
ASTR 4017/8007: Diffuse Matter in the Universe

Class 15 Notes: Photoionised regions: thermodynamics and ionisation fronts

We are now done with dust, and we we will move on to our next phase of the ISM: ionised
gas. In today’s class we will focus on the chemical and thermal properties of ionised gas. Our
goal will be to understand why such gas tends to have temperatures near 104 K, and how
its ionisation state is regulated. We will then begin to study the properties of the ionisation
fronts that bound such regions, before moving on to a full treatment of the dynamics of
photoionised regions in the next class.

I. Heating and cooling

We begin the class with a discussion of the processes responsible for heating and cooling
ionised gas.

A. Photoionisation heating

The main source of energy in a photoionised region is, not surprisingly, the photons
that keep the gas ionised. Consider the photoionisation process for an atom of
species X of charge +r initially that is ionised by a photon with energy hν:

X+r + hν → X+r+1 + e−. (1)

If I0 is the ionisation potential for species X+r, then the electron on the right
hand side carries kinetic energy h(ν − ν0), where ν0 = I0/h. The free electron
will generally collide with other electrons and atoms and thermalise, adding this
energy to the thermal reservoir of the gas.

The total rate of photoionisations per atom is, as we showed earlier in the class,

ζ(X+r) =
∫ ∞
ν0

σpi(ν)
4πJν
hν

dν, (2)

where σpi(ν) is the photoionisation cross section at frequency ν. Thus the rate
per unit volume at which photoionisation injects thermal energy, assuming that
the ejected electron always thermalises, is

Γpi(X
+r) = n(X+r)

∫ ∞
ν0

σpi(ν)
4πJν
hν

h(ν − ν0) dν, (3)

and the mean energy injected per photoionisation is

Epi(X
+r) =

Γpi(X
+r)

n(X+r)ζ(X+r)
. (4)

To estimate Epi(X
+r), let us approximate the stellar spectrum as that of a black-

body with colour temperature Tc. This isn’t completely accurate, since of course
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the real stellar spectrum has all sort of complicated line features, but since we’re
interested in a broadband average these will largely be smoothed out, and the
approximation is reasonable. We use this value to define a dimensionless version
of Epi:

ψ ≡ Epi(X
+r)

kTc
=

1

kTc

∫∞
ν0
σpi(ν)Jν

hν
h(ν − ν0) dν∫∞

ν0
σpi(ν)Jν

hν
dν

. (5)

Near the star, where there have not yet been any significant number of absorptions,
we simply have Jν ∝ Bν(Tc), so

ψ = ψ0 ≡
1

kTc

∫∞
ν0
σpi(ν)Bν(Tc)

hν
h(ν − ν0) dν∫∞

ν0
σpi(ν)Bν(Tc)

hν
dν

. (6)

As we move away from the star and photons are absorbed both by atoms and
dust grains, the ionising spectrum changes and ψ does too. This occurs because
σpi(ν) is not constant, and photons at frequencies where σpi(ν) is larger tend to be
absorbed closer to the star than those for which it is smaller. If we are thinking
about hydrogen, where the cross section is maximum at threshold and declines
at higher frequencies, then photons near the threshold will tend to be absorbed
closer to the star, while higher energy photons are absorbed further away. Thus
ψ rises with distance from the star.

However, suppose that we neglect dust absorption and assume that every photon
above frequency ν0 is absorbed within the photoionised region. In this case we
know that, if we average over the entire volume of the photoionised region, the
total spectrum of all photons absorbed must match that emitted by the star.
Thus the spatially-averaged value of ψ is

〈ψ〉 =
1

kTc

∫∞
ν0

Bν(Tc)
hν

h(ν − ν0) dν∫∞
ν0

Bν(Tc)
hν

dν
. (7)

Note that σpi(ν) does not appear here, because the cross section is irrelevant: when
averaging over all absorptions, we must get back to the initial stellar spectrum.

