
ASTR 4017/8007: Diffuse Matter in the Universe

Class 3 Notes: Atomic and molecular levels and lines

Having described the basic process of matter particles interacting with one another, we now
turn to the problem of how matter interacts with radiation. At the low densities of the ISM,
such interactions are almost always governed by resonant processes, coupling photons and
particular energy levels. We must therefore delve into the quantum structure of the atoms
and molecules found in the ISM. Today’s class begins with a review of this topic, followed
by the beginnings of a model for how radiation and matter interact. This is intended as a
whirlwind tour and review, so we are not going to try to prove any of this, and will just assert
results. Our goal is to develop a simple taxonomy of the types of transitions that occur, and
where the corresponding radiation falls in the electromagnetic spectrum, and then to sketch
out a formal machinery to describe these interactions.

I. Atomic structure

A. Electron orbitals

Let’s begin with a review of atomic structure. In quantum mechanics you have all
seen the structure of hydrogen worked out, but in astronomy we are often deal-
ing with multi-electron atoms or ions. Although there are interactions between
the electrons, to good approximation we can think of the electrons as occupying
orbitals with a structure much like the orbitals in which the single electron for
hydrogen can be found.

Each orbital is described by three quantum numbers n, `, and m`. n is the
principal quantum number describing the radial wavefunction and ` is the angular
momentum of the orbit in units of h̄. The ` quantum numbers are designated by
letters s, p, d, f, etc. for ` = 0, 1, 2, 3, . . ., and ` only takes on values ` < n.
Finally, m` is the component of ` along the z axis. It can take on 2` + 1 values:
−`,−`+1, . . . ,−1, 0, 1, . . . , `−1, `. In addition to the quantum numbers describing
its orbit, the electron has a spin of s = 1/2, again in units of h̄, and the z
component of its spin can be ms = ±1/2.

Thus the state of an electron can be fully described by four quantum numbers.
In the absence of a magnetic field, however, only the first two of these affect its
energy. Neither m nor s does, and so all these levels are degenerate. For this
reason, we often refer to an energy level by its value of n and ` alone, keeping in
mind that this refers to 2(2` + 1) distinct states with identical energies. In fact,
as we shall see in a minute, the energies are not always exactly identical.

In terms of energy, the lowest energy level is the 1s (n = 1, ` = 0), followed by 2s
(n = 1, ` = 0), 2p (n = 1, ` = 1), 3s, 3p, 4s, 3d, 4p, 5s, etc. The disposition of the
electrons into levels is referred to as the electronic configuration, to distinguish it
from the arrangements of electrons within a level that we will discuss in a moment.
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In a multi-electron atom, the electronic configuration is limited by the Pauli ex-
clusion principle. No two electrons can have identical quantum numbers. Thus
the ground electronic state consists of putting as many electrons as possible into
the lowest energy orbitals possible without violating the Pauli principle. Each s
level can accommodate 2 electrons (2(2`+1) = 2), each p state 6 electrons, each d
state 10, etc. Thus neutral carbon, with 6 electrons, has a ground state electronic
configuration 1s22s22p2. The superscript indicates the number of electrons in that
orbital.

B. L− S coupling

Multi-electron atoms get somewhat complicated because, when a shell is partially
full, there can be many different ways or arranging the multiple electrons and their
vector angular momenta, and these different arrangements need not have the same
energy. In the L − S coupling approximation, we characterise this configuration
as producing a certain vector sum of electron orbital angular momentum Lh̄, and
a separate vector sum of electron spin angular momentum Sh̄, and the energies
of the levels depend on L and S; note that this is only an approximation, and it
turns out that it is only a good one for relatively light atoms (C, O, N, S, etc.),
where relativistic corrections are small. Once we get to heavier atoms (Fe, Ni,
etc.), where the binding energies of the electrons are an appreciable fraction of
the electron rest mass (511 keV), this approximation fails.

Depending on how we line up the vectors, L can have any value from 0 (if they
cancel perfectly) to ` times the number of electrons (if they align perfectly). As
with the orbital angular momentum, the z component of L can go from −L to L,
so there are 2L+ 1 degenerate levels.

The list of possible values of S depends on the number of electrons. For an even
number of electrons is goes from 0 to half the number of electrons in integer
increments, corresponding to taking every pair of electrons and either adding or
canceling them. For an odd number it is from 1/2 to half the number of electrons,
again in integer increments. As with L, the projection of this onto the z axis can
vary, so the number of degenerate levels is 2S + 1.

