# ASTR3007/4007/6007: Part I: Stars

Semester 1, 2017 Lectures: Thursday 10 - 11 AM, Friday 10 AM - 12 PM, Hancock 2.24 Tutorials: Thursday 11 AM - 12 PM, Gould 113 Course web page: http://www.mso.anu.edu.au/~krumholz/teaching/astr3007\_s1\_2017/

## **Instructor Contact Information**

Mark Krumholz W29, Mt. Stromlo Observatory 6125 8033 mark.krumholz@anu.edu.au

## Topics

This part of the course provides an introduction to stellar structure and evolution. We will begin with a brief review of observations of stars and what they tell us. Then we discuss the physical processes that govern the behaviour of stars, followed by an application of these principles to develop a theory for the structure of main sequence stars. We will end this part of the course with a discussion of stellar evolution and the stellar life cycle.

### Texts

Our main textbook for the class will be An Introduction to the Theory of Stellar Structure and Evolution, by Dina Prialnik. This books is available in two editions, and either one is fine for the class. For a more extensive treatment of stars and stellar structure at roughly the same level of sophistication, you can consult An Introduction to Modern Stellar Astrophysics, by Dale Ostlie and Bradley Carroll. A graduate-level treatment is given in Stellar Structure and Evolution by Kippenhahn and Weigert.

#### Assignments

There will be 3 problem sets for this part of the course; the due dates are listed below. You are *strongly* encouraged to work together on the problem sets, but each student must write up and turn in his or her own work.

#### Schedule

| Date    | Topic                           | Reading                   | Assignments   |
|---------|---------------------------------|---------------------------|---------------|
| Feb. 23 | Observing the stars             |                           |               |
| Feb. 24 | Stellar masses; virial theorem  | Chapter 1                 |               |
| Mar. 2  | Principles of stellar evolution |                           |               |
| Mar. 3  | Equation of state               | Chapters 2, 3             |               |
| Mar. 9  | Energy, entropy, and transport  |                           | Problem set 1 |
| Mar. 10 | Nuclear Reactions               | Chapter 4                 |               |
| Mar. 16 | Simple stellar models           |                           |               |
| Mar. 17 | Stability and convection        | Chapters 5, 6             |               |
| Mar. 23 | The main sequence               |                           | Problem set 2 |
| Mar. 24 | Low mass stellar evolution      | Chapter 7                 |               |
| Mar. 30 | Massive stellar evolution       |                           |               |
| Mar. 31 | Supernovae and stellar remnants | Chapters 9, 10 $(8, 9)^*$ |               |
| Apr. 6  | _                               | - · · · /                 | Problem set 3 |

\*The first pair of chapter numbers refers to the 2nd edition of Prialnik; the second pair are for the 1st edition.