
ASTR 4017/8007: Diffuse Matter in the Universe

Class 16 Notes: Photoionised regions: dynamics

Our next topic is the dynamics of ionised gas. H ii regions form around massive stars, which
are born in dense, cold molecular gas at a temperature of ∼ 10 K. The ionising radiation
of the star quickly photodissociates the molecules and ionises the atoms. This increases
the number of free particles by a factor of 4, and increases the temperature to ∼ 104 K,
as we showed last time. In this class we will study the behavior of this gas as it evolves
dynamically. This will build on our understanding of the structure of ionisation fronts from
the last class.

I. H ii region expansion: the simplest case

We will first consider the simplest possible case of H ii region expansion, in order
to develop a basic understanding. We therefore consider a neutral medium of initial
density ρ0, within which at time 0 a source of ionising radiation of ionising luminosity
Q0 turns on. The only important force driving the expansion of the H ii region is gas
pressure, and where there are no radiative or magnetic forces to consider.

A. The R phase

Since the ionising flux per unit area around the star is formally infinite at t = 0
(or at least Q0/4πR

2
∗, which is very large), the front always starts as R type. The

expansion in this case is supersonic with respect to both the neutral gas and the
ionised gas, since the front speed greatly exceeds uR ≈ 2ci, where ci is the ionised
gas sound speed. Thus to good approximation the gas does not have time to move
or react hydrodynamically, and it remains fixed.

This is exactly the situation we considered in the last class when we assumed the
gas density to remain constant and simply solved for the radius of the ionised
region based on photon conservation. To remind you, the radius as a function of
time is given by

Ri = RS

(
1− e−t/trec

)1/3
, (1)

where trec = 1/n0αB, n0 = ρ0/µH and µH is the mean mass per hydrogen nucleus
in the neutral gas. The expansion velocity of the ionisation front is therefore

Vi =
dRi

dt
=
RS

trec

e−t/trec

(1− e−t/trec)2/3
. (2)

B. Transition to D

As the time goes on, Vi clearly decreases, and eventually it drops to the point
where Vi = uR ≈ 2ci; this occurs at a time t such that

e−t/trec

(1− e−t/trec)2/3
≈ 2citrec

RS

(3)

1



The time / radius at which this occurs clearly depends on the ratio on the right
hand side, which is given by

2citrec
RS

= 0.0038n
−1/3
0,3 Q

−1/3
0,49 ci,10, (4)

where n0,3 = n0/103 cm−3, Q0,49 = Q0/1049 s−1, and ci,10 = ci/10 km s−1. When
the right hand side is small, t/trec must be significantly greater than unity; for
these fiducial values, t/trec = 5.6, so Ri = 0.999RS. Thus in general the expansion
velocity does not drop to uR until the R type front has reached almost all the way
to the Strömgren radius.

Once this happens, the front must undergo a transition to D type, precipitated
by a shock running ahead of the ionisation front.

C. The D phase

To see what happens next, we must consider the interior of the ionised region. An
exact analytic solution for what happens during the transition between R and D
type is not possible, but we can obtain a very good approximation that becomes
increasingly good as time goes on by making some simple observations.

First, since the expansion is slow, the H ii region interior must be very close
to ionisation balance. In other words, the excess of photons reaching the front
during a given time period that are available to ionise new material must be
a small fraction of the total number emitted during that period. Thus to good
approximation we must have ionisation balance in the H ii region interior. Second,
since we are transitioning to D type, the expansion velocity will be subsonic with
respect to the ionised gas in the H ii region interior. Thus to good approximation
we may treat its density as uniform, with no variation as a function of distance
from the source.

This makes the problem of how the H ii region evolves relatively easy. Since we
are in ionisation balance and the number density ni in the H ii region interior is
uniform, we must have

Q0 =
4

3
πR3

iαBn
2
i , (5)

just by the usual Strömgren argument. This implies that

ni =

(
3Q0

4παBR3
i

)1/2

= n0

(
Ri

RS

)−3/2

, (6)

where n0 = ρ0/µH is the number density before expansion starts, µH is the mean
mass per hydrogen nucleus, and RS = (3Q0/4παBn

2
0)

1/3 is the initial Strömgren

radius. Since ρi = niµH ∝ R
−3/2
i , and the total mass of ionised gas varies as

Mi ∝ ρiR
3
i ∝ R

3/2
i . (7)

In contrast, the total mass swept up by the H ii region clearly varies as R3
i . Thus

the fraction of the swept-up mass in the ionised H ii region interior declines as
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R
−3/2
i ; the remainder of the mass is in a neutral shell at its surface between the

shock front and the ionisation front. Once the H ii region has expanded any
significant amount, this shell must contain the great majority of the swept-up
mass.

