
ASTR 4017/8007: Diffuse Matter in the Universe

Class 10 Notes: Collisionally-excited lines

Now that we have understood something about how ionisation equilibrium is established,
we will next consider processes that cause observable emission ionised gas. We have already
encountered these processes from hydrogen atoms: free-free and recombination line emission.
Our next goal is to extend that analysis to other elements. These are mostly excited by
collisions, and thus the topic to which we turn is collisional excitation and collisionally
excited line emission. This process is one of our best ways of learning about the properties
of the ISM, and a clever use of collisional excitation tracers lets us infer temperatures,
densities, chemical compositions, and a host of other properties in emitting regions. The key
insight is that understanding when lines will be in LTE and when they will not, and seeing
how far out of LTE they get, provides a powerful tool.

I. The two-level atom

We begin by considering the simplest case of an atom that has only two relevant states,
which we will denote 0 and 1, with energies E0 and E1, E0 < E1. The number density
of atoms in each state is n0 and n1. Transitions between the two states happen in two
ways. First, there is spontaneous emission from atoms in state 1, which occurs at a
rate per unit volume A10n1, where A10 is the standard Einstein A coefficient. Collisions
between the atoms in question and some collision partner – most often free electrons –
with number density nc can cause changes of state. The rate coefficient for transitions
from state 0 to state 1 is k01, and the rate coefficient for the reverse reaction is k10.

A. The collision-only case

We will assume for the moment that there is no ambient radiation field (J = 0),
so there is no absorption or stimulated emission; we will drop that assumption in
a moment. Second,

Given this setup, we can compute the rate of change of the number density of
particles in state 1:

dn1

dt
= ncn0k01 − ncn1k10 − n1A10. (1)

The steady-state solution, dn1/dt = 0, is

n1

n0

=
nck01

nck10 + A10

. (2)

Now recall that k01 and k10 are not independent, since they are the backward and
forward rate coefficients for the same reaction. Detailed balance requires that

k01 =
g1
g0
k10e

−E10/kTK (3)

1



where g0 and g1 are the degeneracies of the two states, E10 = E1−E0, and TK is the
gas kinetic temperature – the temperature that describes the velocity distribution
of the atoms. Note that we have not assumed LTE, we have only assumed that
the atoms in question and their collision partners follow a Maxwellian velocity
distribution, which is a much weaker assumption.

Substituting in for k01, we can rewrite the steady-state solution as

n1

n0

=

[
1

1 + A10/(nck10)

]
g1
g0
e−E10/kTK . (4)

It is clear from this expression that A10/k10 has the units of density, so we define
the critical density as

ncrit =
A10

k10
. (5)

With this definition, we can rewrite the steady state solution as

n1

n0

=

(
1

1 + ncrit/nc

)
g1
g0
e−E10/kTK . (6)

It is instructive to phrase this result in terms of the excitation temperature. Re-
call that we define the excitation temperature as the temperature that would be
required to make the ratio of level populations follow the Boltzmann distribution,
i.e., we define Tex implicitly by

n1

n0

=
g1
g0
e−E10/kTex . (7)

If we now equate this expression with our expression for the actual ratio n1/n0,
we can solve for the excitation temperature:

Tex =
TK

1 + (kTK/E10) ln(1 + ncrit/nc)
. (8)

Now notice how this behaves in the limits nc � ncrit and nc � ncrit. In the first
case, nc � ncrit, the argument of the logarithm is close to unity, and thus the
logarithmic term goes to zero. We therefore have Tex → TK . In this case the
system is in LTE.

