
dv, (22)

This is known as the Voigt profile. Note the factor of (1−v/c) in the denominator
of the Lorentz profile function, representing the Doppler shift of a particular
particle. For simplicity we have dropped the v0, since we can always choose to
shift our rest frame to one in which the gas is at rest.

The integral cannot be evaluated analytically in general, but we can approximate
it for the most common case γu` � (σv/c)νu`, i.e. where the Doppler width is
much greater than the natural width. In this case the Lorentz profile is much
more sharply peaked than the Doppler profile near v = 0, so for small velocities
we can approximate it by a a δ function, i.e.

4γu`
16π2[ν − (1− v/c)νu`]2 + γ2u`

≈ δ(v − c[1− ν/νu`]) (23)

In this case the integral is trivial, and reduces to simply the Doppler profile we
derived earlier.

However, note that the Doppler profile falls off as (ν − νu`)−2 for frequencies far
away from νu`, whereas the Maxwellian profile falls off as e−v

2
, which is much

faster. For frequencies far from νu`, this means that we can instead think of the
e−v

2/2σ2
v term as a δ(v). In this case the integral is again trivial, and reduces to

the Lorentz profile.

Thus we see that the shape of the Voigt profile is simply a “core” that looks
like a Doppler profile, but with broad “wings” that fall off as (ν − νu`)−2, rather
than e−(ν−νu`)

2/2σ2
ν , as a pure Doppler profile would. We can roughly estimate the

velocity for which the transition between these two shapes occurs by solving for
the velocity / frequency at which the two line profiles are equal. This is given by

4γu`
16π2(v/c)2ν2u` + γ2u`

=
1√

2πσ2
v

e−v
2/2σ2

v , (24)

where in the Lorentz profile we have written the difference in frequency ν − νu`
as (v/c)νu`. For convenience we define the Doppler broadening parameter

b =
√

2σv, (25)

and if we let z = v/b, then the velocity of the core / wings transition is given
implicitly by

ez
2

=
4π3/2b

γu`λu`
z2 +

γu`
4πb

. (26)

5



Since b � γu` for almost all astrophysical applications, we can generally drop
the last term. This still leaves a transcendental equation that cannot be solved
analytically, but the solution is reasonably well approximated by

z2 ≈ 10.31 + ln

[
7618 cm s−1

γu`λu`
b6

]
, (27)

where we have normalized to the value of γu`λu` for Lyman α, and b6 = b/10
km s−1. Since the logarithmic term generally isn’t large (unless we’re dealing
with gas at X-ray temperatues, we see that tend the damping wings dominate the
profile for |z| >∼ 3.2, i.e. for velocities of more than about 4.5 times the velocity
dispersion.

III. Radiative transfer

We are now in a position to discuss the propagation of a beam of radiation through
a material medium, and the interactions that take place as the photons move through
the matter.

A. The transfer equation

Consider a beam of radiation of intensity Iν (where we’ve dropped the argument
list for conciseness) entering a slab of material of thickness ds. On the far side of
the slab, the intensity that emerges is Iν +dIν . The equation of radiative transfer
states that

dIν = −Iνκν ds+ jν ds, (28)

where jν is the emissivity of the material (with units of power per unit volume per
unit frequency per unit solid angle), and κν is the attenuation coefficient (with
units of 1/length).

Suppose now that the dominant emission and absorption processes are line emis-
sion and absorption by atoms and molecules. We can write the emissivity and
attenuation coefficient in terms of the theory we have developed for these pro-
cesses. For simplicity, let us continue to consider a single species with upper and
lower states u and `, and number densities nu and n` for particles in that state.

For emission, recall that the rate of spontaneous decays per unit volume from
state u is nuAu` integrated over all frequencies. The rate at a specific frequency
ν is nuAu`φν . Each emission produces a photon of energy hν. Thus the power
radiated per unit volume is nuAu`hν. In the frame comoving with the emitting
particles, the emission is isotropic, and thus is evenly directed over 4π sr. Thus
the emissivity is

jν =
1

4π
nuAu`hνφν . (29)

If the material is moving this should be corrected for both Doppler shifting and
beaming, although the latter is usually unimportant for non-relativistic flows.
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For attenuation, we must compute the net rate of absorption, i.e. absorption minus
stimulated emission. We can also do this in terms of the Einstein coefficients. The
rate at which stimulated emission produces new photons of frequency ν traveling
in direction n is nuBu`(Iν/4π)φν photons per unit time per unit frequency. Each
photon carries energy hν. Similarly, the rate at which absorption removes photons
from the beam is n`B`u(Iν/4π)φν . Thus the net absorption minus emission rate
is

κν =
hν

4π
n`B`uφν −

hν

4π
nuB`uφν . (30)

Note that this has the right units: 1/length. The Iν is not included because of
the way κν is defined. Recalling the relationship between the B coefficients from
last class, we can rewrite this as

κν = n`
hν

4π
B`u

(
1− g`

gu

nu
n`

)
φν . (31)

The combination that appears inside the parentheses has a specific name. In LTE,
Boltzmann’s law tells us that

nu =
gu
g`
n`e
−Eu`/kT =⇒ g`

gu

nu
n`

= e−Eu`/kT . (32)

