ASTR 4017/8007: Diffuse Matter in the Universe

Class 1 Notes: Introduction; Collisional processes

The subject of this class is the low density gas between the stars and galaxies. Our goal
will be to develop a physical understanding of how this material works. The physics that
governs it is all familiar and has been understood for at least the last fifty years — gas
dynamics, radiation, some quantum mechanics — but the low densities found in interstellar
space provide a completely novel context far removed from any other physical regime we’re
used to thinking about. For this reason, many of the familiar behaviours we expect are
absent or altered in the interstellar context. This makes the ISM a wonderfully complex and
challenging problem.

The class is roughly divided into two parts. The first half covers the physics of the ISM,
developing theories for the important processes that occur in low density gas. The second
half applies those models to understand the behavior of the major constituents of the ISM
and IGM. What we will cover does not even come close to being exhaustive. The ISM is
still a young and rapidly-developing field of study. One omission in particular does deserve
mention: we will spend almost no time discussing the ability of the ISM to form new stars,
one of its most important properties. This is mainly because there is an entire other class
devoted to that subject.

Although we will be starting with ISM physics and only later getting into applications, it is
helpful to have in mind a rough phenomenology to guide us in picking characteristic numbers
and scales, and in suggesting what problems are interesting. For this reason, the first part of
today’s class will be devoted to a brief phenomenology of the ISM and IGM. After that we
will begin to set up the basic calculation machinery we will use for much of the remainder
of the class.

Finally, a note on nomenclature: because saying “ISM and IGM” repeatedly would be tire-
some, | am simply going to say “ISM” most of the time, with the understanding that this
encompasses the IGM as well. T will try to be clear when I am saying something that applies
only to the ISM or the IGM.

I. A brief history of the ISM

The very existence of the ISM was not realised until fairly late in the history of astron-
omy, and understanding of its nature is even more recent. This is in part because the
ISM, except in rare circumstances, does not emit optical light. Those few objects that
do emit in the optical were known as nebulae, and by 1860 the “New General Catalog”
(as in NGC) based on the observations of William Herschel and his son John, contained
more than 500 objects. Many of these were galaxies, but some were interstellar objects.

The first hints that at the nature of these interstellar objects came from observations
made at Lick Observatory in California between 1860 and 1900 by W. Huggins and
J. E. Keeler. ADS is actually pretty complete even this far back, so one can find the



original papers quite easily. Keeler reported that spectra of nebulae showed that the
light they emitted was entirely line emission, with no detectable underlying continuum.
Moreover, the very narrow widths of the lines indicated low pressures, in contrast to
stellar spectra.

[Slide 1 — Keeler PASP article]

A second hint came in 1904. When studying the spectrum of the binary star ¢ Orionis,
J. Hartmann of Postdam noticed that, although all the other lines showed the expected
periodic velocity shifts associated with orbital motion, the calcium II K line at 3934 A
did not vary at all. In addition, the line was extremely weak and extremely narrow.
Hartmann considers and discards several explanations, before concluding that the line
must be produced by a cloud between the stars and Earth.

[Slide 2 — Hartmann ApJ article]

Yet another piece of the puzzle arrived in 1919, when Barnard, also at Lick, published
his catalog of dark clouds. The title of the paper is a wonderfully early 20th century
one: “On the Dark Markings of the Sky, with a Catalogue of 182 Such Objects.”
Barnard noticed a series of dark regions where there were no stars.

[Slide 3 — Barnard AplJ article]
Of course the modern view is a bit more impressive...
[Slide 4 — B68 as seen today]

Arthur Eddington summarised much of the observations in 1926 in a lecture to the
Royal Society in 1926 called “Diffuse Matter in Interstellar Space”, in which he argued
that the observed calcium lines in stars were of interstellar origin, and argued that the
observed optical nebulae are simply the places where the ISM is dense and lit up by
stars, and that they are part of a larger, more widespread medium. He also predicted
the existence of Hy molecules in space.

Incidentally, it’s worth looking up the original papers from 1926, if only to read the
wonderfully snippy exchange of letters by Jeans and Eddington published in The Ob-
servatory that followed the lecture. In essence Jeans was mad that Eddington had
not cited his 1905 paper on what we now know as Jeans instability, while Jeans said
that the paper was wrong as Jeans had originally tried to apply it, to determine the
masses of stars. Astronomers complaining about not being cited is definitely not a new
phenomenon...

Discoveries arrived quite quickly after that. In 1930, Robert Trumpler (also of Lick)
showed that there was a systematic deviation between the luminosity and angular di-
ameter distances of galactic clusters, with the luminosity distance coming out system-
atically larger for larger angular diameter distances. This could naturally be explained
by the widespread presence of interstellar extinction of the stellar continuum, which
would make distant cluster systematically dimmer. In the same year, Struve showed
that Ca 11 K lines are stronger in more distant stars, again consistent with the idea of
a widespread absorbing medium.