In the second case, nc � ncrit, the logarithmic term is non-negligible, and thus
Tex < TK , with the limiting behaviour Tex ∝ 1/ ln(ncrit/nc). In terms of level
populations, this corresponds to n1/n0 ∝ nc/ncrit. Physically, what is going on
in the regime nc � ncrit is that radiative de-excitation is depopulating the upper
state faster than collisions can repopulate it, and the gas is therefore less excited
than it would be in LTE – a situation called sub-thermal excitation. The larger
the value of A10, the faster this process happens, and the larger the density must
be to keep up, which is why ncrit is proportional to A10.
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B. Effect of an external radiation field

Now lets remove the assumption that there is no ambient radiation field, and
suppose that there is one with directionally-averaged photon occupation number
〈nγ〉 at the frequency of the line. Including the terms for stimulated emission and
absorption, the rate of change of atoms in state 1 becomes

dn1

dt
= n0

(
nck01 + 〈nγ〉

g1
g0
A10

)
− n1 [nck10 + (1 + 〈nγ〉)A10] . (9)

The first of the terms proportional to 〈nγ〉 represents the rate at which absorptions
move atoms from state 0 to state 1, and the second represents the rate at which
stimulated emissions depopulate state 1. The steady-state solution, dn1/dt = 0,
is now

n1

n0

=
nck01 + 〈nγ〉(g1/g0)A10

nck10 + (1 + 〈nγ〉)A10

. (10)

We can simplify this by using detailed balance, Equation 3, and defining a gener-
alised critical density,

ncrit =
(1 + 〈nγ〉)A10

k10
. (11)

Note that this is exactly the same as our previous definition, except that we have
multiplied by a factor 1 + 〈nγ〉. With this definition, and a little bit of algebraic
manipulation, we can rewrite the solution as

n1

n0

=

(
1

1 + ncrit/nc

)
g1
g0
e−E10/kTK +

(
1

1 + nc/ncrit

)
〈nγ〉

1 + 〈nγ〉
. (12)

The first term is identical to what we got in the case without an external radiation
field, while the second term is new.

To understand what this result means, it is helpful to rewrite 〈nγ〉 in terms of
the brightness temperature TB, which, we recall, is defined analogously to the
excitation temperature: it is the temperature that would be required in LTE to
produce a radiation field with this value of 〈nγ〉 at this frequency. This is given
implicitly by

〈nγ〉 =
1

eE10/kTB − 1
(13)

Substituting this in, the steady-state solution is

n1

n0

=

(
1

1 + ncrit/nc

)
g1
g0
e−E10/kTK +

(
1

1 + nc/ncrit

)
g1
g0
e−E10/kTB . (14)

This is now completely parallel between kinetic and brightness temperature.
Again, it is useful to look at limiting cases. For nc � ncrit, the first term in
parentheses is big and the second one is small, so we can drop the radiation term
involving TB, and we just get the kinetic term involving TK . This is the case we
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have already explored: for densities far above the critical density, the system goes
into collisional equilibrium, with Tex → TK .

In the opposite limit, nc � ncrit, the second term is big and the first is small.
Since the functional form is identical to the case we have already analysed, we
can immediately see the answer: in this case, Tex → TB. Thus the system goes to
a different sort of equilibrium: instead of the excitation temperature going to the
gas kinetic temperature, it goes to the radiation brightness temperature.

Finally, at nc ∼ ncrit, we expect an intermediate result, where the excitation
temperature is in between the kinetic and radiation temperatures. Thus the value
of ncrit tells us whether we should think of the system as collision-dominated, or
radiation-dominated.

C. Application I: the H i 21 cm line

Although two-level systems are relatively rare in nature, there are some that come
close. The most obvious example is the 21 cm line of atomic hydrogen, where
the two hyperfine spin states are separated by energy E10/k = 0.0682 K, and
A10 = 2.88× 10−15 s−1. The collision rate coefficient for collisional de-excitation
by collisions between H atoms at T = 100 K, a typical CNM temperature, is
k10 ≈ 1.2× 10−10 cm3 s−1; a fit for other temperatures is given in Draine.