To enumerate the various states, we can start to assign possible quantum numbers
to the individual electrons, and work out what is possible given the restrictions
imposed by the fact that we’re dealing with electrons, which are Fermions: no
two electrons can have all the same quantum numbers (i.e., the Pauli exclusion
principle).

It is easiest to see how this works by going through an example. Other examples,
and a table of results, are given in the book. Consider carbon in the ground state
electronic configuration, 1s22s22p2. The first four electrons are in full shells, so
there is no choice in how to arrange them. Every seat is taken.

For the final two electrons, however, there is a choice. Each has an orbital angular
momentum of magnitude ` = 1 (since this is a p level). The z component of this
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could be m` = −1, 0, or 1. In addition, each electron has a spin of magnitude
s = 1/2, and the z component of this could be ms = −1/2 or +1/2. Since there
are 3 possible values of m` and two of ms, there are a total of 6 possible states
for the first electron. The second electron must be in a different state, so it has 5
possibilities. This gives a total of 6× 5/2 = 15 possibilities, with the division by
2 coming from the fact that swapping the two electrons doesn’t change the state.

To enumerate the states, we can now make a table, keeping track of the z com-
ponent of angular momentum for each electrons and for the total, for both spin
and orbit parts, and being careful to obey the quantum mechanical rules – no
two electrons in the same state, and we don’t count two states that would be the
same under exchange of the two electrons as distinct:

Electron 1 Electron 2 Total
m` ms m` ms mL mS

1 1/2 0 1/2 1 1
1 1/2 −1 1/2 0 1
1 1/2 1 −1/2 2 0
1 1/2 0 −1/2 1 0
1 1/2 −1 −1/2 0 0
0 1/2 −1 1/2 −1 1
0 1/2 1 −1/2 1 0
0 1/2 0 −1/2 0 0
0 1/2 −1 −1/2 −1 0
−1 1/2 1 −1/2 0 0
−1 1/2 0 −1/2 −1 0
−1 1/2 −1 −1/2 −2 0

1 −1/2 0 −1/2 1 0
1 −1/2 −1 −1/2 0 −1
0 −1/2 −1 −1/2 −1 −1

We can arrange these by looking at the total z components to get the total L and
S. The table below shows the result. To see how to make it, start by looking at
the highest value of mL, which is 2: we have mL = 2, mS = 0 and mL = −2,
mS = 0. Clearly therefore we must have a state with L = 2 and S = 0, and for
this state ML = −2,−1, 0, 1, 2 – there are (2L + 1)(2S + 1) = 5 such states. We
can go through the table and pick out the five entries with matching quantum
numbers, and group them together; note that there is more than one state with
ML = 0 and MS = 0 to choose, but this doesn’t matter – we can just pick one,
because if the quantum numbers are the same, the states are interchangeable
under the L-S coupling approximation.

Once we have cross off those five, we go to the next highest value of mL left,
which is mL = 1. Thus we must have an L = 1 state, where mL = −1, 0, 1. Of
the remaining entries with mL = 1 or −1, the highest absolute values of mS are
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mS = 1 or −1, so we must have S = 1 as well, with mS = −1, 0, 1. Thus there
are (2L+ 1)(2S + 1) = 9 possibilities. We can group these in the table below.

Finally, we have only one entry left, which has mL = 0 and mS = 0, so that must
be a state with L = 0 and S = 0.

Electron 1 Electron 2 Total Term
m` ms m` ms mL mS L S

−1 1/2 −1 −1/2 −2 0
0 1/2 −1 −1/2 −1 0
0 1/2 0 −1/2 0 0 2 0 1D2

0 1/2 1 −1/2 1 0
1 1/2 1 −1/2 2 0
0 −1/2 −1 −1/2 −1 −1
−1 1/2 0 −1/2 −1 0

0 1/2 −1 1/2 −1 1
1 −1/2 −1 −1/2 0 −1
1 1/2 −1 −1/2 0 0 1 1 3P0,1,2

1 1/2 −1 1/2 0 1
0 −1/2 −1 −1/2 −1 −1
1 1/2 0 −1/2 1 0
1 1/2 0 1/2 1 1
−1 1/2 1 −1/2 0 0 0 0 1S0

A particular value of L and S is called a spectroscopic term, and it is written
2S+1L, where L = S,P,D,F, . . . for L = 0, 1, 2, 3, . . .. Thus the first state we
described for carbon is the 1D, the second is the 3P, and the last is the 1S.