In this limit, we can compute the evolution of the radius simply from momentum
conservation. The total mass contained in the shell when its radius is Ri is just
(4/3)πρ0R

3
i , and thus the momentum of the shell is

psh =
4

3
πρ0R

3
i

dRi

dt
, (8)

where we have neglected the small mass in the H ii region interior. The pressure
exerted by the ionised gas in the interior on this shell is

P = ρic
2
i = ρ0c

2
i

(
Ri

RS

)−3/2

. (9)

The total force exerted on the shell is simply 4πR2
iP , assuming that the pressure

within the H ii is much larger than the pressure outside it.

Conservation of momentum requires that the rate of change in the shell momen-
tum match the force applied by the ionised gas (since there are no other forces),
and we therefore have

d

dt

(
4

3
πρ0R

3
i

dRi

dt

)
= 4πR2

i ρ0c
2
i

(
Ri

RS

)−3/2

. (10)

The equation is easy to solve, particularly if we make a change of variables to
non-dimensionalize things. The natural length scale of the problem is RS, and
the natural time scale is RS/ci, the sound crossing time of the original Strömgren
radius. We therefore let x = Ri/RS and τ = t/(RS/ci), which changes the
equation to

d

dτ

(
x3
dx

dτ

)
= 3x1/2. (11)

Equations of this sort, in which both sides are proportional to x to some power
and its derivatives, generally admit similarity solutions in which x ∝ τ p for some
power p. This one is no exception. If one substitutes in x = cτ p, one finds that

x =
(

49

12

)2/7

τ 4/7 (12)

is a solution. Thus we have shown that Ri/RS ∝ t4/7. Of course the zero point of
time is arbitrary, so we are free to choose our time zero to be such that R = RS

at t = tS, where tS is the time after which the H ii region reaches a radius RS

and switches from R type to D type. Thus the solution is

Ri ≈ RS

(
t

tS

)4/7

(13)

during the D type phase.
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D. Stalling

This expansion cannot continue indefinitely. Instead, the expansion must slow
down once the pressure in the H ii region is no longer much larger than the
pressure in the surrounding neutral gas. In this case we can no longer drop the
term in the momentum equation describing the force applied to the shell by the
external pressure. At what point do we need to consider this effect?

Suppose the ambient neutral material has a sound speed cn, and thus a pressure
ρ0c

2
n. The D phase begins to end once this is comparable to the pressure P in the

H ii region interior we computed earlier: P = ρ0c
2
i (Ri/RS)−3/2. Combining this

we have

ρ0c
2
n ≈ P =⇒ Ri = RS

(
ci
cn

)4/3

≡ Rstall. (14)

This quantity is referred to as the stalling radius of the H ii region. Note that it
depends on ρ0 only indirectly, through RS.

Combining this with our calculation of Ri above, we can also identify a charac-
teristic stalling time at which the H ii region reaches this radius. Plugging in
Ri ≈ RS(t/tS)4/7, we have

tstall = tS

(
ci
cn

)7/3

. (15)

To get a sense of typical values here, it is helpful to plug in some numbers. Doing
so gives

Rstall = 13.9c
4/3
i,10c

−4/3
n,1 n

−2/3
0,3 Q

1/3
0,49 pc (16)

tstall = 13.6c
4/3
i,10c

−7/3
n,1 n

−2/3
0,3 Q

1/3
0,49 Myr, (17)

where cn,1 = cn/1 km s−1. Note that this is significantly longer than the lifetime
of a typical massive star, so unless the ambient gas is significantly denser the value
of 103 we’ve adopted here, or the driving star is a fairly wimpy B star instead of
an O star (which lowers Q0 and also raises the stellar lifetime), most H ii regions
will not stall before their driving stars evolve off the main sequence and stop
providing ionising photons.

II. H ii region expansion beyond the simplest case

A. Radiation pressure

In our treatment of H ii region dynamics up to this point, we neglected radiation
pressure. We can, however, include it in the D type phase fairly easily simply by
adding the radiation pressure force to our equation of momentum conservation.
Suppose that the source has a bolometric luminosity L, and that each photon it
emits is absorbed in the shell or the H ii region interior, and then escapes – this
is a reasonably good approximation. The force exerted by the radiation on the
shell is

Frad =
L

c
(18)
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In this case the equation of momentum conservation becomes

d

dt

(
4

3
πρ0R

3
i

dRi

dt

)
= 4πR2

i ρ0c
2
i

(
Ri

RS

)−3/2

+
L

c
, (19)

In the limit where the radiation pressure force term is much greater than the gas
pressure term, we can drop the first term on the right hand side, and the equation
simply becomes

d

dt

(
R3

i

dRi

dt

)
=

3L

4πρ0c
. (20)

Not surprisingly, this equation too admits a similarity solution: Ri ∝ t1/2.