Let us calculate the equilibrium spin temperature of a cloud of atomic hydrogen
as a function of its density at this temperature, assuming a radiation environment
like that found in the Milky Way. The first step is to compute the critical density,
and for this we must know 〈nγ〉. At the frequency of the 21 cm line, the dominant
sources of ambient radiation are the CMB, which provides TB = 2.73 K, and
galactic synchrotron emission, which has TB ≈ 1 K. Since we are in the Rayleigh-
Jeans tail of the Planck function, the combined brightness temperature from both
sources is simply their sum, so TB = 3.73 K. Plugging in,

〈nγ〉 =
1

eE10/kT − 1
≈ 55. (15)

Thus we have

ncrit =
(1 + 〈nγ〉)A10

k10
≈ 1.7× 10−3 cm−3. (16)

Pretty much any gas where the hydrogen is mostly H i will have a density well
above this value, so in the present-day Universe, we expect the spin temperature
in the CNM to be close to the gas kinetic temperature, rather than to the CMB
plus synchrotron temperature. Note, however, that – per our earlier discussion –
this was not necessarily the case in the early Universe, when the CMB was much
more intense.

D. Application II: the C ii 158 µm line

Another important application is the 158 µm line of C ii, which corresponds to
the 2P o

3/2 → 2P o
1/2 forbidden fine structure line. This turns out to be one of
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the dominant cooling lines in the atomic ISM. The Einstein A for the line is
A10 = 2.4 × 10−6 s−1, a small value appropriate for a forbidden line. The two
states are coupled by collisions with both neutral hydrogen atoms and the (small)
population of free electrons found in predominantly neutral regions. The rate
coefficients for collisional de-excitation are approximately

k10(e
−) = 4.5× 10−8(T/104 K)−1/2 cm3 s−1 (17)

k10(H) = 7.6× 10−10(T/102 K)0.13 cm3 s−1. (18)

Note that the charged-charged reaction has a rate coefficient that scales as T−1/2,
and the charged-neutral one has a rate coefficient that is nearly independent of
temperature, as expected.

At 158 µm, there is negligible background radiation – the CMB gives 〈nγ〉 ≈ 10−5.
Thus we can consider collisions alone, and the critical densities for electrons and
neutral hydrogen atoms are

ncrit(e
−) ≈ 53(T/104 K)1/2 cm−3 (19)

ncrit(H) ≈ 3.2× 106(T/102 K)−0.13 cm−3. (20)

These values are much less than those typically found in the atomic ISM, so we
conclude that the C ii fine structure levels are sub-thermally excited.

II. Many-level atoms

Having developed a theory for the simplest case of two quantum states, we are now in
a position to generalise to a system with an arbitrary number of quantum states. In
practice such cases will almost always have to be solved numerically, but our goal here
is to develop the models that can be used to do so.

A. Formalism

Suppose we have a particle with states i = 0, 1, 2, . . ., each with its own energy Ei
and degeneracy gi. Let Eij be the difference in energy between any two states, Aij
be the rate of spontaneous emission between two states (where by convention we
take Aij = 0 for any i ≤ j, i.e., rates of “spontaneous excitation” are zero), and
kij be the collision rate coefficient connecting the two states (and by convention
kii = 0, i.e., we do not consider transitions from a state to itself). The number
density of collision partners causing collisional excitations is again nc.

First consider the case where there is no ambient radiation field. In this case, the
rate of change of the number density of atoms in state i is then given by

dni
dt

=
∑
j

nj (nckji + Aji)− ni
∑
j

(nckij + Aij) . (21)

The first sum represents the rate of transitions into state i from all other states
j, and this has two parts: collisional transitions into state i, and spontaneous
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radiative decays into state i from higher states. The second sums represents the
rate of transitions out of state i summed over all states j into which the atom
could go, and this again has two parts: collisions from i to j, and spontaneous
decays from i to j.

Now let’s add back in the complication of an ambient radiation field. This gives
us two additional processes to worry about: stimulated emission and absorption.
Stimulated emission is easy to handle: we just multiply the spontaneous emission
rate by a factor of (1 + 〈nγ,ij〉), where 〈nγ,ij〉 is the photon occupation number,
evaluated at the frequency νij = Eij/h that corresponds to the energy difference
between states i and j. Thus including stimulated emission but not absorption
we have,

dni
dt

=
∑
j

nj [nckji + (1 + 〈nγ,ij〉)Aji]− ni
∑
j

[nckij + (1 + 〈nγ,ij〉)Aij] . (22)