Values of ψ0 and 〈ψ〉 are straightforward to calculate numerically, although our
estimates for ψ0 are only as good as our knowledge of σpi(ν), which is very good
for some elements and ionisation states (e.g., H, He) and mediocre for others (e.g.,
high ionisation states of iron). Not surprisingly they are typically within a factor
of 2 of unity, since most photons emitted by the star are near kTc in energy, and
for hot stars this is not far from the hydrogen ionisation threshold.

The local heating rate of course depends on the abundance of the species being
ionised:

Γpi(X
+r) = n(X+r)ζ(X+r)ψkTc (8)

If the region in question is in photoionisation equilibrium, however, this density
also depends on the ionising flux. If α is the recombination rate coefficient for
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recombination from ionisation state X+r+1 to state X+r, then we have

ζ(X+r)n(X+r) = αnen(X+r+1), (9)

where ne is the electron density. Thus the heating rate becomes

Γpi(X
+r) = αnen(X+r+1)ψkTc. (10)

This might not seem like much of a simplification, since all we have done is replace
n(X+r) with n(X+r+1). However, it is a big simplification for hydrogen, since we
can typically assume that all but a tiny fraction of the hydrogen is ionised. Thus
n(H+) ≈ n(H), where for clarity we use H to refer to all ionisation states, and H0

to refer to neutral hydrogen. Thus we have

Γpi(H) ≈ αBnHneψkTc, (11)

where we make the usual case B assumption.

Thus we have computed the rate of photoionisation heating due to hydrogen
ionisation in terms of the stellar surface temperature, the local density, and atomic
constants. In most ionised regions driven by stars, as opposed to black holes or
other sources with harder spectra, this is the dominant heating source, with a
small contribution from He.

B. Cooling processes

Now let us consider processes that cool the gas.

1. Recombination radiation

Every time an electron radiatively recombines with an ion, the photon that
is emitted in the process carries away an energy equal to the sum of the
ionisation potential and the kinetic energy of the electron. This represents
a net loss from the thermal reservoir of the gas, cooling it. For hydrogen
(which dominates by far) the rate per unit volume at which this process
removes energy from the gas is

Λrr = αA,BnenH+〈Err〉, (12)

where the A,B subscript indicates that we should use the appropriate α for
case A or B, and where 〈Err〉 is the mean energy lost per recombination.

To compute the mean energy loss, we must compute the mean electron kinetic
energy, weighted by the rate at which electrons of that kinetic energy com-
bine. This is yet another integration over the Boltzmann distribution. The
recombination rate due to electrons with velocities between E and E + dE is

σrr(E)(2E/me)
1/2fE, (13)
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where the factor (2E/me)
1/2 is the electron velocity, and fE is our usual Boltz-

mann distribution. Thus the recombination rate-weighted electron energy is

〈E〉rr =

∫∞
0 σrr(E)(2E/me)

1/2fEE dE∫∞
0 σrr(E)(2E/me)1/2fE dE

=

∫∞
0 σrr(v)v4e−mev

2/2kT
(

1
2
mev

2
)
dv∫∞

0 σrr(v)v4e−mev2/2kT dv
.

(14)

To evaluate this integral, we must know σrr(E). Even for hydrogen this has
a fairly nasty, complicated functional form obtained by applying the Milne
relation to the photoionisation cross section as a function of frequency for each
n` level of the recombined atom, then summing over all levels. Thus a truly
accurate solution would require that we evaluate this average numerically.
However, we can get a reasonably good idea of the answer by approximating
the cross section by a powerlaw, at least over some temperature range. We
let

σrr(E) ≈ σ0(E/E0)γ, (15)

and with this form for σ the integrals can be done analytically:

〈Err〉 ≈
Γ(3 + γ)

Γ(2 + γ)
kT = (2 + γ)kT, (16)

where here Γ(x) is the Gamma function.

