
ASTR 4017/8007: Diffuse Matter in the Universe

Class 18 Notes: H i: Vertical Distribution and Gravitational Stability

H i is the dominant phase of the ISM in the bulk of present-day galaxies. It is therefore useful
to consider its large-scale disposition and organisation, particularly in the vertical direction.
Now that we understand the phase structure of H i and its characteristic thermal behaviour,
we are in a position to understand how it behaves in the potential well of a galaxy.

I. Hydrostatic balance

As a first step, let us consider the vertical distribution of the atomic ISM in a galactic
disc. In the Milky Way and similar galaxies, some of the volume of the disc is filled with
hot, ionised gas, and some (a tiny fraction) is filled with molecular gas, but somewhere
between half and 2/3 of the volume is occupied by atomic gas. Due to its lower
density, most of this volume (though not necessarily most of the mass) consists of gas
in the warm phase. At the largest scale, this gas must be in approximate hydrostatic
equilibrium, held up by its own pressure against both its own gravity and the gravity
of the stars.

A. Infinite isothermal gas discs

We will start with the simplest possible case: a planar disc of gas surface density
is Σg where the gas velocity dispersion is σg, independent of position. We imagine
that σg is fixed by the radiative effects we discussed last class, which fix the
warm gas temperature and sound speed. For now assume that the gravitational
potential arises from the gas alone, with no contribution from stars, dark matter,
bound gas clouds, or anything else. We further imagine that the disc is extremely
large in extent in the horizontal direction, so we can treat the problem as simply
an infinite slab.

With these approximations, the equation of hydrostatic balance reads

dp

dz
= −ρgg, (1)

where z is the direction normal to the disc plane, p = ρgσ
2
g is the pressure, and

g = 4πG

∫ z

0

ρg dz (2)

is the vertical gravitational acceleration. Integrating both sides we have

ρg(z)− ρg(0) = − 1

σ2
g

∫ z

0

ρgg dz. (3)
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The equation is most easily solved via a change of variables. We let

sg = 2

∫ z

0

ρg dz (4)

be the half-column density below vertical height z, so that g = 2πGsg and dsg =
2ρg dz. With this change of variables, the integral on the right hand side simplifies
to

ρg(z)− ρg(0) = −πG
σ2
g

∫ sg

0

s′g ds
′
g = −πG

2σ2
g

s2
g (5)

Since we must have ρg(z)→ 0 and sg → Σg as z →∞, the midplane density and
pressure must be related to the total surface density and gas velocity dispersion
by

ρg(0) =
π

2

GΣ2
g

σ2
g

p(0) =
π

2
GΣ2

g. (6)

Thus we can write the gas density at the point where the half-column density is
s as

ρg = ρg(0)

[
1−

(
sg
Σg

)2
]
. (7)

We can also solve for the density as a function of height directly by plugging this
into the definition of s:

sg = 2ρg(0)

∫ z

0

[
1−

(
sg
Σg

)2
]
dz =⇒ dsg

dz
= 2ρg(0)

[
1−

(
sg
Σg

)2
]
. (8)

This differential equation may be solved exactly; the solution is

sg = Σg tanh

(
z

2hg

)
ρg = ρg(0) sech2

(
z

2hg

)
, (9)

where

hg =
Σg

ρg(0)
=

σ2
g

2πGΣg

(10)

is the gas scale height. We have therefore determined the full vertical density and
pressure distribution for an isothermal gas disc.

B. Star plus gas disks

Now let us generalize our treatment to include stars. We take Σ∗ and σ∗ to be the
stellar surface density and velocity dispersion, respectively. Generally we have
Σg � Σ∗ and σg � σ∗ for Milky Way-like galaxies. For example, in the Solar
neighborhood we have Σg ≈ 12 M� pc−2 (Boulares & Cox 1990), Σ∗ ≈ 44 M�
pc−2 (Holmberg & Flynn 2003), and σg ≈ 6 km s−1 (Heiles & Troland 2003). The
stellar velocity dispersion is a function of stellar age, and range from σ∗ ∼ 40
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km s−1 for <∼ 1 Gyr-old stars to ∼ 80 km s−1 for many Gyr-old stars (Quillen &
Garnett 2001).

