
ASTR3007/4007/6007, Class 5: Energy, Entropy, and Transport 9 March

In the last class we used the kinetic theory of gasses to understand the pressure of stellar ma-
terial. The kinetic view is essential to generalising the concept of pressure to the environments
found in stars, where gas can be relativistic, degenerate, or both. The goal of today’s class is
to extend that kinetic picture by thinking about pressure in stars in terms of the associated
energy content of the gas. This will let us understand how the energy flow in stars interacts
with gas pressure, a crucial step toward building stellar models.

I. Pressure and Energy

A. The Relationship Between Pressure and Internal Energy

The fundamental object we dealt with in the last class was the distribution of particle
mometa, dn(p)/dp, which we calculated from the Boltzmann distribution. Given
this, we could compute the pressure. However, this distribution also corresponds to
a specific energy content, since for particles that don’t have internal energy states,
internal energy is just the kinetic energy of particle motions. Given a distribution
of particle momenta dn(p)/dp in some volume of space, the corresponding density
of energy within that volume of space is

e =
∫ ∞

0

dn(p)

dp
ε(p) dp, (1)

where ε(p) is the energy of a particle with momentum p. It is often more convenient
to think about the energy per unit mass than the energy per unit volume. The
energy per unit mass is just e divided by the density:

u =
1

ρ

∫ ∞
0

dn(p)

dp
ε(p) dp. (2)

The kinetic energy of a particle with momentum p and mass m is

ε(p) = mc2

√1 +
p2

m2c2
− 1

 . (3)

This formula applies regardless of p. In the limit p � mc (i.e. the non-relativistic
case), we can Taylor expand the square root term to 1 + p2/(2mcc2), and we recover
the usual kinetic energy: ε(p) = p2/(2m). In the limit p� mc (the ultra-relativistic
case), we can drop the plus 1 and the minus 1, and we get ε(p) = pc.

Plugging the non-relativistic, non-degenerate values for ε(p) and dn(p)/dp into the
integral for u and evaluating gives

u =
1

ρ

∫ ∞
0

4n

π1/2(2mkBT )3/2
p2e−p

2/(2mkBT )

(
p2

2m

)
dp (4)

=
2

π1/2(2mkBT )3/2

∫ ∞
0

p4e−p
2/(2mkBT ) dp (5)

=
4

π1/2
mkBT

∫ ∞
0

q4e−q
2

dq (6)

=
3

2

kBT

m
(7)

=
3

2

P

ρ
, (8)
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where the integral over q evaluates to 3
√
π/8. This is the same as the classic result

that an ideal gas has an energy per particle of (3/2)kBT . Since the pressure and
energies are simply additive, it is clear that the result u = (3/2)(P/ρ) applies even
when there are multiple species present.

Applying the same procedure in the relativistic, non-degenerate limit gives

u =
1

ρ

∫ ∞
0

(
c

kBT

)3 n

2
p2e−pc/kBT (pc) dp (9)

=
mc4

2(kBT )3

∫ ∞
0

p3e−pc/kBT dp (10)

= 3
kBT

m
(11)

= 3
P

ρ
. (12)

It is straightforward to show that this result applies to radiation too, by plugging
ε = hν for the energy and the Planck distribution for dn(ν)/dν. Note that this
implies that the volume energy density of a thermal radiation field is

erad = aT 4 = 3Prad. (13)

For the non-relativistic, degenerate limit we have a step-function distribution that
has a constant value dn(p)/dp = (8π/h3)p2 out to some maximum momentum p0 =
[3h3n/(8π)]1/3, so the energy is

u =
1

ρ

∫ p0

0

8π

h3
p2

(
p2

2m

)
dp (14)

=
4π

5mρh3
p5

0 (15)

=
(

3

π

)2/3 3h2n5/3

40ρm
(16)

=
3

2

P

ρ
, (17)

exactly as in the non-dengerate case.

Finally, for the relativistic degenerate case we have

u =
1

ρ

∫ p0

0

8π

h3
p2 (pc) dp (18)

=
(

3

π

)1/3 3

8

hcn4/3

ρ
(19)

= 3
P

ρ
(20)

B. Adiabatic Processes and the Adiabatic Index

Part of the reason that internal energies are interesting to compute is because of the
problem of adiabatic processes. An adiabatic process is one in which the gas is not
able to exchange heat with its environment or extract it from internal sources (like
nuclear burning), so any work it does must be balanced by a change in its internal
energy. Adiabatic processes leave the entropy of the gas constant.
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The classic example of this is a gas that is sealed in an insulated box, which is then
compressed or allowed to expand. In many circumstances we can think of most
of the gas in a star (that outside the region where nuclear burning takes place) as
adiabatic. It can exchange energy with its environment via radiation, but, as we
have previously shown, the radiation time is long compared to the dynamical time.
Thus any process that takes place on timescale shorter than a Kelvin-Helmholtz
timescale can be thought of as adiabatic.