[Slide 5 — plot from Trumpler PASP article]

In the 1930s a series of additional absorption bands were discovered, some correspond-
ing to diatomic molecules like CH, CH*, and CN. Some were diffuse and weak, and they
are still unidentified today — they likely arise from complex carbonaceous molecules,
but the exact chemical composition is unknown.

The next big breakthrough was actually detecting the ISM directly, rather than via
absorption of starlight, and this had to wait for the advent of radio astronomy. In
1944 Henk van de Hulst discovered the existence of the 21 cm hyperfine line of neutral
hydrogen, and in 1951 Ewen and Purcell reported the first detection of interstellar H 1.
In the 1950s and 60s, a series of increasingly good maps of the galactic disk in 21 cm
emission were made, leading to the realization that H 1 constitutes about 10% of the
total mass of the galactic disk, adding up to about 5 x 10° M.

In 1966 Lynds & Stockton discovered the Lyman a forest produced by intergalactic
H 1 absorption, and in 1968 the first polyatomic interstellar molecule, NH3 (ammonia),
was seen. This was followed by the detection of the 2.6 mm line of the CO molecule
in 1970 by Wilson, Jefferts, & Penzias, leading to the discovery of another significant
component of the ISM: molecular clouds, with a total mass also comparable to ~ 10°
M.

Thereafter advances continued as instrumentation got faster. The launching of the
first satellite detectors in the 1960s and 1970s led to discovery of soft background x-
ray emission, produced by nearby gas at temperature of ~ 10°® K. Subsequent x-ray
missions such has Chandra and XMM led to the discovery of hot gas in distant galaxy
clusters.

The Copernicus satellite launched in 1973 opened up the UV window, leading to the
discovery of Hy lines in absorption against stars, and emission lines from highly ionised
atoms such as O 1vin the hot gas. It also provided evidence for the depletion of
refractory elements from the gas phase into solid grains. It was followed up by FUSE
in 2000.

In 1983, the IRAS satellite did the same for infrared, providing an all-sky view at 12,
25, 60, and 100 pum, which mostly traces emission from small dust grains. In 1990
COBE, in addition to measuring the CMB, detected ubiquitous emission in the 158
pm line of C 11. This turns out to be the most important cooling line for neutral gas.
Later IR satellites including ISO, SWAS, Spitzer, and Herschel have provided even
more information.

[Slide 6 — TRAS all-sky map]

The 1990s saw the development of ground-based interferometers, which were capable
of imaging gas and dust emitting at mm wavelengths where the atmosphere is (from
a good site) relatively transparent. One of the first of these were the Berkeley-Illinois-
Maryland Array (BIMA), which provided some of the first maps of CO molecules
outside the Milky Way. These culminated in the development of the Atacama Large
Millimetre Array (ALMA) in the 2010s.
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IT. Components of the ISM — the present understanding

After that brief historical review, let’s turn to the modern understanding of the ISM,
which includes a lot more than just the gas we’ve talked about thus far. We can identify
several components of the ISM in addition to gas.

A. Dust

One component to which we've already alluded is dust. A significant fraction
of the refractory elements, i.e. those whose solid forms vaporize at temperature
~ 1000 K rather than ~ 100 K, are found not in the gas phase but as a small
dust grains.

The fraction of such elements in grain rather than gas form varies with the ambient
density and temperature, ranging from a majority of material being in grain form
in dense and cold environments to almost none of it in hot environments. However
even in extremely hot gas at temperatures of ~ 10° — 107 K some dust grains
survive, mainly because the grains are not necessarily heated to anything close to
the gas temperature — a point we will return to later in the course.

The size distribution of grain is somewhat uncertain, but it can be constrained by
observations of the grains’ absorption, scattering, and emission properties, since
these are closely correlated with size. Roughly speaking the cross-section of a grain
to light reaches a maximum for light whose wavelength is comparable to the grain
size. For light of shorter wavelengths grain cross-sections are simply their physical
sizes, while for light of longer wavelengths the cross-section declines roughly as
the square of the ratio of grain size to wavelength. We will also return to this
discussion later on. Based on these observations, the typical size of interstellar
dust grains must be less than ~ 1 pym in size.

B. Cosmic rays

The gas in interstellar space mostly has a Maxwellian velocity distribution, as we
will demonstrate in the next class. However, there are also ions and electrons that
have much larger, typically relativistic velocities. These are referred to as cosmic
rays. The most energetic ones detected have energies of ~ 102! eV, or ~ 10° erg.
For comparison, the kinetic energy carried by a major league fastball (150 g ball
traveling at 100 mph) is also about 10° erg.

