
ASTR3007/4007/6007, Class 4: The Equation of State 3 March

As we discussed at the end of last class, we’ve written down the evolution equations, but we still
need to specify how to fill in the things like pressures, reaction rates, rates of energy transfer
through the star, etc. Today we’re going to tackle the problem of pressure in stars, also known
as the equation of state: an equation that specifies the pressure in a gas given its density and
temperature. You’re all familiar with the most common of these, the ideal gas law: P = nkBT .
While this works well under terrestrial conditions, inside a star things get a bit trickier. To
derive the equation of state for a star, we will need to talk a little about the kinetic theory of
gasses.

I. Pressure in the kinetic theory of fluids

In order to compute the pressure of stellar material, we need to recall that pressure is the
force exerted by a gas on a surface, such as the walls of its container, and that force is a
momentum per unit time. In other words, the pressure is the momentum per unit time
per unit area that a gas transfers to the walls of the vessel containing it. The reason there
is a momentum transfer is that particles in the gas are moving around at random, and
that some of them will strike the walls of the vessel, bounce off, and transfer momentum.
We can compute the pressure by computing this momentum transfer.

To see what this implies, consider an immobile surface with a gas on one side of it, and
focus on an area of that surface dA. First consider a single particle with momentum p
approaching the surface at an angle θ relative to the normal and bouncing off it elastically
(Figure 1, left). A little geometry quickly shows that the momentum transferred to the
surface is 2p cos θ.

Now consider a beam of particles, all moving toward the surface at angle θ and bouncing
off, and all moving with the same momentum p (Figure 1, right). Suppose the number
density of particles in the beam is n, and that they are moving at velocity v (which is
related to p in the usual way). The rate at which particles strike the surface is nv cos θ dA.
The nv dA comes from multiplying the density of particles available by the speed at which
they move by the area available to catch them. You can understand the factor of cos θ in
two equivalent ways. One is that only a fraction cos θ of that velocity is in the direction
perpendicular to the surface, and velocity parallel to the surface doesn’t produce any
collisions. Alternately, you can think about the projected area of the surface as seen
by a particle in the beam, which is smaller than its total area by a factor cos θ. Since
each collision transfers a momentum 2p cos θ, the total rate at which the beam transfer
momentum to the surface is

d2psurf
dt dA

= 2nvp cos2 θ. (1)

To generalise from the case of a beam to the case of a gas, we have to consider the fact that
particles are moving in every possible direction. Continuing for the moment to imagine
that all particles have the same momentum, the n be the total number density of particles,
and let dn(θ)/dθ be the number density of particles coming in at angles between θ and
θ+ dθ relative to the normal. If the particle distribution is isotropic, then the fraction of
particles at angle θ is just proportional to the fraction of the solid angle that lies between
θ and θ + dθ. Figure 2 shows the geometry. The solid angle of the indicated strip in the
figure is 2π sin θ dθ, as compared to 4π sr in total, so we must have that

dn(θ)

dθ
=

1

2
n sin θ. (2)
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Figure 1: Geometry of particles
bouncing off a surface. The left
panel shows a single particle with
momentum p reflecting off the sur-
face, while the right panel shows a
beam of particles of number density
n.
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θ

d Figure 2: Geometry of par-
ticles approaching a surface
from a particular solid angle.

Thus the collision rate for particles coming in at angle θ is (dn(θ)/dθ)v cos θ dA, and each
collision still transfers momentum 2p cos θ. To get the total rate of momentum transfer
we just have to multiply collision rate times momentum transfer and integrate this over
all angles:

d2psurf
dt dA

= npv
∫ π/2

0
cos2 θ sin θ dθ (3)

= npv
∫ 1

0
cos2 θ d cos θ (4)

=
1

3
npv (5)

Finally, to generalise this to a distribution of particles that aren’t all moving at the same
speed, we just have to integrate over their momentum distribution. We let dn(p)/dp be
the number of particles with momenta between p and p+dp. The pressure is then simply
the momentum transferred to the surface per unit time per unit area, which we obtain
simply by integrating over all the possible particle momenta:

P ≡ d2psurf
dt dA

=
1

3

∫ ∞
0

dn(p)

dp
pv dp (6)

II. Types of Pressure

We have now written the pressure of a gas in terms of the momentum distribution of its
particles. This required a lengthy mathematical exercise, but this was worth it because
this enables us to define the pressure in all sorts of complicated situations where we can’t
blindly apply the ideal gas law. There are several relevant for stars that we’ll consider
next.