In addition to L and S, for certain purposes we also wish to know the parity of
a state. A state is said to have even parity if the spatial part of the electron
wavefunction is unchanged under the reflection of all electron positions about the
origin. (The total spin plus spatial wavefunction is always anti-symmetric because
electrons are Fermions.) If the wavefunction changes sign under reflection, the
state has odd parity. It turns out that parity is even if the sum of ` over all
electrons is even, and odd of

∑
` is odd. Thus for example the neutral carbon

atom, with electronic state 1s22s22p2, is even: it has two p electrons with ` = 1
and all the other electrons have ` = 0, so the sum of

∑
` = 2. For C+, the ground

electronic state is 1s22s22p1, so
∑
` = 1 and the parity is odd. We indicate parity

in spectroscopic term notation by writing the term as

2S+1Lp, (1)

where p is either the letter o for odd parity, or is omitted for even parity. Thus
the ground state of C is 3P , and that of C+ turns out to be 2P o.

It is important to re-emphasise at this point that a set of spectroscopic terms
applies to a particular electronic configuration. Thus a multi-electron atom may
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have a different set of terms for each possible electronic state.

C. Hund’s rules

So which of these substates we have identified is the lowest energy, and what are
the characteristic energy differences? The answer is given by a set of empirical
rules, known as Hund’s rules. The first two of these are:

1. The largest value of S is the lowest energy state.

2. For states with the same S, the largest value of L is the lowest energy state.

In the example of carbon, the first rule says that the 3P state is the lowest energy,
and the second says that the 1D state is the next-lowest energy, leaving the 1S as
the highest.

We can understand these rules empirically as being all about keeping the electrons
as far apart as possible. The first rule exists because maximising the spins makes
them symmetric, and since the overall wavefunction has to be antisymmetric
(since these are Fermions), the spatial part therefore has to be antisymmetric.
This keeps the electrons as far apart as possible. The second rule exists because,
for a given level of symmetric, the higher the orbital angular momenta of the
electrons, the less time they tend to spend near each other. This also minimises
energy.

Once we understand that these rules are all about keeping the electrons apart,
we can also guess the energy scales involved: they must be comparable to the
typical Coulomb energies of electrons in atom, which is to say a few eV. This puts
the energy differences between the different levels somewhere around the optical
– running roughly from the near-IR to the near-UV.

D. Fine structure

When L > 0 and S > 0, their vector sum can be formed in multiple ways,
depending on how the orbits and the spins align. The total angular momentum
J = L + S, and for a given value of L and S the magnitude of J ranges from
|L− S| to |L+ S|. Thus, for example, our ground 3P state of neutral carbon can
have J = 0, 1, or 2. We denote these states 2S+1LpJ , i.e. 3P0,

3P1, and 3P2 for our
carbon atom.

We sometimes describe L − S states by the number of possible J values they
admit. A configuration with only one possible J value (for example the 1S or 1D
of neutral C) is a singlet, a configuration with two possible J values is a doublet,
three possible J values (such as the 3P of C) is a triplet, etc.

Different J values have slightly different energies due to spin-orbit coupling. The
physical effect can be understood as follows: the electron is held in place by
the electric potential of the nucleus. In the rest frame of the nucleus it has no
magnetic field (in the simplest case). In the frame co-moving with the electron,
however, there is a time varying electric field from the nucleus, and this induces a
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magnetic field. The electron has a magnetic moment, and its energy will depend
on whether this field is aligned or anti-aligned with its spin.

Differences in energy level due to spin-orbit coupling are weaker than those be-
tween different L−S states because the latter are differences in Coulomb energy,
while the former is a magnetic effect. Typical spacings between different J levels
are ∼ 10−2 eV, placing the relevant transitions in the far infrared. Because the
small difference in energies between different terms induces very small splittings
of lines as seen with a spectroscope, this effect is called fine structure.

The ordering of the different energy levels is governed by Hund’s third rule: if the
shell is less than half full, the lowest energy state is the lowest J , and if it is more
than half full it is the highest J . In the case of carbon, this means the 3P0 state is
the lowest energy, and the 3P2 is the highest.

E. Hyperfine structure

Yet another complication is possible. If the nucleus also has a magnetic moment,
each fine structure level may further split due to interactions between the magnetic
field of the nucleus and that of the electrons. Because this is a coupling of two
magnetic dipoles, these splittings are even smaller, typically ∼ 10−6 eV, placing
them in the radio. Splittings due to this effect are known as hyperfine structure.