The mechanism by which cosmic rays are accelerated to such speeds is still not
completely understood, but it is thought to involve high-speed shocks produced
by supernova, massive star winds, or similar phenomena. Regardless of the accel-
eration mechanism, though, once launched cosmic rays propagate long distances
through the ISM. We will not discuss CRs much in this class, because they are cov-
ered extensively in the high-energy astrophysics class, except when they become
important for understanding the way the ISM and IGM behave.

C. Photons



The ISM is also pervaded by photons of various frequencies. In addition to the
ubiquitous CMB, there is mostly optical and UV light from stars, infrared radi-
ation from dust grains, radio emission from hot gas, synchotron radiation from
relativistic gas, and numerous line photons at frequencies ranging from radio to
gamma rays produced by a huge number of molecules, atoms, ions, and nuclei.

D. Magnetic fields

As we shall see later on, much of the ISM is occupied by ionised gas, and even
in regions where the gas is mostly neutral there is usually some weak residual
ionisation produced by a number of processes we will discuss later. This means
that the ISM can generally be thought of as an ideal plasma. Plasmas have the
property that they can sustain magnetic fields, and any moving plasma invariably
generates fields. The ISM is not exception.

Evidence for the magnetic field arises from numerous sources. First, starlight
is polarised as well as extincted by interstellar dust grains. Producing a net
polarisation is possible only if the grains have a large-scale alignment, and the
only plausible candidate to produce this alignment is a large-scale magnetic field.

In addition, there are a number of atomic and molecular emission lines that are
magnetically sensitive, meaning that the line shape, polarisation, or some other
property of the line changes in the presence of a magnetic field. Such lines do
generally indicate that a field is present.

ITI. ISM phases

Despite this menagerie of components, the ISM can be roughly organised into a number
of characteristic phases, identified by a combination of temperature and the ionisation
state of the hydrogen. For now we will simply assert this, and as we go through the
course we will discuss the theoretical and observational justification for this division.
An excellent quick-reference summary of the material is given in the first chapter of
the textbook.

A. Hot gas (HIM)

The hottest component, and the dominant one outside the disks of galaxies and
into the IGM, is hot gas, or HIM. This gas is also found within the galactic disk
in places where the gas has been shocked by supernova blast waves, and it may
occupy several tens of percent of the volume of the galactic disk.

Typical temperatures in this gas are 10° K or more. As these temperatures
hydrogen is collisionally ionised, and numerous highly-ionised species of heavy
elements are also present, for example O VI. The high temperatures ensure that
the gas is able to expand easily until it reaches low densities, typically ~ 1073
cm ™3 within the disk of the galaxy and even lower outside it.

At these temperatures the gas emits mostly in x-rays and UV, and by radio
synchrotron emission from free electrons. X-ray emission also provides the main
channel by which this gas is able to cool, although the cooling times can be



extremely long due to the low densities. For much of the IGM, the cooling time
is longer than the Hubble time.

. Warm ionised gas (WIM) / H 11

The next hottest phase, called the warm ionised medium or H 11 regions, is gas at
temperatures of ~ 10* K — there is very little gas at intermediate temperatures
of ~ 10° K because gas at that temperature tends to cool very rapidly.

At 10* K, kgT ~ 1 eV, so the gas is not moving gas enough for the typical collision
to induce ionisation (since the hydrogen ionisation potential is 13.6 V). Instead,
WIM gas is found near hot stars that provide high energy photons to photoionise
the hydrogen. Regions in this state occupy ~ 10% of the volume of the galactic
disk, and their typical densities are 1 — 100 cm ™3, although there is a huge range
of variation.

The photons that ionise the gas also provide the major source of energy to it.
Each time an ionisation occurs by a photon that has an energy a bit above 13.6
eV, the resulting free electron acquires some excess kinetic energy, which it then
thermalises by bouncing off the surrounding ions.

Countering this heating, gas at these temperatures cools by numerous processes.
These include recombination radiation, which is produced when ionised hydro-
gen recombines into an excited state and then radiatively decays to the ground
state, free-free emission from free electrons, and also a great deal of line emission
produced by collisions between free electrons and partially ionised metal atoms.
The line radiation produces spectacular optical emission, and for this reason H 11
regions are some of the most visually spectacular objects around. The famous
Eagle Nebula HST images are of an H 11 region.

[Slide 7 — Eagle Nebula]

In addition to the visually spectacular H 11 regions, which represent the densest
parts of the WIM, there are also numerous diffuse, low-density regions of ionised
gas. These are not necessarily associated with young hot stars, and instead rep-
resent places where the gas was ionised once, and the density is low enough that
only a little radiation is needed to keep it ionised, or where the recombination has
not yet had time to occur.