For the gas, the equation of hydrostatic balance is exactly the same as before,
except that now the gravitational force includes contributions from stars as well
as gas:

g = 4πG

∫ z

0

(ρg + ρ∗) dz. (11)

In the limit ρg � ρ∗, clearly we get back to the pure gas case we just solved. In
the opposite limit, ρ∗ � ρg, we can drop the ρg term, in effect neglecting the gas
contribution to the gravitational potential. In this limit we can also assume that
the stars have the density distribution expected of a pure stellar disc, with no gas,
which is exactly the same as for an isothermal gas disc:

ρ∗(z) = ρ∗(0) sech2

(
z

2h∗

)
, (12)

with

h∗ =
σ2
∗

2πGΣ∗
ρ∗(0) =

πGΣ2
∗

2σ2
∗
. (13)

Substituting this in, it is trivial to obtain g by integration:

g = 4πGρ∗(0)(2h∗) tanh

(
z

2h∗

)
= 2πGΣ∗ tanh

(
z

2h∗

)
. (14)

Substituting this into the equation of hydrostatic balance we have

σ2
g

dρg
dz

= −ρg
[
2πGΣ∗ tanh

(
z

2h∗

)]
. (15)

This can obviously be integrated by separation of variables:

dρg
ρg

= −2πGΣ∗
σ2
g

tanh

(
z

2h∗

)
dz. (16)

The solution is

ρg = ρg(0)

[
cosh

(
z

2h∗

)]−2σ2
∗/σ

2
g

. (17)

One can obtain the normalization constant by requiring that 2
∫∞

0
ρg dz = Σg.

Evaluating this gives a midplane density and pressure

ρg(0) =
√
πG

ΣgΣ∗
σgσ∗

p(0) =
√
πGΣgΣ∗

σg
σ∗

(18)

The pressure is σ2
g times this.
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It is instructive to write down a formula that interpolates between the gas-
dominated limit, where p ∝ GΣ2

g, and the star-dominated limit, where p ∝
GΣgσg/σ∗. The approximate expression

p(0) ≈ π

2
GΣg

(
Σg + Σ∗

σg
σ∗

)
(19)

agrees with exact numerical solutions to within 10%, and is a useful rule of thumb.
Thus we see that the cross-over between the gas-dominated and stellar-dominated
regimes is determined by a comparison between Σg and Σ∗(σg/σ∗). We may think
of this second quantity as describing the total surface density of stellar material
scaled by the relative scale heights of the gas and the star, or, equivalently, the
surface density of stellar material within one gas scale height of the midplane.
Stars that spend all their time well outside of the gas layer do not contribute to
the gravitational force felt by the gas.

In the Milky Way, plugging in the values Σg = 12 M� pc−2, Σ∗ = 44 M� pc−2,
σg = 6 km s−1, and σ∗ = 40 km s−1 that we quoted earlier, we see that the
combination Σ∗(σg/σ∗) = 6.6 M� pc−2. Since this is (somewhat) smaller than
Σg, we conclude that the gas near the Solar circle is, at least marginally, dominated
by self-gravity rather than stellar gravity, despite the fact that the surface density
of stellar material exceeds that of gas by a factor of ∼ 4. The difference is made
up by the smaller velocity dispersion of the gas, so that only a relatively small
fraction of the stellar material is near enough to the midplane at any time to exert
a downard pull on the gas.

II. Toomre instability

Now that we have describe the hydrostatic “background state” of the gas, we can
investigate some of the things that break that hydrostatic equilibrium. One obvious
source of disturbance is feedback from star formation, in the form of H ii regions
(which we have discussed) and supernova blast waves (which we will discuss next
week). However, even in the absence of these perturbations there are instabilities that
can cause the gas to deviate from simply hydrostatic equilibrium.

The simplest instability in a thin disc is the Toomre instability, which is caused when
the disc becomes self-gravitating. To work out the Toomre instability, consider a thin
disc of H i in a galaxy. The gas has a constant velocity dispersion σg, and rotates
about the galactic center with constant angular velocity Ω. We neglect stars, which is
not a total unreasonable thing to do given that we have just shown that the vertical
hydrostatic balance of the gas is, at least in some cases, dominated by gas, even if there
is more mass in stars.