The quantum numbers describing hyperfine splitting work as follows. We let J be
the electronic angular momentum, and I be the nuclear angular momentum. As
in all the previous cases, these angular momenta add vectorially, allowing multiple
possible magnitudes for the vector sum. We write the magnitude of this sum F .

The most important hyperfine splitting is that of the ground state of hydrogen.
The ground electronic state is 1s1, so ` = 0 and s = 1/2. The corresponding
spectroscopic term clearly has L = 0, S = 1/2, which is 2S1/2. Thus we have
J = 1/2. The proton is also spin 1/2, I = 1/2. Thus we can have F = 0 or
F = 1, depending on whether the proton and electron align or anti-align. The
difference in energy between the levels is 6.7×10−6 eV, corresponding to a photon
with wavelength λ = hc/E = 21 cm.

F. Transition rates and rules

Now that we have worked out the basic structure of atoms, we can develop some
basic rules for the rate of radiative transitions between them. The basic idea is
that an atom in an excited state can spontaneously emit a photon (or several
photons) and drop in energy to a lower level. We’d like to have a general rule
for how quickly this process takes place. The language we use to describe this is
in terms of Einstein coefficients, which we’ll introduce in more detail later in the
class. For now, we will simply define Au`, which has units of inverse seconds, as
the lifetime of a given upper state u for radiative transitions to a lower state `.
In other words, given an atom in state u, after a time t its probability of having
decayed to state ` is 1− e−Au`t. We would like to know what typical values of Au`

6



are. It is important to emphasise that what we develop will be rules of thumb, not
rigorous calculations. In practice transition rates for all but the simplest atoms
must be determined by laboratory measurement.

Atomic transitions can be divided into three categories, with very different tran-
sition rates, based on a set of selection rules. The rules are

• Parity must change

• ∆L = 0,±1

• ∆J = 0,±1, but J = 0→ 0 is forbidden

• Only one single-electron wavefunction n` changes, with ∆` = ±1

• ∆S = 0: spin does not change

If you want to see where these rules come from, see the discussion of selection
rules in a quantum textbook such as Gasiorowicz or Bransden & Joachain. It all
has to do with the value of the matrix element

〈ψu|µr|ψ`〉 (2)

where ψu and ψ` are the wavefunctions of the upper and lower states, and µ is the
electric dipole moment of the system in question. The quantity µr is known as
the electric dipole operator. Via manipulation of spherical harmonics and radial
wavefunctions, one can show that this matrix element vanishes for transitions that
do not satisfy the selection rules.

A transition that satisfies all these rules is called an allowed, or electric dipole,
transition. We write allowed transitions by giving the species undergoing the
transition, then the wavelength, then the spectroscopic terms for the lower and
upper states. An example is

N ii 1084.0 Å
3
P0 − 3Do

1. (3)

For this transition Au` = 2.18 × 108 s−1, so the lifetime of the state is only
1/Au` = 4.6 ns. Such short lifetimes are typical for allowed transitions.

Let’s work through this example to see why it is allowed. First of all, N ii has 6
electrons, just like C i. The lower state of this transition is the ground electronic
state, which is the same as for neutral carbon: ` = 1s22s22p2. Within this
electronic state, the L − S state is 3P0. The upper state of the transition is an
excited state with electron pushed into the 3s orbital: u = 1s22s22p13s1. Within
this electronic state, the L− S state is 3Do

1.

Checking this transition against the selection rules, we see that (1) parity does
change, since we go from an odd to an even state; (2) ∆L = −1, since we go from
a state with L = 2 to one with L = 1; (3) ∆J = −1, since we go from a J = 1
state to a J = 0 one; (4) one electron wavefunction does change from ` = 0 to
` = 1, so ∆` = −1; (5) spin does not change, since we go from a state with S = 1
to another with S = 1. Thus this transition satisfies all the selection rules.
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A transition that satisfies all the rules except ∆S = 0 is called a semi-forbidden
transition, or an intercombination or intersystem transition. This is indicated
using the same notation as for allowed transitions, but with a right bracket after
the transition. An example is

N ii] 2143.4 Å
3
P2 − 5So

2. (4)

For this transition Au` = 1.27× 102 s−1, corresponding to a lifetime 1/Au` = 7.9
ms. Obviously this is much longer than for an allowed transition, by a factor of
∼ 106, and this is typical of semi-forbidden transitions.