So far so good, but what value of γ should we adopt for this approximation?
We can obtain one from the temperature dependence of the recombination
rate coefficients. The rate coefficient is given by the usual expression

αA,B = 4π
(
me

2πkT

)3/2 ∫ ∞
0

v3σrr(v)e−mev
2/2kT dv. (17)

If we plug in our powerlaw approximation for σrr here, we obtain

αA,B =

(
8kT

πme

)1/2

σ0

(
kT

E0

)γ
Γ(2 + γ) ∝ T γ+1/2. (18)

Thus our approximate value for γ can be obtained simply by fitting the log-
arithmic slope of αA or αB as a function of T , i.e.

γA,B =
d lnαA,B
dT

− 1

2
. (19)

Detailed numerical fits are given in Draine, but a rough estimate is γA ≈
−1.21, and γB ≈ −1.32, with a very weak dependence on T . Plugging this
in, we have

〈Err〉A ≈ 0.79kT 〈Err〉B ≈ 0.68kT. (20)

Note that this is considerably less than the mean energy per electron of
(3/2)kT . This is because lower velocity electrons have larger recombina-
tion cross sections, so the average is skewed to the slower-moving part of the
electron population.
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Plugging this into our original formula for Λrr gives the rate of recombination
cooling per unit volume. Note that the result has a similar functional form
as the photoionisation heating rate, just a different coefficient. For case B,

Λrr = αBnenH(0.68kT ), (21)

where we have again taken nH+ ≈ nH.

2. Free-free cooling

Free-free emission also removes energy from the gas. We computed the cooling
rate earlier in the class, so we can just repeat that result here: the cooling
rate per unit volume due to free-free emission in hydrogen is

Λff =
32π

3

(
2π

3

)1/2

〈gff〉
e6

m2
ec

3

(
me

kT

)1/2

nenH, (22)

where again nH+ ≈ nH. Note that the density dependence is the same as for
recombination cooling, while the temperature dependence is slightly different.

It is useful to compute the the free-free cooling rate per recombination. For
case B, the recombination rate per unit volume is αBnenH, and

Λff

αBnenH

≈ 0.54T 0.37
4 kT. (23)

Thus the net cooling rate per recombination including both free-free and
recombination radiation is

Λff+rr ≈ nenH(0.68 + 0.54T 0.37
4 )kT ≈ nenH(1.22kT ), (24)

where in the second step we have taken T4 = 1. Recombination plus free-fee
therefore removes an energy 1.22kT per recombination.

It is worth pointing out that we should not be surprised that we can com-
bine the free-free and recombination cooling rates in this way, since both
are fundamentally the same process – free electrons encountering ions, the
accelerating and radiating as a result. The difference is just that free-free
describes the distant encounters where the energy radiated is not enough to
leave the ion and electron bound, while recombination radiation describes
the close encounters where the amount of energy radiated is enough to leave
behind a bound atom at the end. Thus the two processes are both describing
electron-ion collisions, just over different ranges of impact parameter.

3. Collisionally-excited line cooling

Of course there is more in the world than just hydrogen, and heavy elements
complicate this picture somewhat by introducing another source of cooling:
collisionally-excited line emission. (In case A they can also provide an extra
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heat source by absorbing more ionising photons than the hydrogen would
alone, but for case B this doesn’t make a substantial difference.)

Collisionally-excited line emission can be important because many species
likely to be present in photoionised regions have L-S levels of their ground
electronic state that lie ∼ 104 K above ground, and thus can be collisionally
excited in photoionised gas at this temperature. Once excited these atoms
decay via forbidden transitions (they must be forbidden, since the electronic
state is unchanged from ground), and the resulting photons carry off energy.
Almost all of them escape the ionised region, which is generally optically thin
to these lines.