This solution cannot hold indefinitely, however. The gas pressure force varies with
radius as R

1/2
i , while the radiation force is independent of radius. Thus there is

always some radius at which the radiation force becomes smaller than the gas
pressure force. Equating the two terms gives an expression for the characteristic
radius at which the two forces are equal

4πR2
chρ0c

2
i

(
Rch

RS

)−3/2

=
L

c
. (21)

Note that this expression is actually independent of the density ρ0, because RS ∝
ρ
−2/3
0 , so density cancels out of the problem. Solving for Rch and doing some

re-arranging, we obtain

Rch =
αB

12π

(
IH
kT

)2

χ2Q0

c2
= 5.8× 10−3T−2

4 χ2Q0,49 pc (22)

where IH is the ionisation potential of hydrogen, T ≈ 104 K is the gas temperature
inside the H ii region, and χ = L/(Q0IH), which depends on the stellar spectrum
and for hot stars is typically a few. Since this is fairly small, usually smaller
than the initial Strömgren radius, gas pressure generally dominates H ii region
expansion. The exception is for extremely luminous clusters of many stars, which
can reach Q0,49 ∼ 100 in some cases. Such a cluster can have Rch ∼ 1 − 10 pc,
and radiation pressure will dominate its initial expansion.

One can find direct observational evidence for this in some H ii regions, where it is
possible to estimate the radiation pressure from photometry and the gas pressure
from emission measures determined in the radio.

B. Magnetic fields

A second complication to this story is magnetic fields. The ISM is magnetised,
and magnetic fields will resist compression. We can therefore ask when magnetic
forces are strong enough to modify the expansion of H ii regions. Consider the
same setup as before: a uniform density region within an ionising source, but now
add a uniform magnetic field B0 in the initial condition.
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First let us consider some basic ratios. The dynamic importance of the magnetic
field can be characterised by the Alfven speed vA = B0/

√
4πρ0: large values

correspond to strong magnetic fields and small ones to weak fields. The magnetic
pressure force is ρv2A. For typical ISM magnetic field strengths and densities,
we will usually have vA � ci, so when an H ii region starts expanding, the gas
pressure ρ0c

2
i will greatly exceed the magnetic pressure ρ0v

2
A, and the field will

not significantly interfere with expansion.

As the gas expands, we can ask how the field lines move. It is helpful to ask how
many field lines pass through the interior of the H ii region, and how many pass
through the shell that bounds it. Since the field is frozen into the matter, this is
equivalent to asking where gas started out. Gas that was initially near enough
to the ionising source, within some radius r0, will be in the shell interior, and
gas that started out at a distance from r0 to Ri will be in the shell. In order
to compute r0, recall that we showed earlier that the mass of ionised material as
Mi ∝ R

3/2
i . Thus when the shell is at radius Ri, the ionised mass is

Mi =
4

3
πρ0R

3
S

(
Ri

RS

)3/2

. (23)

If we equate this to the material that began within a distance r0 of the center,
which has mass (4/3)πρ0r

3
0, then we immediately find that

4

3
πρ0R

3
S

(
Ri

RS

)3/2

=
4

3
πρ0r

3
0 =⇒ r0 =

√
RiRS. (24)

Flux freezing means that the magnetic flux passing through the interior of the
H ii region is equal to that which started within a radius r0 of the center, thus
we have

Φi = πB0r
2
0 = πB0RiRS. (25)

The flux passing through the dense shell must be equal to all the swept up flux
minus this contribution, that is

Φsh = πB0R
2
i − Φi = πB0Ri(Ri −RS) ≈ πB0R

2
i (26)

when Ri � RS.

Thus in the initial expansion phase, all the magnetic flux is in the shell. This phase
will end once the magnetic pressure is able to significantly restrain the expansion.
The condition for this to happen is that the external magnetic pressure become
comparable to the internal thermal pressure, i.e.

ρic
2
i ≈ ρ0v

2
A. (27)

Recall that ρi = ρ0(Ri/RS)−3/2 due to ionisation balance. Substituting this in
and re-arranging, we find that magnetic effects become important when

Ri ≈
(
ci
vA

)4/3

RS ≡ Rm, (28)
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where Rm is the magnetic critical radius. After this point the expansion of the
shell must become aspherical.