To understand how an adiabatic gas behaves, we use the first law of thermodynamics,
which we derived a few classes back:

du

dt
+ P

d

dt

(
1

ρ

)
= q − ∂L

∂m
= 0, (21)

where we have set the right-hand side to zero under the assumption that the gas is
adiabatic, so it does not exchange heat with its environment and does not generate
heat by nuclear fusion. We have just shown that for many types of gas u = φP/ρ,
where φ is a constant that depends on the type of gas. If we make this substitution
in the first law of thermodynamics, then we get

0 = φP
d

dt

(
1

ρ

)
+ φ

1

ρ

d

dt
P + P

d

dt

(
1

ρ

)
= (φ+ 1)P

d

dt

(
1

ρ

)
+ φ

1

ρ

d

dt
P (22)

This implies that

dP

dt
= −φ+ 1

φ
ρP

d

dt

(
1

ρ

)
(23)

=

(
φ+ 1

φ

)
P

ρ

dρ

dt
(24)

dP

P
=

(
φ+ 1

φ

)
dρ

ρ
(25)

lnP =

(
φ+ 1

φ

)
ln ρ+ k (26)

P = Kaρ
γa , (27)

where γa = (φ+ 1)/φ. Thus we have shown that, for an adiabatic gas, the pressure
and density are related by a powerlaw.

The constant of integration Ka is called the adiabatic constant, and it is determined
by the entropy of the gas. The exponent γa is called the adiabatic index, and
it is a function solely of the type of gas: all monatomic ideal gasses have γa =
(3/2 + 1)/(3/2) = 5/3, whether they are degenerate or not. All relativistic gasses
have γa = 4/3, whether they are degenerate or not.

The adiabatic index is a very useful quantity for know for a gas, because it describes
how strongly that gas resists being compressed – it specifies how rapidly the pressure
rises in response to an increase in density. The larger the value of γa, the harder it is
to compress a gas. Later in the course we will see that the value of the adiabatic index
for material in a star has profound consequences for the star’s structure. For most
stars γa is close to 5/3 because the gas within them is non-relativistic. However, as
the gas becomes more relativistic, γa approaches 4/3, and resistance to compression
drops. When that happens the star is not long for this world. A similar effect
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is responsible for star formation. Under some circumstances, radiative effects cause
interstellar gas clouds to act as if they had γa = 1, which means very weak resistance
to compression. The result is that these clouds collapse, which is how new stars form.

II. Radiative Transfer

Having understood how pressure and energy are related and what this implies for adiabatic
gas, we now turn to the topic of how energy moves through stars. Although there are
many possible mechanisms, the most ubiquitous is radiative transfer. The basic idea of
radiative transfer is that the hot material inside a star reaches thermal equilibrium with
its local radiation field. The hot gas cannot move, but the photons can diffuse through
the gas. Thus when a slightly cooler fluid element in a star sits on top of a slightly hotter
one below it, photons produced in the hot element leak into the cool one and heat it up.
This is the basic idea of radiative transfer.

A. Opacity

In order to understand how radiation moves energy, we need to introduce the con-
cepts of radiation intensity and matter opacity. First think about a beam of radi-
ation. To describe the beam I need to specify how much energy it carries per unit
area per unit time. I also need to specify its direction, give giving the solid angle
into which it is aimed. Finally, the beam may contain photons of many different
frequencies, and I need to give you this information about each frequency. We define
the object that contains all this information as the radiation intensity I, which has
units if energy per unit time per unit area per unit solid angle per unit frequency. At
any point in space, the radiation intensity is a function of direction and of frequency.