. Warm neutral gas (WNM)

In the absence of a local heat source like a hot star or a supernova blast, interstellar
gas tends to become neutral, which brings us to our next phase: WNM, or warm
neutral medium. The gas in this phase is generally at temperatures of 5,000 —
10,000 K, and has a density not very different from that of the H 11 regions,
~ 0.1 —1 ecm™3. Gas in this state occupies a large fraction of the volume of the
galactic disk, ~ 40%.

In this gas there are no photons above 13.6 eV to provide energy, but photons
at somewhat lower energies provide a similar heating mechanism. Although such
lower energy photons cannot ionise hydrogen, then can knock electrons off dust
grains via the photoelectric effect, and this proves to be the dominant heating
source.



Countering this heating, the WNM also contains numerous weakly ionised or
neutral metal atoms that can be collisionally excited much like those in H 11
regions. Since there are few free electrons to collide with, and the metal atoms
are more weakly ionised and thus tend to have lower energy scales, most of this
line emission is in the infrared rather than the visible. The 158 pm line observed
by COBE is an example of this sort of emission.

Although these IR emission lines can be used to study the WNM, as can optical
and UV absorption lines, by far the most common tool is the 21 cm hyperfine
transition of the hydrogen itself. This is present everywhere, and has numerous
favorable features that we will discuss in a couple of weeks.

. Cold neutral gas (CNM)

Neutral gas can be warm, but it can also be cold. The cold neutral medium, or
CNM, is similar in ionisation state and energy balance to the WNM, but it is
found at much lower temperatures, ~ 100 K, and much higher densities, ~ 10
cm~3. Because of its high density, it has a much lower volume filling fraction,
~ 1% of the galactic disk. Nonetheless, it contains an amount of mass not much

smaller than the mass of the WNM.

Why the neutral gas should have this two-temperature structure is something we
will discuss in the second half of the class.

. Diffuse molecular gas

In the densest, coldest parts of the CNM, hydrogen can become molecular. Like
the transition from H 1 to H 11 this is a process driven by photons. Gas goes from
neutral to ionised when there are hot stars around to provide photons above 13.6
eV. It goes from atomic to molecular regions where there is enough absorption to
exclude photons with energies of above ~ 5 eV, the binding energy of a hydrogen
molecule. Only the densest and coldest regions of CNM do this, so Hs is found
only in gas at densities ~ 100 cm™ and at temperatures ~ 50 K. The volume
occupied by these regions is tiny, ~ 0.1% of the disk.

Despite the transition from atomic to molecular, in the diffuse Hy clouds the
energetics are quite similar to those in CNM or WNM. Molecular hydrogen does
not provide much of a source of heating or cooling, for reasons we’ll discuss in
a week. For the same reason, observing these regions is hard — the 21 cm H 1
line is unavailable, and Hy is hard to see. The main way we know about this
gas is via UV absorption lines of Hy, which are available only when there is a
conveniently-located background star.

. Dense molecular gas / GMCs

The final, densest phase is the dense molecular gas. In this part of the ISM the
temperature falls to ~ 10 K or even a little lower, and the density is at least
100 ecm ™3, and often more. Most of the gas in this state is organised in discrete
structures known as giant molecular clouds. These clouds occupy only ~ 10~ of
the volume of the galactic disc, but constitute ~ 1/4 of its total gas mass. In
some other galaxies that fraction is even higher. These clouds are also where star
formation occurs.



The change that occurs between diffuse and dense molecular gas that causes
this change in properties is the appearance of molecules. Whereas in the diffuse
molecular gas and all the less dense phases most of the carbon, oxygen, and other
species are either atomic or in dust grains, in the dense molecular gas significant
fractions of these atoms end up in diatomic and polyatomic molecules, the most
prominent of which is CO.

The appearance of these molecules is significant because, unlike Hs, these molecules
are strong emitters, and they are able to cool the gas in a manner much like what
happens in CNM: collisions (in this case with Hy molecules) induce transitions to
an excited state, and the excited molecules then radiatively decay.

The main difference is the energy scale. Electronic transitions in atoms or molecules
have energy scales of eV. For molecules, however, there are also excited states as-
sociated with rotation and vibration. Recalling our quantum mechanics, for a
quantum harmonic oscillator the energy spacing between levels varies inversely
with the mass of the oscillator, and the same general scaling applies to other
systems. Since rotational and vibrational levels of molecules involve moving the
nuclei rather than the electrons, the energy scales are generally below 1073 eV,
corresponding to the factor of 1000 proton-electron mass ratio. This lower energy
scale means that even in ~ 10 K gas there are states that can be excited by
collisions.

These atomic and molecular transitions also provide the most common way of
studying the dense molecular gas, particularly the rotational levels of CO. Other
methods include mm emission by cold dust grains, and infrared absorption of
background starlight.