Finally, to include absorption, recall that the absorption rate from state i→ j is
(gi/gj)ni〈nγ,ij〉Aji. Adding this term to both the rate of particles entering state i
and leading state i, we have

dni
dt

=
∑
j

nj [nckji + (1 + 〈nγ,ij〉)Aji]
∑
j

ng
gi
gj
〈nγ,ij〉Aij

− ni
∑
j

[nckij + (1 + 〈nγ,ij〉)Aij]− ni
∑
j

gj
gi
〈nγ,ji〉Aji. (23)

The two new sums we have added are, for the positive term, the rate at which
absorptions out of state j < i populate state i, and the rate at which absorptions
out of state i into state j > i depopulate state i.

To find the steady state, we set dni/dt = 0, and we now need to solve a system
of linear equations

∑
j

nj

[
nckji + (1 + 〈nγ,ij〉)Aji +

gi
gj
〈nγ,ji〉Aij

]

= ni
∑
j

[
nckij + (1 + 〈nγ,ik〉)Aij +

gj
gi
〈nγ,ij〉Aji

]
. (24)

This looks a bit daunting, but is somewhat easier to make sense of if we isolate
the ni. Re-arranging a bit, we have

ni = φ−1
i

∑
j

[
nckji + (1 + 〈nγ,ij)Aji +

gi
gj
〈nγ,ij〉Aij

]
nj, (25)

where φi is a normalisation factor, given by

φi =
∑
j

[
nckij + (1 + 〈nγ,ij)Aij +

gj
gi
〈nγ,ij〉Aji

]
. (26)
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We can recognise this as a matrix multiplication problem. Let n = (n0, n1, n2, . . .)
be the vector of level populations. In this case, the equation we have just written
down is simply

M · n = n, (27)

where the matrix M has elements given by

Mij = φ−1
i

∑
j

[
nckji + (1 + 〈nγ,ij)Aji +

gi
gj
〈nγ,ij〉Aij

]
. (28)

This is a standard eigenvalue problem, and the solution n is simply the eigenvector
that corresponds to an eigenvalue of 1. The matrix M itself depends only on the
known rate coefficients and the ambient radiation field and number density of
collision partners. Thus the problem of finding the steady state number densities
n simply reduces to the problem of solving a simple eigenvalue problem, which
can be done by any of a number of standard techniques.

B. Critical densities for multi-level atoms

While this formalism can be used to solve multi-level atoms easily on a computer,
we can gain some insight into how the solution is going to look if we define a
generalised critical density for our multi-level atom. For the sake of simplicity,
and to gain intuition, let us assume that there is a particular level i which is the
highest energy level with any appreciable population, so that neither collisional
de-excitations from even higher energy states, nor radiative transitions into our
out of these higher energy states, contribute appreciably to its population. In
practice this is almost always the case. For this level i, the rate equation becomes

dni
dt

=
∑
j<i

njnckji +
∑
j<i

gi
gj
〈nγ,ij〉Aij − ni [nckij + (1 + 〈nγ,ij〉)Aij] . (29)

The remaining terms describe, from left to right, collisional excitation from lower
levels j into level i, radiative absorptions from level j into level i, and collisional
and radiative de-excitations from level i to all other, lower levels j. The steady-
state solution is

ni =

∑
j<i njnckji +

∑
j<i nj

gi
gj
〈nγ,ij〉Aij∑

j<i [nckij + (1 + 〈nγ,ij〉)Aij]
. (30)

In analogy with the two-level case, we can define the critical density as the ratio
of the radiative de-excitation rate coefficeint to the collisional de-excitation rate
coefficient,

ncrit,i =

∑
j<i (1 + 〈nγ,ij〉)Aij∑

j<i kij
. (31)

Using this definition, with a bit of algebra we can re-arrange the steady-state
solution into something very similar to what we had for the two-level atom:

ni =

(
1

1 + ncrit,i/nc

) ∑
j<i njkji∑
j<i kij

+

(
1

1 + nc/ncrit,i

) ∑
j<i nj

gi
gj
〈nγ,ij〉Aij∑

j<i (1 + 〈nγ,ij〉)Aij
. (32)
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Thus we can see that ncrit plays the same role here as in the two-level atom:
if nc � ncrit, then the term describing collisional interactions is small, and the
solution is entirely determined by radiative processes. If nc � ncrit, then the
radiative term is small and the collision rate coefficients completely determine the
solution.