We can plug in some numbers to get a sense of when magnetic effects are im-
portant. First, we can check the assertion that vA � ci. Typical magnetic field
strengths in the vicinity of H ii regions are tens to hundreds of µG, and

vA =
B√
4πρ0

= 5.8n
−1/2
0,3 B2 km s−1 (29)

where B2 = B/100 µG. This is indeed less than ci ≈ 10 km s−1 for B = 10− 100
µG. The magnetic critical radius is

Rm = 1.3Q
1/3
0 c

4/3
i B4/3 pc. (30)

Note that density drops out because of a cancellation between the Alfven speed
and the Stromgren radius. Physically this makes sense: the magnetic critical
radius is determined by the balance between magnetic forces trying to restrain
expansion and pressure forces trying to cause them. The magnetic force does not
depend on the gas density, and the pressure force depends only on the density
inside the H ii region, which is set by ionisation balance and does not depend at
all on the ambient density.

C. Champagne flows and rocket nozzles

A third complication is that H ii regions rarely occur in uniform media. Instead,
they tend to occur in clumpy, non-uniform regions where the ionised gas is not
fully confined, and instead is able to blow out and escape.

As an idealised model of what this looks like, consider an ionising source placed at
the edge of a dense cloud. To be precise, suppose that we have an ionising source
of ionising luminosity Q0 located at the origin, and the initial neutral density is
n0 for x < 0 and 0 for x > 0. As the initially dense, neutral gas is ionised, it
will flow away into the low-density vacuum, rather than remaining confined in a
sphere. How does this change our picture of H ii region expansion?

In full detail this problem cannot be solved analytically, but we can come up with a
rough analytic solution by supposing that the expanding ionisation front remains
approximately hemispherical. The characteristic density of the material that has
been ionised off the expanding front, but not yet escaped into the vacuum, will
again be determined by photoionisation equilibrium:

1

2
Q0 =

2π

3
πR3

SαBn
2
i , (31)

where the factor of 1/2 on the left hand side is coming from the fact that only
half of the emitted photons go into the hemisphere facing the dense medium, and
the factor of 2π/3 rather than 4π/3 on the right coming from the fact that the
ionised gas occupies a roughly hemispherical volume, rather than a full sphere.
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This is clearly an idealisation of the geometry, but it is probably not off by more
than a factor of two or so. The key point here is that the factors of 1/2 cancel,
so we are left with the same basic scaling between density and radius as in the
spherical case:

ni = n0

(
Ri

RS

)−3/2

. (32)

Next we can again consider momentum balance. The mass and momentum of the
swept-up shell is the same as in the spherical case, just with an extra factor of
1/2:

psh =
2

3
πρ0R

3
i

(
Ri

RS

)−3/2

. (33)

To estimate the pressure provided by the ionised gas, we have to realise that the
system we have set up is effectively a rocket: we heat up a gas that is confined
on one side, and it freely expands into a vacuum. As it does so, it pushes on
the dense confining walls, imparting momentum to them. In terms of momentum
conservation, the governing equation is

d

dt
psh = Aρi

[
c2i + ui

(
ui −

dRi

dt

)]
. (34)

Here A ≈ 2πR2
i is the area on which the escape gas is pushing and ui is the speed

with which the ionised gas leaves the ionisation front. The first term in square
brackets is the pressure exerted by the ionised gas, and the second is the force
per unit area exerted by the recoil of the ionised gas – the rocket effect. This
term goes to zero if either the escaping gas does not move away (ui = 0) or if
the gas is moving at the same speed as the front and thus does not push on it
(ui − dRi/dt = 0), but is non-zero otherwise.

So what is ui? To answer that question, recall our discussion of D type ionisation
fronts. Since there is nothing confining the ionised gas, we expect the density to
be very low, and in this case we showed that the rate at which gas flows away from
the ionisation front just approaches the ionised gas sound speed. We therefore
have ui ≈ ci. At late times, when the front is expanding slowly compared to the
ionised gas sound speed, dRi/dt� ci, we therefore have

d

dt
psh =≈ 2Aρic

2
i = 4πR2

i ρic
2
i . (35)

Inserting this into the equation of momentum conservation, we obtain

d

dt

(
2

3
πρ0R

3
i

dRi

dt

)
= 4πR2

i ρ0c
2
i

(
Ri

RS

)−3/2

. (36)

Note that this is nearly but not quite identical to Equation 10: the right hand
side is the same, but the left-hand side is a factor of 2 smaller. The LHS is smaller
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because the mass and momentum of a hemisphere is half that of a sphere. On the
RHS, on the other hand, the factor of 2 smaller working surface of a hemisphere
is compensated for by a factor of 2 increase in the force per unit area – we get one
factor of ρic

2
i from the gas pressure, and another factor of ρic

2
i because the gas

rockets away from the surface rather than staying trapped near it. As a result,
the H ii region expands somewhat faster. When you work through the similarity
solution, the result is also nearly identical to the spherical case, just with a slightly
larger coefficient.
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