Before making use of this concept, it is important to distinguish between intensity
and the flux of radiation that you’re used to thinking about, F , which has units of
energy per unit area per unit frequency. They are related very simply: flux is just
the average of intensity over all directions. To understand the difference, imagine
placing a sensor inside an oven whose walls are of uniform temperature. There is
radiation coming from all directions equally, so the net flux of radiation is zero – as
much energy moves from the left to the right each second as move from the right to
the left. However, the intensity is not zero. The sensor would report that photons
were striking it all the time, in equal numbers from every direction. Formally, we
can define the relationship as follows. Suppose we want to compute the flux in the
z direction. This is given by the average of the intensity over direction:

F =
∫
I cos θ dΩ =

∫ 2π

0

∫ π

0
I(θ, φ) cos θ sin θ dθ dφ. (28)

Now consider aiming a beam traveling in some direction at a slab of gas. If the
slab consists of partially transparent material, only some of the radiation will be
absorbed. An example is shining a flashlight through misty air. The air is not fully
opaque, but it is not fully transparent either, so the light is partially transmitted.
The opacity of a material is a measure of its ability to absorb light. To make this
formal, suppose the slab consists of material with density ρ, and that its thickness
is ds. The intensity of the radiation just before it enters the slab is I, and after it
comes out the other side, some of the radiation has been absorbed and the intensity
is reduced by an amount dI. We define the opacity κ by

−dI
I

= κρ ds (29)
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κ = − 1

ρI

dI

ds
. (30)

This definition makes intuitive sense: the larger a fraction of the radiation the slab
absorbs (larger magnitude (1/I)(dI/ds)), the higher the opacity. The more material
it takes to absorb a fixed amount of radiation (larger ρ), the smaller the opacity.
Of course κ can depend on the frequency of the radiation in question, since some
materials are very good at absorbing some frequencies and not good at absorbing
others. We can imagine repeating this experiment with radiation beams at different
frequencies and measuring the absorption for each one, and thus figuring out κν , the
opacity as a function of frequency ν.

If the radiation beam moves through a non-infinitesimal slab of uniform gas, we can
calculate how much of it will be absorbed in terms of κ. Suppose the beam shining
on the surface has intensity I0, and the slab has a thickness s. The intensity obeys

dI

ds
= −ρκI, (31)

so integrating we get
I = I0e

−κρs, (32)

where the constant of integration has been chosen so that I = I0 at s = 0. Thus
radiation moving through a uniform absorbing medium is attenuated exponentially.
This exponential attenuation is why common objects appear to have sharp edges –
the light getting through them falls of exponentially fast. The quantity κρs comes
up all the time, so we give it a special name and symbol:

τ = κρs (33)

is defined as the optical depth of a system. Equivalently, we can write the differential
equation describing the absorption of radiation as

dI

dτ
= −I, (34)

which has the obvious solution I = I0e
−τ .

B. Emissivity and the Transfer Equation

If radiation were only ever absorbed, life would be simple. However, material can
emit radiation as well as absorb it. The equation we’ve written down only contains
absorption, but we can generalize it quite easily to include emission. Suppose the
slab of material also emits radiation at a certain rate. We describe its emission in
terms of the emissivity jν , which has the same units as the intensity: it tells us how
much radiation the gas emits per unit time per unit area per unit solid angle per
unit frequency.

Including emission in our equation describing a beam of radiation traveling through
a slab, we have

dI

ds
= −κρI + j. (35)

The first term represents radiation taken out of the beam by absorption, and the
second represents radiation put into the beam by emission. Equivalently, we can
work in terms of optical depth:

dI

dτ
= −I + S, (36)
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where we define S = j/(κρ) to be the source function. This equation is called the
equation of radiative transfer.

Thus far all we’ve done is make formal definitions, so we haven’t learned a whole lot.
However, we can realize something important if we think about a completely uniform,
opaque medium in thermal equilibrium at temperature T . We’ve already discussed
that in thermal equilibrium the photons have to follow a particular distribution,
called the Planck function:

B(ν, T ) =

(
2hν3

c2

)
1

ehν/kBT − 1
. (37)

In such a medium the intensity clearly doesn’t vary from point to point, so dI/dτ = 0,
and we have I = S = B(ν, T ). This means that we know the radiation intensity and
the source function for a uniform medium.

C. The Diffusion Approximation

The good news regarding stars is that, while the interior of a star isn’t absolutely
uniform, it’s pretty close to it. There is just a tiny anisotropy coming from the fact
that it is hotter toward the center of the star and colder toward the surface. The fact
that the difference from uniformity is tiny means that we can write down a simple
approximation to figure out how energy moves through the star, called the diffusion
approximation. It is also sometimes called the Rosseland approximation, after its
discoverer, the Norwegian astrophysicist Svein Rosseland.

To derive this approximation, we set up a coordinate system so that the z direction
is toward the surface of the star. For a ray at an angle θ relative to the vertical, the
distance ds along the ray is related to the vertical distance dz by ds = dz/ cos θ.