IV. Collisional processes

In the final part of the class today, we will begin to build the theoretical tools we will
need to understand the behavior of the ISM. The first goal will be an understanding
of collisions between particles. In the materials we're used to, collisions occur so
frequently that we don’t usually worry about them, and we simply assume that they
occur frequently enough for distributions to reach thermodynamic equilibrium. In the
ISM we cannot safely make this assumption, and so we must worry about calculating
the rates of collisions.

A. The collision rate coefficient

Consider an interaction between two particles A and B, which we write in the
general form
A+ B — products (1)

Depending on the type of interaction, the products that appear on the right hand
side can be many different things. Simple elastic scattering is a trivial case, for
which products is simply A + B again. For inelastic scattering, where either A or
B is left in an excited state after the encounter, it might be A* + B or A + B*,
with the asterisk indicating an excited state. If a chemical reaction occurs, it



might be an entirely different species C'. For now, the exact identity of the right
hand side does not matter.

We wish to compute the rate at which the given reaction / collision occurs in a
gas that contains species A and B with number densities n4 and ng, respectively.
The dependence of the densities is fairly obvious. Suppose we imagine a beam
of particles of type A being fired at a static grid of particles of type B. Clearly
the rate of collisions will be linearly proportional to both the density of targets
and the density of particles in the beam. Thus we expect to have a rate per unit
volume that varies as nang. We rate the rate as

rate per unit volume = nangkap, (2)

where k4p is the rate coefficient for the reaction. It has units of cm? s™!.

By analogy one can also define three-body collision rate coefficients, for reactions
involving three species such that the rate per unit volume is nangnckapc. In
practice the low density of the ISM implies that three-body processes are only
very rarely important.

. Calculation of rate coeflicients

To figure out k45, we can roughly divide it into two parts: the “internal” part that
has to do with the physical properties of the colliding particles and the quantum
mechanical probabilities of a given interaction producing a given outcome, and
the “external” part that has to do with the kinematics of particles running into
one another.

To see how the external part works, we can first return to the easier-to-picture
case of a beam of particles directed at a static grid of targets. Clearly if the beam
moves faster, more particles per unit time will go through the array of targets,
so the collision rate will be linearly proportional to the relative velocity of the
targets and the beam. In the more realistic case of two interacting species mixed
together, we need to integrate over all possible reaction velocities. Thus we can
write

kas = | " 0fuoan(v) dv = () as, 3)

where v is the relative velocity, f, is the fraction of particle pairs that have that
relative velocity, and o4p(v) is the velocity-dependent interaction cross-section.
This encapsulates all the internal information about particle sizes and quantum
transition probabilities. The angle brackets indicate an average of o over collision
velocities.

We can compute f, from the Boltzmann distribution, under the assumption
(which we’ll check later) that the particles follow this distribution. To remind
you: the Boltzmann distribution says that in a system with temperature 7', the
probability of finding a particle in a state with energy E is proportional to e #/k5T
Thus the probability of having a given vector velocity v = (v, vy, v,) is propor-

tional to e~™*/(2k5T) where m is the particle mass and v = ,/v2 + v2 402, and
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we have

dgif — ( m )3/2 e—mvg/(QkBT)' (4)
dv, dvy dv, 2rkgT

The normalisation constant in front has been chosen to ensure that the integral
of &f/(dv, dv, dv,) over all possible velocities is unity.

This is the velocity distribution for individual particles. In other words, it applies
separately to A and B, and we have

3
d°fa _ ( ma )3/2 o—mavh/(2ksT) (5)
dvg A dvy 4 dv, 4 2rkgT

and similarly for B. We want to know what the probability that a randomly
chosen pair of particles has relative velocity v. To compute this, first note that
the probability of a given velocity combination v 4, vg is the just the product of
the individual probabilities, the same as for any independent pair of events. Thus

3
d°f(va,vp) o [YAMB N maed 4mpnd)/(2kT) (6)
dvsdvg 2wkgT

This is a six-dimensional probability distribution function that gives us the prob-
ability of picking a given sextuplet of values (va,vp). What we want to know
is the probability of picking a sextuplet that has the particular property that
|va — vp| = v, since that is the definition of f,. Thus we want to compute

/e_(mA”2A+mBUQB)/(2kBT)5(|VA —vp| —v) dPvadivp. (7)

We've dropped the leading constants because we're only interested in the de-
pendence on velocities — other coefficients we can recompute at the end just by
requiring that our integrated probability be unity.

This integral can be evaluated by making a change of variables. Let v =v,4—vp,
and vay = (mava +mpvp)/(ma + mp), or equivalently
mam
ma mpg ma +mp
First hold v and v, fixed and substitute for vg in terms of vy in this case
d*vp = —(u/mp)3d3vcyr, and the integral becomes

2 _ 2
/exp ~ mav + mp|(p/mp)v — vou| 5 <’VA L VCM‘ B U) By 4 Pvoy,
Qk?BT mpg
(9)
where we have again dropped leading constants that don’t depend on velocity.
Now hold vey fixed and substitute for v4 using v. Thus d®va = (u/ma)3d®v,

and the integral becomes

/exp l_mAl(M/mA)V + vom|? + mp|(p/mp)v — vou|?