Again, let’s work through the transition to see why it is semi-forbidden. The lower
state is the ground electronic state ` = 1s22s22p2, with L− S state 3P2, and the
upper state is u = 1s22s12p3 5So

2. Checking we see that (1) parity changes from
odd to even; (2) ∆L = 1; (3) ∆J = 0, but this is not a J = 0→ 0 transition; (4)
on electron wavefunction goes from ` = 1 to ` = 0, so ∆` = −1; (5) we go from
S = 2 to S = 1, so ∆S 6= 0. Thus we satisfy all selection rules but the spin one.

The third type of transition is a forbidden one. This is a transition that violates
at least one selection rule other than ∆S = 0. These are generally magnetic
dipole or electric quadrupole transitions, where the operator in the inner product
of wavefunctions is not proportional to r. These are denoted by putting left and
right square brackets around the species, for example

[N ii] 6549.9 Å
3
P1 − 1D2. (5)

This transition has Au` = 9.2×10−4 s−1, so the lifetime is 1.1×103 s, or about 20
minutes. Lifetimes for forbidden transitions can vary widely, from a few seconds
to of order an hour.

This example has ` = 1s22s2p2 3P1 and u = 1s22s22p2 1D2. Thus it violates the
selection rule that a single electron wavefunction must change by ∆` = ±1 (since
there is no change), and it also violates the rule that the parity must change.

One might think that, given the slow decays and long lifetimes of forbidden tran-
sitions, they would be unimportant. In fact, for reasons of radiative transfer we’ll
discuss later in the class, quite the opposite turns out to be true. Forbidden lines
are often the most important, both in terms of gas cooling rates and in terms of
observations. A famous example is the line [C ii] 158 µm 2P1/2 − 2P3/2, which
turns out to be the dominant cooling channel in the atomic ISM.

II. Diatomic molecules

A. Rotation

We will go over molecular structure in much less detail, and you can refer to
the textbook for a detailed description. The only topic we will cover here is the
simplest case of a diatomic molecule, the most astrophysically important of which
are CO and H2.
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In addition to transitions due to changes in electron energy levels, diatomic
molecules support two types of levels / transitions: rotational and vibrational.
Consider a diatomic molecule of consisting of nuclei of masses m1 and m2 and
charges Z1 and Z2 separated by a distance rn. First consider rotations of the
system. As long as the rotation is slow compared to the typical speeds of elec-
trons, which is almost always the case, the electron energies are unaffected. The
electrons also have negligible inertia compared to the nuclei. Thus we only need
to worry about the rotational kinetic energy of the nuclei. The rotation point is
the center of mass of the system, which is at a distance r1 = rnm2/(m1 +m2) and
r2 = rnm1/(m1 +m2) from each of the two nuclei. The energy of a classical rigid
rotator is J2/(2I), where I is the moment of inertia, given by

I = m1r
2
1 +m2r

2
2 =

[
m1m

2
2

(m1 +m2)2
+

m2
1m2

(m1 +m2)2

]
r2n = mrr

2
n, (6)

where mr = m1m2/(m1 + m2) is the reduced mass. The quantum mechanical
equivalent system is characterized by a quantum number J giving the angular
momentum in units of h̄. The corresponding energy is

Erot =
J(J + 1)h̄2

2mrr2n
. (7)

We define

Bv =
h̄2

2mrr2n
(8)

as the rotation constant for a molecule, with the subscript v indicating the vibra-
tional state, which we’ll discuss next.

Numerically,

Bv = 2.1× 10−3
(
mH

mr

)(
1 Å

rn

)2

eV = 24
(
mH

mr

)(
1 Å

rn

)2

K · k. (9)

Thus we expect most rotational transitions to fall somewhere in the infrared to
the radio, depending on the exact value of mr and rn. In practice mr tends to
vary much more than rn, so it mostly dictates the rotation constant, with lower
mass molecules having higher rotation constants, and thus larger level spacings.
For example H2, with reduced mass mH/2, has an energy difference between its
ground and first excited rotational level of E/k = 170 K. In comparison CO, with
mr = 6.9mH, has level spacing E/k = 5.5 K.

Before moving on to vibration, we should note that this energy level structure is
only approximate. The molecule is not perfectly rigid, and at high J it tends to
stretch out, so rn is increases. This reduces the energy of high J levels compared
to what one would find for fixed rn, reducing the level spacing.