We set up a coordinate system so that the disc lies in the plane z = 0. We pick our
origin to be at some point in the disc that is not at its center, and we set up coordinate
system so that it is co-rotating with this point. The gas obeys the equations of mass
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and momentum conservation, plus the Poisson equation of self-gravity

∂ρ

∂t
+∇ · (ρv) = 0 (20)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p−∇φ− 2Ωêz × v + Ω2(xêx + yêy) (21)

∇2φ = 4πGρ, (22)

where êx,y,z is the unit vector in the x, y, or z direction, and p = ρcσ
2
g is the gas

pressure. In the momentum equation, the last two terms represent the Coriolis force
and the centrifugal force that arise in our rotating reference frame. Note here that v
is in the rotating from as well, so v = 0 represents gas that is smoothly rotating with
the disc.

Our first step in describing the Toomre instability is to approximate that the disc is
thin. We therefore write ρ(z) = Σδ(z), and we take the z component of v to be zero. If
we now integrate the first equation in the z direction and evaluate the second equation
in the plane z = 0, we have

∂Σ

∂t
+∇ · (Σv) = 0 (23)

∂v

∂t
+ (v · ∇)v = −∇Σ

Σ
σ2
g −∇φ− 2Ωêz × v + Ω2(xêx + yêy). (24)

Now let us consider an equilibrium solution to these equations: Σ = Σ0, v = 0, and
φ = φ0. This represents a disc of gas in radial hydrostatic balance between the forces
of gravity, pressure, and rotation. We wish to investigate whether this equilibrium is
stable. To do so, we add a small perturbation to the surface density, velocity, and
gravitational potential, and investigate how it evolves. We therefore let

Σ = Σ0 + εΣ1 v = εv1 φ = φ0 + εφ1, (25)

where ε is small.

To determine how the perturbation evolves, we simply substitute the perturbed quan-
tities into the equations of motion. For the continuity equation we obtain

∂

∂t
(Σ0 + εΣ1) +∇ · (εΣ0v1 + ε2Σ1v1) = 0. (26)

Since ε is small, we can drop the term of order ε2, so we have

∂Σ1

∂t
+∇ · (Σ0v1) = 0. (27)

Doing the same trick with the momentum equation, we have

ε
∂v1

∂t
+ε2(v1·∇)v1 = −∇(Σ0 + εΣ1)

Σ0 + εΣ1

σ2
g−∇(φ0+εφ1)−ε·2Ωêz×v1+Ω2(xêx+yêy). (28)
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We can simplify this by dropping ε2 terms and noting that −σ2
g(∇Σ0/Σ0) − ∇φ0 +

Ω2(xêx + yêy) must vanish, since v = 0 in the unperturbed state. Plugging this in and
Taylor expanding in ε, we have

∂v1

∂t
= −σ2

g

∇Σ1

Σ0

−∇φ1 − 2Ωêz × v1. (29)

Finally, doing the same trick with the Poisson equation, we have

∇2φ1 = 4πGΣ1δ(z). (30)

These equations are easiest to solve by means of Fourier analysis. Since we can con-
struct an arbitrary perturbation via a combination of single Fourier modes, there is no
loss of generality in taking Σ1 and v1 to be single Fourier modes. Thus we adopt

Σ1 = Σae
i(kx−ωt) v1 = (vaxêx + vayêy)e

i(kx−ωt). (31)

Without loss of generality we can choose to orient our coordinate system so that the
perturbation is in the x direction, so we need not consider a y component of k.

For φ we need to know the behavior away from z = 0 as well as at z = 0. In order to
satisfy the Poission equation, the behavior at z = 0 must also be a Fourier mode, so
the solution must be of the form

φ1 = φae
i(kx−ωt)f(z), (32)

where f(z) is some function of z that we define so that it is normalized to unity at
z = 0. For z 6= 0 the density is zero, so to satisfy the Poission equation there we must
have

0 =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φ1 = φa

[
−k2f(z) + f ′′(z)

]
ei(kx−ωt). (33)

Thus we have
f ′′(z)− k2f(z) = 0, (34)

with the boundary conditions that f(0) = 1, and f(z) → 0 as z → ±∞, i.e. the
potential vanishes far from the disc. Integrating the differential equation with these
boundary conditions gives

f(z) = e−|kz|, (35)

so
φ1 = φae

i(kx−ωt)−|kz|. (36)

Note that f ′ (and thus φ′1 are undefined at z = 0. This is to be expected, since we have
hypothesized that there is mass sheet of infinite thinness, and thus infinite density, at
z = 0.