To surface

θ
ds

I

dz

Therefore the transfer equation for this particular ray reads

dI(z, θ)

ds
= cos θ

dI(z, θ)

dz
= κρ[S(T )− I(z, θ)], (38)

where we have written out the dependences of I and S explicitly to remind ourselves
of them: the intensity depends on depth z and on angle θ, while the source function
depends only on temperature T . We can rewrite this as

I(z, θ) = S(T )− cos θ

κρ

dI(z, θ)

dz
. (39)

Thus far everything we have done is exact, but now we make the Rosseland approxi-
mation. In a nearly uniform medium like the center of a star, I is nearly constant, so
the term cos θ/(κρ)(dI(z, θ)/dz) is much smaller than the term S. Thus we can set
the intensity I equal to S plus a small perturbation. Moreover, since we are dealing
with material that is a blackbody, S is equal to the Planck function. Thus, we write

I(z, θ) = B(T ) + εI(1)(z, θ), (40)
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where ε is a number much smaller than 1. To figure out what the small perturbation
should be, we can substitute this approximation back into the original equation for
I:

I(z, θ) = S(T )− cos θ

κρ

dI(z, θ)

dz
(41)

B(T ) + εI(1)(z, θ) = B(T )− cos θ

κρ

d

dz

[
B(T ) + εI(1)(z, θ)

]
(42)

εI(1)(z, θ) = −cos θ

κρ

d

dz

[
B(T ) + εI(1)(z, θ)

]
(43)

≈ −cos θ

κρ

dB(T )

dz
. (44)

In the last step, we dropped the term proportional to ε on the right-hand side, on
the ground that B(T )� εI(1)(z, θ). Thus we arrive at our approximate form for the
intensity:

I(z, θ) ≈ B(T )− cos θ

κρ

dB(T )

dz
. (45)

From this approximate intensity, we can now compute the radiation flux:

Fν =
∫
I(z, θ) cos θ dΩ (46)

=
∫ [

B(T )− cos θ

κρ

dB(T )

dz

]
dΩ (47)

= −
∫ cos θ

κρ

dB(T )

dz
dΩ (48)

= −2π

κρ

dB(T )

dz

∫ π

0
cos2 θ sin θ dθ (49)

= −2π

κρ

dB(T )

dz

∫ 1

−1
cos2 θ d(cos θ) (50)

= − 4π

3κρ

dB(T )

dz
(51)

= − 4π

3κρ

∂B(T )

∂T

∂T

∂z
(52)

This is at a particular frequency. To get the total flux over all frequencies, we just
integrate:

F = −4π

3ρ

∂T

∂z

∫ ∞
0

1

κ

∂B(T )

∂T
dν (53)

We have written all the terms that do not depend on frequency outside the integral,
and left inside it only those terms that do depend on frequency. Finally, we define
the Rosseland mean opacity by

1

κR
≡
∫∞
0 κ−1 ∂B(T )

∂T
dν∫∞

0
∂B(T )
∂T

dν
=
π
∫∞

0 κ−1 ∂B(T )
∂T

dν

4σT 3
, (54)

where in the last step we plugged in dB(T )/dT and evaluated the integral. With
this definition, we can rewrite the flux as

F = −16σT 3

3κR

∂T

∂z
. (55)
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This is the flux per unit area. If we want to know the total energy passing through
a given shell inside the star, we just multiply by the area:

L = −4πr2 16σT 3

3κρ

dT

dr
. (56)

This is an extremely powerful result. It gives us the flux of energy through a given
shell in the star in terms of the gradient in the temperature and the mean opacity.

We can also invert the result and write the temperature gradient in terms of the
luminosity:

dT

dr
= − 3

16σ

κRρ

T 3

L

4πr2
(57)

dT

dm
= − 3

16σ

κR
T 3

L

(4πr2)2
. (58)

This is particularly useful in the region of a star where there is no nuclear energy
generation, because in such a region we have shown that the luminosity is constant.
Thus this equation lets us figure out the temperature versus radius in a star given
the luminosity coming from further down, and the opacity.

D. Opacity Sources in Stars

This brings us to the final topic for this class: the opacity in stars. We need to
know how opaque stellar material is. There are four main types of opacity we have
to worry about:

• Electron scattering: photons can scatter off free electrons with the photon energy
remaining constant, a process known as Thompson scattering. The Thomson
scattering opacity can be computed from quantum mechanics, and is a simply a
constant opacity per free electron. This constancy breaks down if the mean pho-
ton energy approaches the electron rest energy of 511 keV, but this is generally
not the case in stars.

