
ASTR 4017/8007: Diffuse Matter in the Universe

Class 20 Notes: Molecular Gas: Giant Molecular Clouds and Star Formation

Now that we understand how H i turns into H2 and C ii to CO, we can study the regions
where this transition has occurred and the gas is mostly molecular. In the Milky Way about
a quarter of the gas mass inside the Solar circle is in this phase, although the volume occupied
by this gas is essentially zero due to its high density. Most of this mass is in the form of
giant molecular clouds with masses ∼ 104 − 106 M�. It is these objects that we will discuss
today.

I. Molecular cloud properties

A. Bulk properties

We can determine column densities of molecular clouds using the CO molecule,
via the technique we described earlier in the class. Both the entire Milky Way
disk and the disks of several other galaxies have been completely mapped in CO
J = 1 → 0, J = 2 → 1, J = 3 → 2, or in more than one of these lines. From
these maps, we see that molecular gas tends to appear in the form of clouds that
sit on top of regions of dense H i.

These clouds have masses ranging from ∼ 104 − 106 M�, with a mass spectrum
dN/d lnM ∝M−γ with γ ≈ 0.5− 0.8 (Rosolowsky 2005). This means that most
of the mass is in large clouds, though not by much: γ = −1 corresponds to equal
mass per decade in cloud mass.

The mass scale of molecular clouds is thought to be related to the Toomre mass
in a galaxy, though this is not certain. The Toomre mass is defined as (λT/2)2Σ,
where λT is the unstable wavelength for a marginally Toomre stable disk, Q =
1. Recall from our analysis of the Toomre instability that the most unstable
wavenumber is

k =
πGΣ

σ2
, (1)

and when Q = 1 this is the only unstable wavelength. (Formally it is marginally
stable, in the sense that ω = 0 for this k, so perturbations are on the edge between
growth and oscillation. Thus the Toomre mass is

MT = Σ
(π
k

)2

=
σ4

G2Σ
= 7.0× 106σ4

6Σ−1
10 M�, (2)

where σ6 = σ/6 km s−1 and Σ10 = Σ/10 M� pc −2. This is close to the mass
of the most massive molecular clouds. Smaller ones, which are a minority of the
mass, might form by fragmentation of the larger ones.

These clouds have column densities Σ ≈ 100 M� pc−2 independent of cloud mass.
In contrast, the mean column density of the ISM is the Milky Way is about an
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order of magnitude lower, ∼ 10 M� pc−2. The origin of this column density scale,
which seems to be invariant from galaxy to galaxy (at least for the nearby galaxies
within which we can resolve individual molecular clouds), is debated.

B. Temperature

One distinguishing characteristic of molecular clouds is that they are very cold,
typically ∼ 10 K. Observationally, we determine this using temperature-senstiive
molecules like ammonia. This is for reasons related to both heating and cooling.
On the heating side, recall that the grain photoelectric effect is the main source
of heating in the diffuse ISM. In molecular clouds, however, the parts of the ISRF
in optical and UV light are largely blocked, so there is no grain photoelectric
heating. There is only cosmic ray heating, at a rate Γcr ≈ 10−27nH erg s−1, about
an order of magnitude below the rate of photoelectric heating in the diffuse ISM.

On the cooling side, CO is an extremely effective coolant. Figuring out the exact
cooling rate is complicated by the fact that molecular clouds are extremely op-
tically thick in the low J CO rotational lines. This reduces the ability of these
lines to cool, since it means that most photons emitted in them do not escape
the cloud, and instead simply deposit their energy elsewhere in a cloud’s interior.
Higher J lines are optically thin, but relatively few molecules are excited into
these states, so they provide little cooling. Thus a detailed calculation of the
cooling rate requires including radiative transfer effects, which of course depend
on the cloud size and geometry. However, the result of these calculations is that
the total cooling rate turns out to be dominated by the lowest rotational level J
for which the J → J − 1 is not optically thick. For the conditions in molecular
clouds, this turns out to be J = 5 most of the time.

Given this result, we can estimate the equilibrium temperature by computing the
cooling rate due to CO collisional excitation. We will do so by approximate that,
since the level we are interested in is on the edge of being optically thick, we will
approximate that its population is not far from the value we would expect if it
were in LTE. However, we will also adopt an escape probability of unity, since the
line is marginally optically thin. Thus the cooling rate per unit volume from CO
molecules transitioning from state J to state J − 1 is

ΛCO = nCOAJ,J−1
e−EJ/kT

Z
(3)

where nCO is the number density of CO molecules, AJ,J−1 is the Einstein A co-
efficient for this transition, EJ is the energy of level J , and Z is the partition
function of the CO molecule.