N Bo B
enT ]5(M v) d°vd Ve

(10)
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Now it’s just a matter of algebra to evaluate the integral. The term in the expo-
nential can be expanded to

2 2 2,2 2,2

ma LV-FVCM +mB‘MV—VCM I - K + (ma +mp)vd(1)
ma mp ma mp

= w®+ (ma+mp)vdy, (12)

and if we substitute this in we get

2 2
o _ (ma +mp)udy N B 73
/exp [ QkBT] exp [ T ] d(|v] —v) d&°vd’vem (13)

The part that depends on v and not vey is now trivial to evaluate thanks to the
§ function, which just gives us a v? dependence:

2 2
v? exp (_ QI;ZT> /exp [_ (ma + mB)UCM] Bvens (14)

The remaining integral is just a number that does not depend on velocity, and so
we've arrived at the fundamental dependence we were after: f, oc vZe #v*/2ksT,
Inserting the appropriate normalization factor to ensure that the integral over all
velocities gives unity, we have

f — 4 H 3/2 2 —uv?/2kgT
v =471 kT ve . (15)

The two-body collision rate coefficient therefore is

3/2 oo ,
kap = 4m <27ﬂf/;T) /0 v3e M2k 5 (V) do. (16)

Alternately, it is sometimes helpful to write things in terms of the energy of
the collision in the center of mass frame instead of the relative velocity. The
distribution in energy is just given by the fundamental rule for the transformation
of probabilities: f,dv = fgdFE, i.e. since E is a monotonic function of v, the
probability of measuring a velocity between v and v + dv must be the same as
the probability of measuring an energy between E and E + dE. Since E = pv?/2

and v = \/2E/u, we have dE = pov dv, and plugging in we get

T 00
kag = 8kp / xe “oap(xkpT) dx, (17)
V' 7w Jo

where © = F/kgT. This is often the most practical form for computation.

The function we have just written down already carries an important point. Sup-
pose we have a cross section that is not highly velocity- or energy-dependent. In
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this case o4p is a constant and comes out of the integral. The remaining part,
the integral of ze™ from 0 to oo, trivially evaluates to 1, and we have

8kpT
T

k AB — OAB- (18)
This gives us a simple formula to evaluate any reaction coefficient with a constant
cross section, and shows us that such reactions proceed at a rate that varies as
T'2. In practice it turns out that there are reasonably large number of colli-
sional processes where the cross section is indeed not very energy-dependent, so
in practice many rate coefficients do vary as close to T/2.

. Cross sections and rate coefficients for varying reactant types

Now that we have a general framework, we are in a position to work out reaction
rate coefficients for a variety of interaction types.

1. Neutral-neutral scattering

The simplest case to consider is scattering of one neutral species off another.
For now we will not worry if the interaction is elastic or not, and we will simply
compute the overall collision rate; the elastic and inelastic interaction rates
will each be a fraction of this total rate. This collision rate is particularly
important because interactions of this sort are responsible for establishing
a Boltzmann distribution of velocities among a population of neutral parti-
cles, which is what we assumed existed for the purposes of computing rate
coefficients.

At large distances the only force between two neutral particles is a van der
Waals attraction, produced when fluctuations in the electric dipole moment
of one particle induce a corresponding electric dipole in the other. Since the
dipole electric field of the first particle varies as 1/73, so does the strength of
the dipole in the second particle. The potential then varies as the product
of the two dipoles, giving rise to an overall potential that varies as 1/r°.
Moreover, since the dipole is only due to fluctuations, the coefficient is quite
small. When the two particles get within ~ 1 A of one another, i.e. when
the separation is comparable to the total sizes of the interacting molecules
or atoms, the electron clouds of the two neutrals begin to repel one another,
and the force becomes very strongly repulsive.

This combination of very weak attraction at large radii, coupled with a sudden
transition to strong repulsion at small separations, can be modeled reasonably
well as a “hard sphere” interaction. We simply think of the two neutrals as
balls with a physical size of 74 = r5 = 1 A; if they get closer than 2 A they
collide, and otherwise they do not. Thus

oap =7m(ra+rp)?=12x10"" cm® (19)

Plugging this into our trivial expression for the rate coefficient when the cross
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section is constant, we get

T 1/2 1/2 2
kap = 1.81 x 10710 (100K> <”ZLH> (T“;ATB) em® sl (20)

We can think of this as a generic, order-of-magnitude estimate for the collision
rate coefficient for any process where the particles are neutral and there are
no chemical reactions involved, just scattering.