B. Vibration
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Now let’s consider the other way the nuclei could move: radially toward or away
from one another, in a vibration. The nuclei create a Coulomb potential in which
the electrons move, and in this potential the electrons can have wavefunction
ψq with energy Eq, with q being the quantum number of the electronic state.
Both ψq and Eq are functions of the separation rn. If changes in rn are slow
compared to the electron velocities (which is, again, almost always the case), the
eigenstates and eigenenergies change adiabatically. We can therefore define an
effective potential for the internuclear separation

Vq(rn) = Eq(rn) + Z1Z2
e2

rn
, (10)

where the second term represents the Coulomb repulsion of the two nuclei.

The potential Vq(rn) clearly has a minimum at some separation r0, corresponding
to the favored nuclear separation. In the vicinity of this minimum we can expand
the potential in a Taylor series:

Vq(rn) = Vq(r0) +
1

2
k(r − r0)2, (11)

where k is a constant that depends on the shape of the potential, and is related
to the strength of the chemical bond. This is the potential is a simple harmonic

oscillator, and the fundamental frequency of the oscillator is ω =
√
k/mr. The

levels have energies

Evib = h̄ω
(
v +

1

2

)
, (12)

where v is the vibrational quantum number. The level spacing is h̄ω, so we expect
the level spacing to be largest for strong bonds (high k) between low mass (low
mr) nuclei. In practice it turns out that mr varies by much more than k, so to
first order the level spacing depends mostly on the masses of the nuclei.

It is important to point out that the energy structure for the vibrational levels is
only approximate, since it relies on a Taylor expansion of the separation potential.
This breaks down when rn is significantly different than r0, as is the case for higher
vibrational levels. In practice this means that for v larger than a few, the levels
tend to be more closely spaced than for smaller v.

Combining rotational and vibrational modes, the molecule has quantum numbers
v and J , and the energy of a given (v, J) state is

Eq(v, J) = Vq(r0) + h̄ω
(
v +

1

2

)
+BvJ(J + 1), (13)

where Vq(r0) is the binding energy of the molecule in its ground state, and the
subscript q is to remind us that this calculation applies to a particular electronic
state q. Different electronic states have different rotational-vibrational spectra.

As a general rule h̄ω � Bv, so that the rotational levels for a given v are much
close together than the vibrational ones. This is easy to understand. Rotational
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excitations don’t disturb the electrons, and just involve moving the nuclei, whereas
vibrational ones do perturb the electron wavefunctions. Generally the more inertia
a system has the more closely spaced its levels, and the nuclei have vastly more
inertia than the electrons. As a result of this difference, vibrational transitions
tend to fall in the near infrared for hydrogen, or the mid- to far-IR for more
massive molecules.

C. Transition rates and rules

1. Rotational transitions of heteronuclear molecules

The types of rotational transitions that a molecule can undergo depend
strongly on whether it is heteronuclear or homonuclear, meaning two different
nuclei or two of the same nuclei. This makes a difference because a heteronu-
clear molecule has a permanent dipole moment µ, while a homonuclear one
does not. Let’s take the heteronuclear case first.

For pure rotational transitions of a rotating dipole, it is possible to show using
perturbation theory that the Einstein coefficient for electric dipole transitions
from level J to level J − 1 is

AJ,J−1 =
128π3

3h̄

(
Bv

hc

)3

µ2 J4

J + 1/2
, (14)

where Bv is the rotation constant for the transition. This is of course related
to the energy of the transition as we outlined before, so if one knows the
energy and J for a given transition, one can compute Bv. In fact, one can get
most of this result (up to some constants) semi-classically, but just estimating
the power radiated by a rotating dipole.

For the CO molecule, Bv and µ have values such that

AJ,J−1 = 1.07× 10−7 J4

J + 1/2
s−1. (15)

Thus the lifetime of J = 1 state is quite long: 1.4× 107 s, or about 5 months.
This is on the weak side for rotational transitions, but even stronger ones
generally have quite long lifetimes compared the lifetimes of excited states of
atoms. This is again a result of the transitions in atoms involving electrons,
while the rotational transitions involve nuclei which have much more inertia.

2. Rotational transitions of homonuclear molecules: H2

For the homonuclear case there is no permanent dipole moment (although one
can be induced when the molecule is deformed by a collision – a process that
is usually unimportant a interstellar densities). As a result all transitions are
much, much slower.