To remind you, for a heteronuclear diatomic molecule the energies and degenera-
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cies of the rotational levels and the Einstein A’s between them are

EJ = BvJ(J + 1) (4)

gJ = 2J + 1 (5)

AJ,J−1 =
128π3

3h̄

(
Bv

hc

)3

µ2 J4

J + 1/2
, (6)

where Bv is the rotation constant for the molecule and µ is its dipole moment.
For CO, Bv/h = 57 GHz for the ground vibrational state, and µ = 0.11 Debye
(= 1.1 × 10−11 esu·Å). Plugging these into the formula for the cooling rate and
simplifying a bit, for the CO J → J − 1 transition we obtain

ΛCO = 5.3× 10−23nCO
J5

2J − 1

(
Bv

kT

)
exp

[
−J(J + 1)

(
Bv

kT

)]
erg s−1. (7)

Equating the rates of heating and cooling for J = 5, we find that

Bv

kT
exp

(
−30

Bv

kT

)
= 1.8× 10−4 ΓCR,−27

x(CO)−4

, (8)

where x(CO) = nCO/nH, x(CO)−4 = x(CO)/10−4, and ΓCR,−27 = ΓCR/(10−27nH).
The solution to this transcendental equation for the fiducial parameters is T =
11.4 K. Due to the−30 in the exponential factor, the result is extremely insensitive
to either x(CO) or ΓCR; changing the ratio by a factor of 10 leads to only ∼ 50%
variations in T .

Thus we always expect molecular clouds to have temperatures around 10 K unless
there is some strong local heat source, e.g. a star putting out a lot of infrared light
that heats up the dust.

C. Turbulence and self-gravity

One might think that molecular clouds’ low temperatures would give them small
linewidths, but that is not the case. Instead, linewidths of molecular clouds
typically indicate velocity dispersions of several km s−1, whereas the sound speed
in 10 K molecular gas is cs =

√
kT/µ = 0.18 km s−1, using a mean particle

mass µ = 2.3mH, appropriate for the standard He abundance when all the H is
molecular. This means that the gas in molecular clouds is highly supersonic, with
Mach numbers >∼ 10.

The velocity dispersion seems to depend on the size of the cloud being measured:

σ ∝ Lp, (9)

with p ≈ 1/2. Solomon et al. (1987) find for galactic GMCs

σ ≈ 0.72(R/pc)0.5 km s−1, (10)
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where R is the cloud radius. (Note: Draine gives a slightly different relation
from Larson (1981); it is different in part because it is based on earlier data, but
also because Bruce uses 3d velocity dispersions, while I am using the 1D velocity
dispersions more commonly used in observational work. They differ by a factor
of
√

3.)

Typical GMCs are tens of pc in radius and have velocity dispersions of several km
s−1, but smaller clouds, or smaller regions within clouds, have velocity dispersions
that are smaller. Relations of this form are known as linewidth-size relations, and
are expected for either subsonic or supersonic turbulence, for reasons that you
will have to take the star formation class to hear about.

The existence of the common surface density and the linewidth-size relation has
an important implication for the role of gravity in GMCs. From the virial theorem
one can show that a uniform-density sphere of radius R and mass M that is in
virial balance between internal pressure (turbulent or thermal) and gravity has a
velocity dispersion

σ2 =
GM

5R
. (11)

We define the virial parameter of a cloud by

α =
5σ2R

GM
. (12)

A value α = 1 corresponds to a cloud that is confined entirely by self-gravity;
larger values of α require either that the cloud be out of equilibrium, or that it
be confined by external pressure.

If we adopt a linewidth size relation σ = σ0(R/R0)1/2, as the observations suggest,
then we have

α =
5σ2

0R
2

GR0M
=

5σ2
0

πGR0Σ
, (13)

where Σ = M/πR2 is the cloud surface density. Since σ0, R0, and Σ are the same
from cloud to cloud, this means that α is as well. Moreover, if we plug in Σ = 100
M� pc−2, σ0 = 0.72 km s−1, and R0 = 1 pc, as observed, then we obtain α = 1.9,
meaning that, within the errors, molecular clouds are confined by self-gravity.

These three results – that molecular clouds have constant surface densities, that
they obey a linewidth-size relation with an index near 1/2, and that they are
self-gravitating – are known as Larson’s Laws. He first proposed them in a paper
in 1983. Only two are independent, and the third can always be deduced from
the other two.

D. Pressure balance

The self-gravitating nature of GMCs also has important implications for their
place in the ISM. Recall that we showed that for isothermal gas in a slab geometry,
the midplane pressure is related to the gas surface density by

P =
π

2
GΣ2. (14)
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In spherical geometry the coefficient is not π/2, but the same basic relation applies
P ≈ GΣ2, with a coefficient of order unity.