. Charged-neutral scattering

Now let us consider the interaction of a neutral particle with a charged one.
This could be a neutral atom or molecule interacting either with an ion or
with a free electron. The main difference here is that the force when the
two particles are far apart is no longer completely negligible. Let us suppose
that the charged particle has a charge Ze, where e is the electron charge.
The electric field of the charged particle will polarize the neutral particle,
inducing a dipole moment P = aEg,, where « is the polarizability of the
neutral particle and Eg, is the electric field created by the charged particle.
Typical polarizabilities are of order a3, where ag = h*/m.e? = 5.29 x 107°
cm is the Bohr radius. These can be computed quantum mechanically or
measured in the lab fairly easily.

The attractive force that the polarized atom experiences is given by the stan-
dard formula for the force on a dipole in an electric field: F' = P(dEq,/dr) =
—2aZ%e? /r®. The corresponding interaction potential is

1 aZ%e?

U(r) = 5 (21)

Scattering in an r—* potential has the property that there is a critical impact
parameter by (defined as the distance of closest approach that the two particles
would have if there were no force between them) below which the separation
between the two particles goes through zero exactly. (Proving this is left as
an exercise to the reader — it’s fairly easy to show simply by writing down the
Largangian for the system.) Deflections are relatively weak for larger impact
parameters.

The value of by depends on the relative energy of the two particles at infinity
in the center of mass frame, F. It is given by

202%\"/! a \ M4 10.01 eV /4
by = = 6.62 x 10°871/2 () () 29
0 ( E ) % on E em,  (22)

where ay = 4.5a} is the polarizability of neutral hydrogen. Thus we see
that in general by is significantly larger than the ~ 107® cm geometric cross
section of the particles. This means that 7b2 provides a natural estimate for
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the collision cross section of an ion and a neutral, since any interaction in
which the initial impact parameter is below by will necessarily bring the ion
and neutral extremely close, while more distant interactions will not produce
significant interaction. Plugging this in, we have

2
oap = by = 1 Ze fa (23)

Plugging this into our expression for the rate coefficient, we have

8]€BT o0 — 2
kap = - /0 ze <7TZG”kaT> dx (24)
= 4Ze @/ooxlﬂe_wdx (25)
\ © Jo
A (26)
\/

1/2 1/2
= 8.98x 107107 (O‘> <mH> cm® 571, (27)

3
ap H

Note that the result is independent of temperature. This means that, even
at low temperatures where neutral-neutral collisions are very rare (due to the
T'/? dependence), ion-neutral collisions continue to remain common. This
makes ion-neutral reactions a critical driver of chemistry in low-temperature
gas.

. Charged-charged collisions

Collisions between two charged particles are a bit more complicated, because
there we have a long-range force, and even at large distances there will be
some non-negligible transfer of momentum. A useful approximation in this
case is the impact approximation. The basic idea of the impact approximation
is simple: we neglect changes in particle velocities during the encounter, and
simply add up the change in transverse momentum that a projectile particle
experiences as a result of the forces exerted by the electric field of the target.
(The net change in momentum along the direction of the encounter is zero.)

The setup is simple: consider two particles of charges Zie and Zse, and work
in the reference frame where particle 2 is at rest. Particle 1 approaches it,
moving with velocity v; and with impact parameter b. Following the impact
approximation, it moves in a straight line at constant velocity v; independent
of how close it gets to particle 2. Let x be the distance between particle 1 and
the point of closest approach, and 6 be the angle between the line of closest
approach at the line between the two particles at any given time.
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At a time when the angle between the two particles is #, the distance be-
tween them is b/ cosf, so the total force is F' = Z;Z,¢?/(b/ cosf)?. The
component of this in the perpendicular direction is cosé of the total, so the
total perpendicular force is

212262

F cos® 6. (28)

To figure out the total momentum imparted over the entire encounter, we
must find out how much time the particle spends at each angle 6, since
dp/dt = F. This is easy to compute: clearly z = btan#, and

dx d b db U1
= — =b—tanf = ——— = df = — cos® O dt. 29
T T T T cos2g dt p (29)
Now it’s just a matter of integrating over time to get the total momentum

change:

o0 AV 2,752 (/2 AV e

Apj_:/ F dt==" 2¢ / cos® 0 dt = 2122 / cos 0df = 22172
-0 b? -0 bUl —7/2 bUl

(30)

So what does this tell us about the cross section? It tells us that we need
to think carefully about what exactly we mean. Notice that the transverse
momentum change varies as 1/b, so more distant encounters have more effect.
That’s good. However, the total area available for encounters goes as 27b db,
i.e. there’s also more area available at large b than small b. The product of area
times effect, 2wbdb - Ap,, does not depend on b, and if we integrate over all
impact parameters from zero to infinity, things diverge! This means that the
encounter cross section as we’ve been thinking about it in the neutral-neutral
and neutral-charged cases is not really a meaningful concept as applied to the
charged-charged case. We need to be a bit more specific about what sort of
encounter we're interested in.