Computing the net cooling rate via this process requires a two-step procedure
that in practice must be carried out numerically, which is what programs like
Cloudy do. First, one must balance the photoionisation and recombination
rates to obtain the fractions of each element in various ionisation states.
Second, one must solve for the level populations in the various L-S levels
using the procedure we outlined a few weeks ago. Once that is done, the rate
of collisionally-excited line cooling per unit volume is

Λce =
∑
X

∑
i

n(X, i)
∑
j<i

AijEij, (25)

where n(X, i) is the number density of atoms of species and ionisation state
X in level i, and Aij and Eij are the Einstein A and difference in energies for
between levels i and j.

Of course the results of these calculations depend on both the gas density
and temperature, as well as the abundance. Thus the numerical procedure
to determine the equilibrium temperature in photoionised gas is generally to,
for a given density and abundance of heavy elements, numerically generate
the function Λce(T ) for different T values, and search for a value of T such
that Γpi = Λrr + Λff + Λce.

At Solar metallicity and for ionising sources similar to those found in Orion,
the results of numerical calculations are that the most important cooling
species are N ii, O ii, O iii, S ii, and S iii. Of course this depends both on
the spectrum of the ionising star, which alters the abundances of the different
ionisation states, and on the element abundances. These calculations also
show that Λce is larger than Λrr + Λff by a factor of a few.

C. Thermal equilibrium

We are now in a position to calculate equilibrium temperatures in photoionised
regions. First consider the case of pure hydrogen. We have shown that photoion-
isations add an energy ψkTc for each photoionisation, while recombinations and
free-free remove an energy 1.22kT . Thus the equilibrium temperature is simply
T = (ψ/1.22)Tc ≈ Tc, i.e., the gas has about the same temperature as the colour
temperature of the star that is ionising it. Since any star hot enough to put
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out a reasonable number of ionising photons tends to have Tc of a few times 104

K, this is a prima facie explanation why photoionised regions tend to have this
temperature.

As we just mentioned, collisionally excited lines increase the cooling rate by a
factor of a few at roughly Solar metallicity, and so the equilibrium temperature
winds up being smaller than Tc by a factor of a few. In the Orion nebula, for
example, the ionising flux is dominated by the O7 star θ1 Ori C, which has Tc ≈
3.5×104 K, whereas the estimated gas temperature is about 8050 K. The difference
between T and Tc is smaller for lower metallicities, so that typical H ii region
temperatures in low metallicity galaxies are closer to 15, 000 K, while those in
super-solar metallicity galaxies may be as small as ∼ 6000 K.

We can also ask how long it takes for gas to reach equilibrium. If the gas is initially
cold relative to its equilibrium temperature (generally a good assumption, since
H ii regions tend to go off in molecular clouds with temperatures of ∼ 10 K),
then initially the heating rate will greatly exceed the cooling rate. In this case
we can estimate the time required to reach the equilibrium temperature simply
by dividing the equilibrium energy by the rate at which photoionisations supply
energy.

In equilibrium, the mean energy per particle in an H ii region of temperature T
is (3/2)kT . The heating rate per unit volume is

Γpi = nH0ζψkTc, (26)

where ζ is the photoionisation rate. The heating rate per particle is

Γpi

nH0

= ζψkTc. (27)

Thus the time required to reach thermal equilibrium is

teq =
(3/2)kT

Γpi/nH0

=
3

2ψ

T

Tc
ζ−1. (28)

The prefactor in front of ζ is of order unity (or slightly smaller if we include metals
so that T < Tc), so we conclude that the thermal equilibration time is comparable
to 1/ζ, which is just the ionisation time. Thus the gas reaches thermal equilibrium
on the same timescale over which it ionises, and we can safely assume that all the
ionised gas is at its equilibrium temperature.

II. Ionisation fronts

Thus far we have assumed that the medium is in thermal and photoionisation equilib-
rium. Now let us relax those assumptions, and study the time-dependent behaviour of
the gas. Recall that the mean free path of the ionised photons through neutral gas is
tiny. Optical depth unity corresponds to a column density of ∼ 1017 H atoms cm−2,
whereas the typical column density of the galactic disk is ∼ 1021 H atoms cm−2, and
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regions of star formation where massive stars are prone to start ionising the gas are
even denser. Thus we can approximate that the ionised region around the star will be
a sphere with a very sharp boundary, and that, inside that region, the gas will be close
to fully ionised. The boundary between these two regions is called an ionisation front.