Molecular cloud surface densities are a factor of ∼ 10 greater than the surface
densities of the ISM as a whole, and this means that their internal pressures are
a factor of 100 greater. The typical pressure in a GMC is P/k ≈ 3× 105 K cm−3,
compared to around 3000 K cm−3 in as the mean of the ISM.

The implication of this result is that molecular clouds are not in pressure balance
with the rest of the ISM. In this sense they are more like stars than like other
components of the ISM, and for exactly the same reason. Stars are gaseous entities
too, and they have surface pressures, but they do not contribute to the pressure
balance of the ISM because they are self-gravitating, and their pressure is entirely
offset by their gravity. Our result indicates that the same general statement
applies to molecular clouds. They contribute gravity but not pressure, and they
act like collisionless particles in the larger dynamics of the galactic disk.

E. Magnetic fields

In addition to their high pressures and Mach numbers, molecular clouds have
strong magnetic fields, as measured by Zeeman splitting of Zeeman-sensitive
molecules such as OH and CN. Magnetic field strengths range from tens of µG in
relatively low density regions to mG in dense regions. The magnetic field strength
correlates with the gas density and velocity dispersion as

B ∝ σ
√
ρ (15)

The best fit, from Basu (2000) based on data from Crutcher (1999), is

B = 6.1σ1n
1/2
2 µG, (16)

where σ1 = σ/1 km s−1 and n2 = nH/100 cm−3.

The implication of this becomes clear if we compute the Alfven speed this implies:

vA =
B√
4πρ

=
B0/σ0√

4πρ0

σ. (17)

Thus we see that the observed correlation implies that the Alfvenic Mach number
of molecular clouds is roughly constant:

MA =
σ

vA
≈ B0/σ0√

4πρ0

= 1.1. (18)

Thus we see that the observed turbulence in molecular clouds is trans-Alfvenic.

In fact, this can be understood naturally from the physics of MHD turbulence.
Suppose one started with a turbulent medium where the turbulence was highly
super-Alfvenic. In this case the magnetic pressure is weak compared to the ram
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pressure of the turbulent flows. In this case, however, the turbulence has no prob-
lem twisting and tangling the magnetic field lines. When this happens, though,
the magnetic field strength is amplified. The result is that an initially weak field
can be amplified – this is called a turbulent dynamo. The amplification pro-
cess stops when the magnetic pressure and tension are sufficient to resist further
twisting of the field, and this is equivalent to the condition that MA ∼ 1.

II. Molecular cloud collapse and star formation

Probably the most interesting aspect of molecular gas is that it is the phase of the ISM
associated with star formation. We will only very briefly touch on this phenomenon
here, in order to understand why GMCs are the sites of star formation.

A. The virial theorem

Since molecular clouds are gravitationally bound structures, as we showed last
time, their evolution depends on the contest between self-gravity and other forces
that oppose collapse. This can be described in many ways, but perhaps the most
powerful is via the virial theorem, a sort of integrated form of the equations of
motion. We will not prove the theorem in this class, but you will see the proof if
the take the star formation class, so we simply assert the result here:

1

2
Ï = 2(T − TS) + B +W − 1

2

d

dt

∫
S

(ρvr2) · dS. (19)

This is the Eulerian form of the theorem. so I is the moment of inertia of the
material within some fixed surface S, T its its total kinetic plus thermal energy, TS
is the integrated pressure on its surface, B is the magnetic energy in the volume,
W is the gravitational potential energy, and the last term represents the change
in moment of inertia due to fluxes of material across the edge of the volume.

Looking at this equation, we can see that there are two terms that tend to make Ï
positive, and thus promote expansion, two terms that make it negative and there-
fore promote collapse, and one term that could go either way. The expansionary
terms are T and B, while the compressive ones are TS andW (since gravitational
potential energy is negative). The mass flux term could be either depending on
whether mass is entering or leaving the volume.

Physically, the two expansionary terms represent the influence of thermal and ram
pressure, and magnetic pressure, while the two compressive ones represent exter-
nal pressure and self-gravity. The fact that our analysis from last time indicates
the molecular clouds are self-gravitating implies that the gravitational term is the
more important of these two, although formally we must include both. We will
compare the gravitational term to the other terms as a way of estimating when a
molecular cloud can be stable against collapse.

B. Thermal pressure support
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Let us first compare the gravitational term to the kinetic one, first assuming only
thermal pressure. To make this definite, we will consider a spherical region of
mass M and radius R, bounded by an external pressure p0. The gravitational
self-energy of a sphere is

W = −3

5
a
GM2

R
, (20)

where a is a constant that depends on the internal density distribution; for a
uniform sphere a = 1.

The kinetic term is

T =
3

2

∫
P dV =

3

2
c2
s

∫
ρ dV =

3

2
Mc2

s, (21)

where we have taken the gas to have a constant sound speed cs.