III. Radiative trapping

Thus far in our treatment of line radiation we have assumed that there is no background
radiation field other than the CMB and starlight, which are imposed externally. In
particular, we have assumed that photons emitted within a cloud all escape, and do
not build up to produce their own radiation field. These are sometimes good assump-
tions, but there are environments where they fail, sometimes spectacularly. We have
already encountered one, in our discussion of Lyman α radiation in the context of
recombination. In an ionised region where hydrogen is recombining, the occupation
number of Lyman α photons can be very large, and these photons are coming from
the recombinations themselves, not from any external source. Treating problems of
this type is highly non-trivial, and often we are forced to purely numerical solutions in
which we iteratively solve simultaneously for the level populations and the radiation
field. However, we can make some simple analytic approximations, which are sufficient
to give at least rough accuracy in many circumstances.

A. The escape probability formalism

Consider a gaseous region. At some point r within it, the optical depth to infinity
in direction n̂ at frequency ν is τν(n̂, r). We define the escape probability for
photons of frequency ν emitted at r by

βν(r) =
1

4π

∫
e−τν(n̂,r) dΩ (33)

This is exactly what the name implies: it is the probability that a photon emitted
in a random direction at point r will escape to infinity without being scattered or
absorbed. If we integrate this over the line profile φν , we obtain the probability
that a random photon emitted in a particular line of interest will escape:

〈β(r)〉 =
∫
βν(r)φν dν. (34)

Now consider a simple two-level system. For the upper state, the rate of change
of the number density of particles is

dn1

dt
=

(
nck01 +

g1
g0
〈nγ〉A10

)
n0 − n1 [nck10 + (1 + 〈nγ〉)A10] , (35)

where we have dropped the 10 subscript for nγ for compactness, since there is
only one frequency to worry about. The first term represents the rate at which
the upper state is populated by collisions and absorptions out of the lower state,
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and the second represents the rate at which the upper state is depopulated due
to collisions, spontaneous emission, and stimulated emission into the lower state.

In general solving this problem together with the radiative transfer problem is
nasty, because nγ varies throughout the cloud as dictated by the transfer equa-
tion. However, the source term in the transfer equation depends on the level
populations, since they dictate the rate of emission and absorption. The level
populations in turn depend on nγ, so everything is non-locally coupled. This is
why a numerical solution is usually the only option if we want to solve the problem
“right”.

However, if we want to solve the problem only sort of right, we can make some
assumptions. Specifically, we will assume that: (1) the cloud is uniform, and (2)
if a photon does not escape, it is re-absorbed very close to the point where it is
emitted – an assumption known as the “on the spot” approximation. Assumption
(1) means that the cloud can be characterised by a single excitation temperature
Tex, so the equation of radiative transfer through it becomes

Iν = Iν(0)e−τν +Bν(Tex)(1− e−τν ). (36)

Rewriting this in terms of the photon occupation number, this is

nγ = nγ(0)e−τν +
1− e−τν

n0g1/n1g0 − 1
, (37)

where we have written Tex in terms of the ratio of level populations n1/n0. Here
nγ(0) = (c2/2hν3)Iν(0) is the external radiation field entering the cloud from the
outside.

Continuing with our assumption of uniformity, we can replace the e−τν factors
with βν , the escape probability that is, by assumption, the same everywhere. If
we further assume that the external radiation field nγ(0) is isotropic and does not
vary significantly over the line profile, we can integrate the transfer equation over
frequency and angle, giving

〈nγ〉 = 〈β〉nγ(0) +
1− 〈β〉

g1n0/g0n1 − 1
(38)

If we now put this into our equation for the evolution of the level population, we
have

dn1

dt
= nck01n0 − nck10n1 − 〈β〉A10n1 + n0

g1
g0
〈β〉A10nγ(0)

(
1− g0n1

g1n0

)
. (39)

This is quite an interesting result, but it makes intuitive sense. The equation is
exactly the same as what we got before for dn1/dt assuming that every photon
escaped, except that the Einstein coefficients have all been reduced by a factor
of 〈β〉. This makes sense given our assumptions: since we have assumed that
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every photon has some probability of escaping, and that if it does not escape it
is re-absorbed immediately at the point of emission, our assumptions essentially
amount to reducing the rate of spontaneous emission by the escape probability.
That is exactly what our analysis has produced. One could almost have guessed
the result without going through the formalism at all.