A. Ionisation fronts without gas motion

We will begin by considering the simplest possible problem. We start with a pure
hydrogen medium of uniform density nH that is initially all neutral hydrogen, and
at time zero we turn on an ionising source of ionising luminosity Q0, and for now
we hold the gas fixed in position. Thus there are no motions. We would like to
compute the state of the gas as a function of the time t and its distance r from
the ionising source.

Suppose that at some time t the radius is ri. The instantaneous rate at which
ionising photons are being produced is Q0, and the instantaneous rate at which
they are being destroyed by recombinations is (assuming case B) (4/3)πr3

iαBn
2
H,

i.e., just the volume of the ionised region multiplied by the recombination rate
per unit volume. Thus net number of ionising photons added to the region (i.e.,
emitted minus removed by recombination) per unit time is

Q0 −
4

3
πr3

iαBn
2
H = Q0

[
1−

(
ri
rS

)3
]
, (29)

where RS = (3Q0/4παBn
2
H)1/3 is the usual Strömgren radius.

The excess photons must escape from the ionised region and cause new ionisations
at its boundary, allowing the region to expand. If the region of ionised gas expands
a distance dri in a time dt, the number of new ionisations during this time is

4πr2
i nH dri. (30)

This is just the volume of the shell of newly-ionised material multiplied by the
density of neutral atoms inside it. This must balance the number of excess pho-
tons available for expanding the ionised region, which is just the excess we have
computed times dt. Thus we require that

4πr2
i nH

dri
dt

= Q0

[
1−

(
ri
rS

)3
]
. (31)

To solve this equation it is helpful first to recast it in dimensionless form. We let
x = ri/RS, and we let τ = t/trec, where trec = 1/αBnH is the recombination time,
i.e., the time it takes an atom to recombine. With this change of variables, the
equation nicely simplifies to

dx

dτ
=

1− x3

3x2
, (32)

which has the exact solution

x =
(
1− e−τ

)1/3
=⇒ ri = RS

(
1− e−αBnHt

)1/3
, (33)
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where we have set the constant of integration by requiring that x = 0 at τ = 0.
Note that we have implicitly taken αB to be constant, but this is a reasonable
assumption given that it depends only on temperature, and we have shown that
the gas will reach its equilibrium temperature on a timescale comparable to the
ionisation timescale.

At times t � trec, the term in the exponential is small, and we have ri ∝ t1/3

– this is exactly what we would expect if there were no recombinations, because
it is equivalent the statement that the number of ionised atoms (∝ r3

i ) increases
linearly in time. As the time approaches and then passes trec, the expansion of
the ionised region slows, and at late times the difference between the ionisation
radius and RS declines as e−t/trec .

B. General ionisation fronts

The calculation we have just done is artificial in the sense that we have magically
assumed that the gas is at rest. However, if the ionised gas reaches temperatures
of ∼ 104 K, while the neutral gas is at ∼ 10 K, clearly, such an equilibrium
is artificial. The warm gas is overpressured relative to the cool gas, and this
will induce motions. Our final goal for today is to understand the structure of
ionisation fronts where the gas is not at rest.

Let us focus on a small patch of the interface between ionised and neutral gas,
and let us adopt a coordinate system such that this interface is at rest. Let J be
the flux per unit area of ionising photons arriving at the front. We denote gas in
the neutral region ahead of the front with a subscript 1, and gas in the ionised
region behind the front with subscript 2. The density in the neutral region is ρ1,
and the density in the ionised region is ρ2. The velocity of gas approaching the
ionisation front is u1, and the velocity of gas flowing out of it on the ionised side
is u2. In the frame where the upstream, neutral gas is at rest, u1 is simply the
propagation speed of the front. We assume that gas is unmagnetised.