Now we must solve for φa in terms of Σa: physically, this means that we must figure
out what sort of perturbation to the gravitational potential is created by the density
perturbation we are imposing. To do this, it is helpful to integrate the Poisson equation
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over a small range in z to eliminate the δ function. If we integrate both sides from
z = −τ to z = τ , we have∫ τ

−τ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φ1 dz = 4πGΣ1

∫ τ

−τ
δ(z) dz = 4πGΣ1. (37)

Of the terms on the left hand side, ∂2φ1/∂y
2 = 0 since φ1 does not depend on y, and

we can make
∫ τ
−τ (∂

2φ1/∂x
2) dz arbitrarily small by choosing τ to be very small. We

can therefore drop this term as well. This leaves only the z component:∫ τ

−τ

∂2φ1

∂z2
dz =

(
∂φ1

∂z

)
τ

+

(
∂φ1

∂z

)
−τ

= −2φa|k|. (38)

Therefore we have

φa = −2πGΣa

|k|
. (39)

We are now ready to solve. We substitute our Fourier modes for Σ1, v1, and φ1 into
the continuity equation and the momentum equation. After simplifying, we obtain

−iωΣa + ikΣ0vax = 0 (40)

ik

(
σ2
g

Σ0

− 2πGΣa

|k|

)
Σa − iωvax − 2Ωvay = 0 (41)

2Ωvax − iωvay = 0. (42)

The first equation is from the continuity equation, and the next two are the x and y
components of the momentum equation.

This represents three equations in the three unknowns Σa, vax, and vay. It is easiest
to write them in matrix form: −iω ikΣ0 0

ik
(
σ2
g

Σ0
− 2πGΣa

|k|

)
−iω −2Ω

0 2Ω −iω


 Σa

vax
vay

 = 0. (43)

Non-trivial solutions exist if and only if the determinant of the matrix is zero. Setting
the determinant to zero and skipping a bunch of algebraic simplification, we obtain

ω2 = 4Ω2 + σ2
gk

2 − 2πGΣ0|k|. (44)

This equation is a dispersion relation. It tells us that if we impose a perturbation with
spatial frequency k at time t = 0, the system will respond with temporal frequency ω.
There are two possibilities to consider. If the quantity 4Ω2+σ2

gk
2−2πGΣ0|k| is positive,

then ω is plus or minus a real number. Since the temporal behavior follows e−iωt, this
means that the system simply oscillates, and the magnitude of the perturbation stays
the same. We refer to this as stability. On the other hand if 4Ω2 + σ2

gk
2− 2πGΣ0|k| is

negative, then ω is plus or minus an imaginary number, and the solution consists of one
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exponentially decaying mode and one exponentially growing mode. This is unstable,
since a small perturbation will grow exponentially until it becomes large.

The condition for instability in a disc, known as Toomre’s condition, simply that there
exist a value of k for which

4Ω2 + σ2
gk

2 − 2πGΣ0|k| < 0. (45)

By taking the derivative with respect to k, we see that the quantity on the right hand
side reaches its minimum at k = πGΣ0/σ

2
g . Plugging in this value of k, we have

4Ω2 − π2G2Σ2
0

σ2
g

< 0 =⇒ 2σgΩ

πGΣ0

< 1. (46)

We define

Q =
2σgΩ

πGΣ0

(47)

as the Toomre Q parameter of a disc.

discs with Q < 1 are unstable to runaway gravitational collapse. The physical in-
terpretation of Q is straightforward. The numerator represents the combined stabi-
lizing effects of pressure (σg) and rotation (Ω), while the denominator represents the
destablizing effects of gravity (GΣ0). Larger surface densities tend to make the disc
more unstable, while larger velocity dispersions or rotation rates make it more stable.

More general Q parameters can be defined for discs with non-constant angular velocity,
and the only difference that introduces is that the factor 2 changes to a different
numerical value. Q can also be defined for collisionless stellar discs, and for combined
gas plus star discs.
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