Note that this means that in the case of radiative trapping we can also define an
effective critical density, which is the same as the critical density in the optically
thin case, but with all the A coefficients replaced by 〈β〉A.

B. Approximate escape probabilities

Of course we have glossed over one critical point thus far: we have not yet specified
exactly what the escape probability is! This is where things get tricky, since the
exact escape probability will depend on the structure of the cloud in position
and velocity. Any value will necessarily be approximate, since in a real cloud the
escape probability is never uniform. A number of approximations exist, which
are applicable to different velocity structures and geometries. For the purposes
of this class, we will only consider one: spherical clouds with uniform velocity
dispersions.

We already know how to compute the optical depth in this case from our discussion
of absorption lines. Suppose we have a uniform, spherical cloud with velocity
dispersion σv and radius R. In this case the optical depth from the centre to the
edge is

τ0 =
g1
g0

A10λ
3
10

4(2π)3/2σv
n0R

(
1− g0n1

g1n0

)
, (40)

where λ10 = hc/E10 is the wavelength of the transition. From any other point
within the cloud, the optical depth is simply τ0 multiplied by a geometric factor.
In particular, if we consider a point a distance r from the cloud centre, and we
consider a direction that makes an angle θ with respect to the outward normal.
Using a little geometry it is easy to see that the distance to the surface a is given
implicitly by

R2 = r2 + a2 + 2ar cos θ, (41)

and the optical depth in this direction is xτ0, where x = a/R. The directionally-
averaged escape probability is therefore

βν(r) =
1

2

∫ π

0
e−xτ0φν sin θ dθ. (42)

Obviously this can be integrated in frequency as well in the usual way to obtain
the frequency-averaged, angle-averaged escape probability 〈β〉. If we are not so
optically thick that we need to worry about line wings, it is reasonable simply to
take φν to be a δ-function, so

〈β(r)〉 =
1

2

∫ π

0
e−xτ0 sin θ dθ. (43)
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This still depends on position, but for the escape probability formalism we need
to adopt a uniform value of 〈β〉 throughout the cloud. The most natural way to
do so is to simply to set this uniform value to the value of 〈β〉 averaged over the
cloud volume:

〈β〉cloud =
3

2

∫ 1

0

∫ π

0
e−xτ0x2 sin θ dθ dx. (44)

For a given τ0 this integral is trivial to evaluate numerically, but since we are
working to an approximation anyway, it makes more sense to approximate it with
something simple and analytic. It turns out that the numerical result is fit well
by

〈β〉cloud ≈
1

1 + 0.5τ0
. (45)

The scalings here are easy to understand: for τ0 → 0, most photons escape, and
the escape probability is just unity. For τ0 � 1, photons are only likely to escape
if they happen to be emitted within one optical depth of the cloud surface, so the
escape probability is just the fraction of the cloud’s volume within one optical
depth of the surface. For large τ0, this fraction just scales as 1/τ0, since for
large τ0 the volume from which photons can escape is just a thin skin of thickness
R/τ0 at the cloud surface. Our approximate expression just interpolates smoothly
between these two limits.

We are now almost done: the value of 〈β〉cloud that determines the equilibrium
level populations is a known function of τ0, while τ0 is a known function of the level
populations. We therefore have a simple pair of non-linear algebraic equations to
solve simultaneously, and we are done. In practice this solution must usually be
obtained numerically, for example via Newton?s method, but the problem is fairly
straightforward.