Ionized

1

u
1

u
2

ρ
2

J

Neutral

ρ

1. Jump conditions

As gas crosses the front, we must conserve mass, so we immediately require
that

ρ1u1 = ρ2u2. (34)

Moreover, we must conserve photons, so the rate at which neutral atoms cross

9



the ionisation front and become ionised must match the rate at which ionising
photons arrive at the front to ionise them. Thus

ρ1u1 = ρ2u2 = Jµi, (35)

where µi is the mean mass per ion in the ionised gas. For pure hydrogen
µi = mH. For the standard helium abundance µi = 1.4mH if the He remains
neutral, and µi = (1.4/1.1)mH if it becomes once-ionised. The latter is usually
the case.

If we imagine that the flux of ionising photons J is fixed by the source star,
and that the upstream density ρ1 is fixed by the material into which the I-front
is propagating, then this means that we have solved for the front propagation
speed: u1 = Jµi/ρ1.

We also require that momentum be conserved across the front. To see what
this implies, we must write down the equation of momentum conservation.
The x component of this reads:

ρu
∂u

∂x
= −∂p

∂x
, (36)

where p is the gas pressure, u is the x component of the velocity, we have
assumed that there is no magnetic or gravitational field present, and we have
assumed that viscosity is negligible. This last assumption fails in a thin region
near the front, but we can avoid that region. Rewriting this slightly, we have

∂

∂x

(
ρu2 + p

)
= 0. (37)

In principle we should also include radiation pressure forces in this equation,
but we will omit them because, except in special cases that we will handle
later, they are small. If we integrate this equation across the front, then we
find that it requires

ρ1(u2
1 + c2

1) = ρ2(u2
2 + c2

2), (38)

where c1 and c2 are the sound speeds in regions 1 and 2, related to the
pressures by p1 = ρ1c

2
1 and similarly for region 2. We regard c1 and c2 as

known, since they are fixed by the gas temperature, which is set by the
radiative processes we discussed earlier.

Let us now combine mass and momentum conservation to see what they
imply. We let x = u2/u1 = ρ1/ρ2, where we have used mass conservation
to write u2/u1 = ρ1/ρ2. With this definition the equation of momentum
conservation becomes

u1x
2 − (u2

1 + c2
1)x+ c2

2 = 0. (39)

Thus the solution is

x =
1

2u2
1

{(
u2

1 + c2
1

)
±
[(
u2

1 + c2
1

)2
− 4u2

1c
2
2

]1/2
}
. (40)
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Since the ratio of velocities and densities had better be real, this means that
we require

u2
1 + c2

1 > 2u1c2. (41)

This condition can be satisfied in two ways:

u1 > uR ≡ c2 +
(
c2

2 − c2
1

)1/2
or u1 < uD ≡ c2 −

(
c2

2 − c2
1

)1/2
. (42)

Since it is usually the case that c2 � c1, since the ionised gas is much hotter
than the neutral gas, we have

uR ≈ 2c2 uD ≈
c2

1

2c2

. (43)

Note that u1 is not a free variable: since u1 = Jµi/ρ1, it is fixed by the
imposed flux of ionising photons J and the upstream density ρ1. Thus it is
entirely possible to have a value of u1 that satisfies neither of these conditions.
We’ll get back to what happens in this case in a moment. For now, though,
let’s examine the solutions where u1 does satisfy one of these conditions.