The case of H2 deserves special attention, since it is by far the most common
molecule in the ISM. For H2, the two protons are identical fermions, and
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they must also obey the Pauli exclusion principle. (This is not true of all
homonuclear molecules, since the nuclei can be either fermions or bosons).
The protons both have spin 1/2, so the total nuclear spin of the molecule can
be I = 0 or I = 1, depending on whether they are parallel or anti-parallel. As
a consequence of the Pauli exclusion, for reasons we won’t get into, if I = 0
then the rotational angular momentum quantum number of the molecule J
must be even. This state is called para-H2. If I = 1 then only odd J states
are allowed. This is called ortho-H2.

Because the nuclear spins are not strongly coupled to the electromagnetic
field, these species cannot radiatively flip from one to the other at any ap-
preciable rate. Instead, conversions between the two forms happen only via
collisions, which are rare at ISM densities. Thus the species are effectively
decoupled.

This structure implies that transitions where ∆J is odd are strongly disal-
lowed, since they would require radiative conversion between para- and ortho-
forms. This does not happen at any appreciable rate. Instead, only ∆J = 0
(but ∆v 6= 0) or ∆J = ±2 transitions occur at any reasonable rates, although
these too are very slow. This plus the large level spacing of H2 has important
consequences for the observability of molecular hydrogen. The lowest energy
excited state that has a downward radiative transition is v = 0, J = 2, and
this state has an energy E/k = 511 K above ground. Thus in any piece of
interstellar gas significantly colder than this, and where there are no photons
flying around capable of exciting the H2, there are essentially no radiative
transitions from H2, making it unobservable in emission. Instead, direct de-
tections of H2 either must focus on rare regions where the gas is warm or
illuminated by photons, or on absorption measurements.

III. Radiation-Matter Interaction

Now that we have reviewed the quantum mechanical structures of atoms and molecules,
we are in a position to develop a theory of how those levels interact with photons. We
will first develop a description of the radiation field, and then develop a model for how
radiation and matter couple. Since this is covered in the astrophysical processes course
(among other places), we will simply assert things here, rather than prove them.

A. Describing the radiation field

A radiation field is most easily described in terms of the radiation intensity
I(ν,n, r, t). The intensity gives the amount of radiant energy per unit area per
unit frequency per unit solid angle. It is a function of time t, the position in space
r, the direction n, and the frequency ν. Intuitively, we can understand what the
intensity is telling us as follows: suppose we were to place a detector at some
position r in space at some time t. This detector has a collecting area dA, and it
is sensitive to light only within some narrow frequency range from ν to ν + dν.
In addition, the detector is directional: it only picks up radiation coming from
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a small range of solid angle dΩ about a particular direction n. If we turn the
detector on for a time interval dt, then the amount of energy dE that it receives
will be

dE = I(ν,n, r, t) dAdν dΩ dt. (16)

If a region is in local thermodynamic equilibrium, then one can show that the
intensity is equal to the Planck function

Iν = Bν(T ) =
2hν3

c2
1

exp(hν/kT )− 1
(in LTE). (17)

Note that this is independent of n, because if the radiation field varies by direction,
then it can’t be in equilibrium.

Alternate descriptions of the radiation field include the photon occupation num-
ber,

nγ(ν,n, r, t) =
c2

2hν3
I(ν,n, r, t), (18)

the brightness temperature

TB(ν,n, r, t) =
hν/k

ln[1 + 2hν3/c2I(ν,n, r, t)]
, (19)

and the antenna temperature

TA(ν,n, r, t) =
c2

2kν2
I(ν,n, r, t). (20)

Clearly all of these are equivalent. They each has a different physical interpreta-
tion. The photon occupation number is dimensionless, and measures the number
of photons per polarization mode at a given point. It is the natural quantum
mechanical description of the radiation field, since in quantum mechanics the ra-
diation field may be considered a harmonic oscillator, and nγ just corresponds to
the quantum number describing its oscillation. The brightness temperature is a
the temperature of a blackbody that has an intensity equal to the given intensity,
for a given time, position, direction, and frequency. Finally, the antenna temper-
ature is an approximate form of the brightness temperature, which has the virtue
of being linear, and which is the same as the brightness temperature whenever
kT � hν, which is usually the case at radio frequencies.

The intensity or its equivalents describe all their is to know about the radiation
field (except polarization – we could have two different intensities for two different
polarizations, but for simplicity we’ll neglect that). Often this is more information
than we need, and instead we care only about certain averages of the intensity.
One such commonly-used average is the frequency-integrated intensity

I =
∫
Iν dν. (21)
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This is the quantity that is relevant when we don’t care about the frequency of
the radiation. In some other circumstances we might not care about the direction
n, so we integrate over it. We define

Jν =
1

4π

∫
Iν dΩ (22)

as the directionally-averaged intensity.