• Free-free absorption: a free electron in the vicinity of an ion can absorb a photon
and go into a higher energy unbound state. The presence of the ion is critical
to allowing absorption, because the potential between the electron and the ion
serves as a repository for the excess energy.

• Bound-free absorption: this is otherwise known as ionization. When there are
neutral atoms present, they can absorb photons whose energies are sufficient to
ionize their electrons.

• Bound-bound absorption: this is like ionization, except that the transition is
between one bound state and another bound state that is at a higher excitation.
The Hα, sodium D, and calcium K transitions we discussed earlier in the class
are examples of this.

Which of these sources of opacity dominates depends on the local temperature and
density, and changes from one part of a star to another. In the deep interior we have
already seen that the gas is almost entirely ionized due to the high temperatures
there, and as a result bound-free and bound-bound absorption contribute very little
– there are simply too few bound electrons around. In stellar atmospheres, on the
other hand, bound-free and bound-bound absorptions dominate, because there are
comparatively few free electrons. For our purposes we will mostly be concerned with
stellar interiors, where electron scattering and free-free are most important.
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Electron scattering is fairly easy to calculate, since it just involves the interaction of
an electromagnetic wave with a single charged particle. In fact, the calculation can
be done classically as long as the photon energy is much smaller than the electron
rest mass. We will not do the derivation in class, and will simply quote the result.
The cross-section for a single electron, called the Thomson cross-section, is

σT =
8π

3

(
αh̄

mec

)2

= 6.65× 10−25 cm2, (59)

where α ≈ 1/137 is the fine structure constant. This is independent of frequency,
so the Rosseland mean opacity is simply the opacity at any frequency (except for
frequencies where the photon energy approaches 511 keV.) To figure out the corre-
sponding opacity, which is the cross-section per unit mass, we simply have to multiply
this by the number of free electrons per gram of material. For pure hydrogen, there
are 1/mH hydrogen atoms per gram, and thus 1/mH free electrons is the material is
fully ionized. Thus for pure hydrogen we have

κes,0 =
σT
mH

= 0.40 cm2 g−1. (60)

If the material is not pure hydrogen we get a very similar formula, and we just have
to plug in the appropriate number of hydrogen masses per free electron, µe. Thus
we have

κes =
σT

µemH

=
κes,0

µe
= κes,0

(
1 +X

2

)
. (61)

The other opacity source to worry about in the interior of a star is free-free absorp-
tion. This process is vastly more complicated to compute, since one must consider
interactions of free electrons with many types of nuclei and with photons of many
frequencies, over a wide range in temperatures and densities. The calculation these
days is generally done by computer. However, we have some general expectations
based on simple principles.

The idea of free-free absorption is that the presence of ions enhances the opacity
of the material above and beyond what would be expected with just free electrons,
because the potential energy associated with the electron-ion interaction provides
a repository into which to deposit energy absorbed from photons. Since the effect
depends on ion-electron interactions, a higher density should increase the opacity,
since it means electrons and ions are more closely packed and thus interact more.
For this reason, κff should increase with density.

At very high temperatures, on the other hand, free-free opacity should become unim-
portant. This is because the typical photon energy is much higher than the electron-
ion potential, so having the potential energy of the electron-ion interaction available
doesn’t help much. Thus κff should decline with increasing temperature, until it
becomes small compared to electron-scattering opacity.

When making stellar models on a computer, one can directly use the tables of κff

as a function of ρ and T that a computer spits out. However, we can make simple
analytic models and get most of the general results right using an analytic fit to
the numerical data. The free-free opacity, first derived by Hendrik Kramers, is well
approximated by a power law in density and temperature:

κff ≈
κff,0

µe

〈
Z2

A

〉
ρ[g cm−3]T [K]−7/2 ≈ κff,0

(
1 +X

2

)〈Z2

A

〉
ρ[g cm−3]T [K]−7/2,

(62)
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where κff,0 = 7.5 × 1022 cm2 g−1, and the square brackets after ρ and T indicate
the units in which the are to be measured when plugging into this formula. As
expected, the opacity increases with density and decreases with temperature. The
factor 〈Z2/A〉 appears because the free-free opacity is affected by the population
of ions available for interactions. Interactions are stronger with more charged ions,
hence the Z2 in the numerator. They are weaker with more massive ions, hence the
A in the denominator.

An opacity of this form, given as κ = const · ρaT b for constant powers a and b, is
known as a Kramers law opacity.
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