C. Application of escape probability: the CO “X” factor

One very important application of the escape probability formalism is to emission
by CO molecules. The reason is that galaxies keep a substantial part of their
ISMs (as we shall see later in the course) in the form of molecular hydrogen.
The H2 molecule, however, is not directly observable under most circumstances,
for reasons we will discuss. Therefore we tend to observe H2 via a proxy, the
most common of which are the rotational lines of the CO molecule, which tends
to be found coincident with H2. The transitions we observe are changes in the
rotational quantum number, for example J = 1 → 0 or J = 2 → 1. It turns
out that these transitions tend to be extremely optically thick, with small escape
probabilities. Thus if we want to interpret CO emission, we need to think about
escape probability.

Consider a uniform spherical cloud of mass M and radius R, containing CO
molecules at kinetic temperature T . If the cloud is in hydrostatic balance between
internal pressure (mostly due to turbulent rather than thermal motions, but that
doesn?t matter for our purposes) and self-gravity, application of the virial theorem
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shows that the 1d velocity dispersion is σv ≈
√
GM/5R. What emission do we

expect to see?

As a first step, we can compute the optical depth from cloud centre to edge:

τ0 =
g1
g0

A10λ
3
10

4(2π)3/2σv
n0R

(
1− g0n1

g1n0

)
=
g1
g0

A10λ
3
10

8π

(
5

2πG

)1/2

n0
R3/2

M1/2

(
1− g0n1

g1n0

)
(46)

where here we take states 0 and 1 to the be the J = 1 and J = 0 states (though
we could equally well choose J = 2 and J = 1), so n0 is the number density of
CO molecules in the J = 0 state. Using the escape probability approximation,
whereby we just replace A10 with 〈β〉cloudA10 and assume the cloud to be uniform,
the intensity that we observe along a line of sight whose path length through the
cloud is L is

Iν = n1〈β〉cloudA10
hν10
4π

φνL. (47)

Plugging in our expression for the approximate escape probability, this is

Iν = n1A10
hν10
4π

φνL
1

1 + 0.5τ0
≈ 2

τ0
n1A10

hν10
4π

φνL, (48)

where the second step applies if τ0 � 1, which is the case here. Now notice that
τ0 ∝ n0, so Iν does not end up depending on n1 or n0 separately, only on n1/n0.
This makes physical sense: if the cloud is very optically thick, then when we look
at it we should see an intensity given by the Planck function, independent of the
total amount of material we are looking at. If we are in LTE, which is a good
assumption most of the time, then we can rewrite n1/n0 just in terms of T .

Since this is a radio observation, it is more common to work in terms of antenna
temperature or brightness temperature (which are effectively the same thing, since
hν � kT here): TA = (λ310/2k)Iν . Radio astronomers also insist on working in
velocity instead of frequency, where v = c(λ/λ10), i.e., v is just the velocity that
corresponds to a given shift in wavelength or frequency. Thus the most common
way that observations of the CO line are reported is in terms of the velocity-
integrated antenna temperature,∫

TA dv =

√
2

15
4π
hc

λ

(
GµmH

nH2

)1/2
NH2

ehν/kT − 1
, (49)

where we have rewritten the total cloud mass as M = (4/3)πR3µmHnH2 , the
column density NH2 = M/(πR2µmH), nH2 is the number density of H2 molecules,
T , and µ = 2.8 is the mean mass per H2 molecule in units of hydrogen masses mH

(2.8 rather than 2 because of helium). Note that this means that the velocity-
integrated antenna temperature is just proportional to the column density of H2.
We invert this relationship to define the constant of proportionality XCO:

XCO =
NH2∫
TA dv

= 1.6× 1020
(

nH2

103 cm−3

)1/2 (
e5.5K/T − 1

)
cm−2/

(
K km s−1

)
,

(50)
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where the numerical evaluation is for the J = 1 → 0 line; other lines can be
treated identically, just by substituting in the correct wavelength and value of
hν. What this means is that, to the extent that nH2 and T do not vary wildly
between molecular clouds, this provides a simple way of turning an observed CO
luminosity into an estimate of the corresponding column density of H2.
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