Finally, the surface term is

TS =
1

2

∫
p0r · dS = 2πR3p0. (22)

Plugging these in, the condition for stability, Ï = 0, implies that

0 = 3Mc2
s − 4πp0R

3 − 3

5
a
GM2

R
=⇒ p0 =

1

4πR3

(
3Mc2

s −
3

5
a
GM2

R

)
.

(23)

Now consider what this tells us about the relationship between p0 and R for a
cloud of fixed mass. Clearly p0 = 0 if R = Rmin = aGM/5c2

s, and for larger R the
external pressure p0 has a positive values. However, in the limit R→∞, we also
have p0 → 0. Thus p0 much reach a maximum for some value of R between Rmin

and infinity. Solving for this maximum by taking dp0/dR = 0, we can find this
maximum:

p0,max =
3453

45π

c8
s

a3G3M2
. (24)

We can now turn this argument around: for a given external pressure p0, there
exists a maximum mass M for which the cloud can be in equilibrium – for larger
masses we would have p0 > p0,max. Plugging this in, we have

Mmax =
225

32
√

5π

c4
s

(aG)3/2

1
√
p0

= 0.26

(
T

10 K

)2(
106 cm−3 K

p0/k

)1/2

M�, (25)

where in the numerical evaluation we have used a = 1.67, the numerical result
from a more rigorous calculation. This is known as the Bonnor-Ebert mass. Thus
at the typical pressures and temperatures in a GMC, any blob of gas larger than
∼ 0.25 M� cannot be held up against gravitational collapse by thermal pressure.
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C. Magnetic support

OK, if thermal pressure can’t support molecular clouds, how about magnetic
fields? We will consider a spherical cloud of radius R and mass M , now threaded
by a uniform magnetic field B. For simplicity we will assume that the magnetic
field outside the cloud is negligible compared to that inside it, and we will assume
perfect flux freezing, which is a good assumption except on small scales. In this
case the magnetic term in the virial theorem is

B =
1

8π

∫
V

B2 dV +

∫
S

x ·TM · dS, (26)

where

TM =
1

4π

(
BB− B2

2
I

)
(27)

is the Maxwell stress tensor. The BB term is the tensor product of B with itself,
and I is the identity tensor.

If we approximate that the field inside the volume is uniform,

1

8π

∫
V

B2 dV =
B2R3

6
=

Φ2
B

6π2R
, (28)

where ΦB = πBR2 is the magnetic flux threading the cloud. The second term
in B is negligible if the field at the virial surface is much weaker than that inside
the cloud. The reason for writing things in terms of the magnetic flux is that it
remains constant as the cloud expands or contracts, since we have perfect flux
freezing.

Plugging this into the virial theorem, and neglecting all terms other than the
magnetic and gravitational ones, we find that the condition for virial equilibrium
is

0 = B +W =
Φ2
B

6π2R
− 3

5

GM2

R
≡ 3

5

G

R

(
M2

Φ −M2
)
, (29)

where we haven’t bothered with the factor of a since our treatment of B is inexact,
and we have defined

MΦ =

√
5

2

(
ΦB

3πG1/2

)
(30)

to be the magnetic critical mass. A more precise calculation, including the fact
that the cloud density is non-uniform (Tomisaka et al. 1998), gives

MΦ = 0.12
ΦB

G1/2
, (31)

as opposed to the 0.17 we got in the uniform case.

If M > MΦ, then B +W < 0 and the cloud will contract. Moreover, since M
and MΦ are invariant as the cloud expands or contracts, then B+W will remain
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negative forever, and the field will never halt collapse. Conversely, if M < MΦ

then the cloud will never collapse.

Thus we see that magnetic fields do provide a potential mechanism to stabilize
molecular clouds, if they are strong enough. Whether they are or not is an
empirical question. The consensus answer seems to be that they are not, although
not by a huge amount. However, this is something that is still hotly debated in
the literature. This is a very difficult observations to make.

If magnetic fields are sufficient to prevent collapse, then star formation will occur
only in those locations where the assumption of flux-freezing is violated as a result
of ambipolar drift or other non-ideal MHD effects.

D. Turbulent support

A third possible source of support comes from the turbulent part of the kinetic
term. We showed last time that α ≈ 1, which is equivalent to the statement
that 2T +W ≈ 0. Thus turbulence is at least potentially able to prevent cloud
collapse.

This doesn’t mean that there is no star formation at all, simply that the cloud
as a whole is globally stable. The linewidth-size relation implies that most of the
power in the turbulence is on large scales, and large-scale shocks are compressive,
at least in certain locations. In these regions the colliding flow will reduce T , and
locally the region may be way out virial equilibrium and may collapse. This will
produce star formation, but at a low rate – which turns out to be about what
observations of the star formation rate require.
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