We therefore define the excitation temperature of two levels by

e−Eu`/kTexc =
g`
gu

nu
n`
. (33)

Clearly in LTE we have Texc = T , but out of LTE this need not hold. With this
definition, the attenuation coefficient becomes

κν =
hν

4π
n`B`u

(
1− e−Eu`/kTexc

)
φν . (34)

B. Integrating the transfer equation: formal solution and uniform media

It is often convenient to make a change of variables in the transfer equation by
letting

dτν = κν ds, (35)

which turns the transfer equation into

dIν − Iνdτν + Sν dτν , (36)

where

Sν =
jν
κν
. (37)

The equation can be solved formally by isolating the Iν :

dIν + Iν dτν = Sν dτν . (38)
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If we then multiply by eτν on both sides, we can integrate the equation:

eτν (dIν + Iν dτν) = eτνSν dτν (39)

d (eτνIν) = eτνSν dτν (40)

eτνIν(τν)− Iν(0) =
∫ τν

0
eτ

′
Sν dτ

′ (41)

Iν(τν) = Iν(0)e−τν +
∫ τν

0
e−(τν−τ)

′
Sν dτ

′ (42)

It’s worth pausing to understand the physical meaning of this equation. Formally,
it tells us the intensity along some particular ray. On this ray we have marked
some starting point and labelled it optical depth 0, and we want to compute the
intensity Iν at some optical depth τν further along the ray. This has two parts.
The first is the intensity at the starting point, decreased by a factor of e−τν . It
is the radiation entering the slab and being attenuated by it. The second term is
an integral over the radiation that is added by emission within the slab, but also
attenuated by it – radiation from the back of the slab is attenuated by more than
the radiation from the front.

The physical meaning of this equation is perhaps easiest to understand by consid-
ering some special cases. Consider an infinite slab of matter in LTE at temperature
T . The energy levels must therefore have an excitation temperature Texc = T ,
and the radiation field must be equal to the Planck function Iν = Bν(T ). Since
the intensity does not change anywhere, it follows that

dIν = 0 = Bν dτν + Sν dτν =⇒ Sν =
jν
κν

= Bν(T ). (43)

This is another example of the trick we’ve been using for several classes: we
have deduced this equality from LTE considerations, which ultimately come from
nothing more than counting arguments. However, note that Sν = jν/κν is a
function only of local properties of the matter, and thus must hold locally at
every point. This is known as Kirchoff’s Law: for matter in LTE, the emissivity
and attenuation coefficients are related by

jν
κν

= Bν(T ). (44)

If we substitute this into the formal solution to the transfer equation, we have

Iν(τν) = Iν(0)e−τν +
∫ τν

0
e−(τν−τ)

′
Bν(Texc) dτ

′. (45)

Note that Texc can be a function of position, since Kirchoff’s law applies locally.
However, if the temperature inside the slab is constant, the Bν(Texc) comes out
of the integral, and we can evaluate it trivially:

Iν(τν) = Iν(0)e−τν +Bν(Texc)(1− e−τν ). (46)
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The physical meaning of this becomes clear if we consider how the equation be-
haves in the limit of large and small τν . For small τν , the e−τν factor is unity, so
the first term is Iν(0), and the second is zero. Thus the radiation is the same as
what it was on the far side of the slab. On the other hand, for large τν the first
term goes to zero and the second one dominates. This says that the radiation
field simply approaches the Planck function for temperature T = Texc. Thus as
the radiation passes through the matter, it becomes thermalized.

C. Masers

An interesting phenomenon is possible when matter is out of LTE in a specific way.
Under some conditions collisions or radiative processes can lead to a population
inversion, meaning that nu/gu > n`/g`. In other words, there are more particles
in the upper state than one would expect for a Boltzmann distribution at any
temperature. Formally, in fact, in this case the excitation temperature Texc < 0.

Consider what happens as radiation moves through matter in which a population
inversion exists. We cannot use the form of the transfer equation that applies in
LTE, since of course the gas cannot be in LTE if a population inversion exists.
Instead, recall that we showed earlier that

κν =
hν

4π
n`B`u

(
1− g`

gu

nu
n`

)
=
hν

4π
n`B`u

(
1− e−Eu`/kTexc

)
. (47)

If a population inversion exists, then the term in parenthesis is negative, and
the attenuation coefficient is positive. For simplicity, let us consider matter of
negligible emissivity and constant, negative excitation temperature. In this case
the transfer equation becomes

dIν = −Iν dτν =⇒ Iν = Iν(0)e−τν (48)

but with the twist that dτν = −κν ds is negative as one proceeds along the ray, so
the total optical depth is negative as well. This means that the intensity increases
rather than decreases exponentially as radiation propagates through the matter.

This is known as a maser or laser (microwave or light amplified by stimulated
emission of radiation) because the physical origin of the effect is that stimulated
emission adds new photons to the beam faster than absorptions remove them. In
some astrophysical situation the e−τν factor can be very large, and as a result the
intensity can be huge. For some astrophysical sources the brightness temperature
exceeds 1011 K.
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