. Electron-ion collisions and collision strengths

One problem of great interest is figuring out when a collision between an
ion or atom and an electron will induce a change in the quantum state of
the ion, either an excitation or de-excitation. (We will see in the next class
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that if you know the rate of one, you automatically know the other as well.)
Such collisionally-induced changes in state, followed by radiative decay of
excited states, are responsible for most of the visually-spectacular emission
we need from ionised nebulae. We specialise to the case of an electron because
electrons generally move much faster than ions, so most collisions are electron-
ion rather than ion-ion.

Consider an encounter between an ion of charge Z and an electron. The
unperturbed ion has a potential U(r) in which the electrons move. We’ll do
the case of collisional de-exciation, so let the ion be in some excited eigenstate
u of the potential U(r), with energy F,. We want to know the rate at which
collisions cause it to transition to a lower energy state ¢ with energy Fj.

We can calculate this rate up to a factor of order unity using a semi-classical
approach. Here we will not use the impact approximation, and we will include
deflection of the electron by the ion potential. Suppose the approaching
electron moves classically in the potential provided by the ion. What is
its closest approach? If the electron approaches with initial velocity v and
impact parameter b, then its initial energy is m.v?/2 and its initial angular
momentum is m.vb. Conservation of energy and angular momentum then
imply that at the point of closest approach r,;, and maximum velocity vpax,
we have

1 1 Ze?
§mev2 = Emevfnax — rnin (31)
MeVmaxTmin = MeVD. (32)
From these two conditions and a little algebra, it is easy to show that
2Z 2 1/2
b= Tanin (1 + ;) . (33)
MV min

How close does the electron have to get to have a significant chance of inducing
a state change? At the order of magnitude level, the answer is that the
perturbation in the potential 6U must be comparable to or larger than the
difference in energy between the two levels F,, = E, — Fy,. Thus we want the
distance of closest approach to obey

62

~Y

— wl- (34)
It is convenient to normalise the energy difference to typical energy differences
for electronic states. The typical energy scale for two electronic states is of
order the potential of an electron at a distance of order a Bohr radius, i.e.
Eu ~ €*/ag for a typical pair of electronic states. We therefore adopt a
minimum distance

T'min = WCL(), (35)
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where W is a constant whose value will depend on the exact transition. For
electronic transitions that produce optical lines, we expect it to be of order
unity.

Plugging this in for r;,, we obtain a maximum impact parameter required
to have a reasonable chance of inducing a change in state:

27¢ \'?
bmax = W 14+ ———— . 36
o ( + mGUQWaO) (36)
The corresponding cross section is
27¢?
ul — b2 = W2 202 1 . 37
Out TOmax T Qg + meU2W0aO ( )

Now we just have to integrate over the Maxwellian velocity distribution to
get the rate coefficient:

iz 32 oo o R keTrrr2. 2 2 2Z¢”
ky = 4 ( > / o /2ksTyy7 1+ —8+—— | d438
¢ "ormkgT) o V€ T \ L ) 468

8kpT\ " Ze?
= W22 14 —— 39
TW*ag ( pa— ) + WagksT )’ (39)

were we have again set © = m..

The term Ze?/(agkpT) that appears in the second parentheses has the nu-
merical value 15.78(Z/T}), where T} is the temperature in units of 10* K.
Thus unless Z /T, < 1, which is generally not the case in optical nebulae, we
can drop the 1. Doing so and recalling that ag = h*/(m.e?), we obtain

h? 1

kyo =~ 2WZ. 4
¢ (2 )32 (kpT) /2 W (40)

Thus we have written the collision rate in terms of the unknown parameter
W, which is a measure of how easy it is to perturb the atom. Based on this
argument, we formally define the dimensionless collision strength 2, of a
particular interaction by

h? 1 Que

kye = —_— 41
= @am R (k1) g, (41)

The reason for including the factor of g,, the degeneracy of the upper state,
will become apparent when we discuss the statistical mechanics of collisions.
The advantage of this definition of €2, is that it “factors out” the dependence
of the reaction rate on the kinetics of the plasma, which is essentially the same
for any reaction, and isolates the quantum-mechanical part that is reaction-
specific.
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Collision strengths must be calculated quantum mechanically or measured in
the laboratory. Exact values are generally known only to the ~ 10% level,
except for a few very well-studied cases. Unfortunately many of the astro-
physically relevant collisions are quite difficult to study on Earth, because
the lines they correspond to are very weak and hard to see under terrestrial
conditions. Also note that in general 2, can be a function of temperature,
but in practice it is at most a very weak one, and the temperature dependence
can be dropped.
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