2. R-type fronts

First consider the case where u1 > uR, which occurs when J > ρ1uR/µi. This
this occurs when ρ1 is small, this is called the R type case, where R stands
for rarefied. In this case the I-front travels at twice the ionised gas sound
speed or faster. Since in general u1 > 2c2 � c1, the ratio of densities x is
approximately

x ≈ 1

2

1±
√

1−
(
uR
u1

)2
 . (44)

If we choose the positive root, then x = ρ1/ρ2 > 1/2. Thus the density is
slightly higher in the downstream, ionised gas, but only slightly, and in the
limit of a large ionising flux, so that u1 � c2, the density change goes to zero.
We refer to this case as a strong R-type front. If on the other hand we choose
the negative root, then x < 1/2, and for large ionising fluxes x� 1/2. Thus
there is a large increase in density from the neutral to the ionised gas, and
the ionisation front must also be a strong shock front. We refer to this as a
weak R-type front. Note that if u1 = uR ≈ 2c2, the two cases are identical,
and we refer to this as the R-critical case.

Physically the strong R-type front is the realistic one. Since c2 � c1, having
x � 1 so that ρ1 � ρ2 requires that the pressure p2 = ρ2c

2
2 be much, much

greater in the ionised region than in the neutral region. This is possible only if
there is some sort of piston pushing on the ionised gas to keep it accelerating
into the neutral region, which doesn’t tend to happen. For this reason the
strong R-type front is the physically reasonable solution. It is characterized
by a small to non-existent density jump at the front, coupled with a front
that expands very quickly. We can see now that the case we solved of fixed
gas that does not move is the limit of a very strong R-type front
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3. D-type fronts

Now let us consider the other possible solution: u1 < uD, which occurs when
J < ρ1uD/µ1. This occurs when ρ1 is large, and the D stands for dense.
Again, we have two roots to consider. For the positive root, called the weak
D case, the ionised gas is much lower in density than the neutral gas, and it
flows away from the front at a speed u2 that is close to c2. For the negative
root, called the strong D case, the neutral and ionised regions are nearly in
pressure balance. The density jump is not as large as in the weak D case.
Both strong and weak D cases are astrophysically possible. As with R type
fronts, if u1 = uD then the strong and weak cases are the same, the the front
is called D critical.

We can summarize all possible states of the ionisation front in a single dia-
gram:

The curves on the left are the D type solutions, and those on the right are
the R type, plotted for c2/c1 = 5. The red lines represent the positive roots,
corresponding to weak D on the left and strong R on the right, while the
blue are the negative roots, corresponding to strong D and weak R. The
points where the two curves meet are the R- and D-crtical points. Recall
that x = u2/u1 = ρ1/ρ2, so the y axis gives the size of the density jump, with
values greater than unity indicating a density increase from neutral to ionised
gas, and values less than unity indicating a density drop.

4. Intermediate velocities

Recall that u1 is fixed by the upstream density and the photoionising flux,
u1 = Jµi/ρ1. This naturally raises the question: what happens if u1 > uD
and u1 < uR?

The answer is that in this case there is only one way to satisfy the jump
conditions, which is that ρ1 must rise so that u1 decreases to the point where
it is equal to uD. The way that this can happen is that a shock wave can run
in front of the ionisation front, accelerating and compressing the upstream
gas. The system then develops a two-front structure, in which a shock front
precedes the I-front, and the postshock gas density is raised to the point
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where

ρ1 =
Jµi
uD

. (45)

This is followed by a D type ionisation front, which ionises the gas.The con-
figuration at this point is as shown below:

Shock front

1

u
1

u
2

ρ
2

u
0

ρ
0

J

Ionized Neutral, shocked Neutral, unshocked

Ionization front

ρ

We let u0 and ρ0 be the velocity and density of the pre-shock material, and
u1 and ρ1 be the density of the post-shock, pre-ionisation gas.

Once the density in the post-shock, pre-ionisation gas reaches the value of ρ1

required to allow a D critical front to exist, we have u1 = uD and

x = xD ≡
1

1−
√

1− (c1/c2)2
≈ 2c2

2

c2
1

. (46)

Thus the velocity of gas moving away from the ionisation front is

u2 = xDuD ≈ c2. (47)

At this point the post-shock gas moves away from the front at the ionised gas
sound speed. To follow the behavior further, we must embed this model in a
fuller picture of an expanding H ii region.
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