These averages are closely related to more familiar physical quantities. In partic-
ular, suppose that we are interested in the energy density in the radiation field.
This is given by

uν =
1

c

∫
I(ν,n, r, t) dΩ =

4π

c
Jν . (23)

You can verify for yourself that this has the correct units. To understand where it
comes from intuitively, first note that we clearly want to average over directions,
since we only want to know the total energy density at a point. To understand
where the 1/c factor comes from, suppose that instead of photons we were describ-
ing some other particle traveling at half the speed of light. We are holding the
intensity fixed, so that the same number of ergs per second of these particles pass
a given point – they’re just traveling half as fast. Clearly they must therefore be
bunched up twice as closely as the photons, so the density will be twice as high.
This is the effect that the 1/c captures.

Higher moments of Iν give the radiation flux (first moment), the radiation pressure
tensor (second moment), and so forth.

B. Einstein coefficients

(Important caution: in this section we introduce the Einstein coefficients, and
there are two different conventions as to how the Einstein B coefficients are de-
fined. Here we follow the convention that Rybicki & Lightman uses, in which they
are defined relative to the radiation intensity. Draine uses the opposite conven-
tion, in which they are defined relative to the radiation energy density. Draine’s
definition of the B coefficients may be obtained by taking the ones we compute
here and multiplying by a factor of c/4π. The Einstein A coefficient does not
contain this ambiguity, and is the same in either convention.)

Consider a particle of species X with lower and upper energy levels X` and Xu,
with energies E` and Eu. If a member of this species is in state `, it can absorb
a photon and transition to state u:

X` + hν → Xu, hν = Eu − E`. (24)

Suppose we now have a population of members of species X in state X` with
number density n`, and that this population interacts with a population of photons
of intensity Iν . Photons with frequencies near hν = Eu−E` can be absorbed. We
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define the line profile function φν as giving the relative probability that a photon
of frequency ν will be absorbed, and we normalise so that∫

φν dν = 1. (25)

For now we can think of φν as closely approximating a δ function at frequency
νu` = (Eu − E`)/h, and we will calculate its true form later.

As with any other collisional process, the rate at which collisions between particles
and photons produce transitions must be proportional to the number density of
target particles times the number density of photons in the beam. Thus we write
the rate at which photons are absorbed is(

dnu
dt

)
abs.

= −
(
dn`
dt

)
abs.

= n`B`uJ, where J =
∫
Jνφν dν, (26)

since the photon number density at frequencies near ν where they can be absorbed
is proportional to J . B`u is the rate coefficient for this absorption. In cgs it has
units of cm2 erg−1. This type of rate coefficient has a special name: B`u is the
Einstein absorption coefficient for this transition.

B`u can be calculated quantum mechanically using a semi-classical approach; one
treats the radiation field classically, as an oscillating electrical and magnetic field,
and uses perturbation theory to compute the probability of the atom undergoing
a change in state due to the perturbation. In practice these calculations are ana-
lytically tractable only for the very simplest atoms, and are numerically tractable
only for slightly more complex ones. For most complex multi-electron atoms and
molecules, however, the absorption rate must be measured in the lab.

In addition to absorption, two other types of transition are possible. First, a
particle in the excited state u can spontaneously decay to state `, emitting a
photon:

Xu → X` + hν. (27)

The rate at which this happens per unit volume simply depends on the number
density of particles that can emit:

−
(
dnu
dt

)
spon. emiss.

=

(
dn`
dt

)
spon. emiss.

= nuAu`, (28)

where Au`, which we introduced in the last class, is a constant with units of s−1.
It is called the Einstein spontaneous emission coefficient, or just the Einstein A
coefficient.

Finally, there is another emission process. Just as a time-varying electromagnetic
field can induce a particle in state ` to transition to state u by perturbing it, the
reverse is true: a particle in state u can be induced to transition to state `:

Xu + hν → X` + 2hν. (29)
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The extra photon has the same direction (and phase and polarization) as the one
that induced the emission. This process is known as stimulated emission. The
stimulated emission rate must have the same functional form as the absorption
rate, since it is essentially the same process in reverse. Thus we write

−
(
dnu
dt

)
stim. emiss.

=

(
dn`
dt

)
stim. emiss.

= nuBu`J, (30)

Here Bu` has the same units as B`u, and is called the Einstein stimulated emission
coefficient.
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