A. Re-derivation of the ideal gas law

The first step in our analysis is to use this kinetic model of pressure to re-derive
the ideal gas law. This will provide a guide to how to proceed when dealing with
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more complicated situations. To derive the ideal gas law, we begin with a gas
whose particles all have mass m, and where the particles have a Maxwell-Boltzmann
velocity distribution, whereby the probability that a particle is in a state with energy
E is proportional to e−E/kBT .

To derive the momentum distribution from this, it is helpful to first think about
things two-dimensionally. A gas particle can have any vector momentum, p. In two
dimensions, this has two components, px and py. We can think of the momentum of
a given particle as corresponding to a point in the two-dimensional plane of px and
py (Figure 3).

We want to know the probability that a particle will be at a point (px, py) in this
plane, and the Boltzmann distribution can tell us. The energy and momentum of a
particle are related by

E =
p2

2m
=
p2x + p2y

2m
, (7)

where p is the magnitude of the vector p. Thus the probability of being at a point
(px, py) is proportional to e−(p

2
x+p

2
y)/(2mkBT ). The probability that the magnitude of

the momentum will fall in the ring between p and p + dp is just the probability of
being at a point (px, py) in the ring times the area of the ring, which is 2πp dp. Thus
in two dimensions we have

dn(p)

dp
∝ 2πpe−p

2/(2mkBT ). (8)

The three-dimensional generalization is obvious: instead of a ring of area 2πp dp,
we now have a shell of volume 4πp2 dp. Thus in three dimensions the momentum
distribution for the particles must follow

dn(p)

dp
∝ 4πp2e−p

2/(2mkBT ). (9)

To get the normalisation constant, we just require that, when we integrate over
all momenta, we get the right number of particles. Thus we say that dn(p)/dp =
k · 4πp2e−p2/(2mkBT ) and solve for the constant k by requiring that

n = 4πk
∫ ∞
0

p2e−p
2/(2mkBT ) dp (10)

= 4πk(2mkBT )3/2
∫ ∞
0

x2e−x
2

dx (11)

= π1/2k(2mkBT )3/2 (12)

where in the second step we have made the substitution x = p/
√

2mkBT , and
in the third step we evaluated the integral to get

√
π/4 – the integral is fairly
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straightforward to do by standard tricks. This gives us k, which in turn gives us
dn(p)/dp:

dn(p)

dp
=

4√
π

n

(2mkBT )3/2
p2e−p

2/(2mkBT ) (13)

Given this result, computing the pressure is just a matter of plugging into Equation 6
and evaluating the integral:

P =
∫ ∞
0

1

3

[
4√
π

n

(2mkBT )3/2
p2e−p

2/(2mkBT )

]
p
(
p

m

)
dp (14)

=
4n

3π1/2m
(2mkBT )

∫ ∞
0

x4e−x
2

dx (15)

= nkBT, (16)

where in the last step we again evaluated the integral, this time to 3
√
π/8. Thus we

have successfully re-derived the ideal gas law from first principles using the kinetic
theory of gasses.

B. Multicomponent ideal gasses

The first complication to add to this story is what happens if we have multiple types
of particles, each with a different mass. This is relevant to a gas that contains a
mixture of hydrogen and helium, for example. It is also relevant in a fully ionised gas,
where the ions and electrons move separately, and obviously their masses are quite
different. Fortunately, the kinetic description makes the result obvious: each species
follows the Boltzmann distribution, and the sum of the momentum transferred to a
surface is simply the sum of the momenta transferred by the particles of each species,
each of which is given by nkBT . Thus, if we have N species present in the gas, then
the total pressure is simply

P =

(
N∑
i=1

ni

)
kBT. (17)

We can write this equivalently in terms of the mass fraction and mass. If we let
AimH be the mass per particle of species i and Xi be the fraction of the mass at a
given point that comes from species i, then, as before, we have

ni =
Xi

AimH

ρ, (18)

and therefore we can write the pressure as

P =

(
N∑
i=1

Xi

Ai

)
ρRT (19)

For convenience we define
1

µ
=

N∑
i=1

Xi

Ai
, (20)

where µ is the mean mass (measured in units of hydrogen masses) per particle, so
that the ideal gas law becomes

P =
R
µ
ρT. (21)

If we only include ions (not electrons) in the sum, then we get the pressure due
to ions alone, and we write µ in this case as µI , for the mean mass per particle of
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ions. Since the Sun is mostly hydrogen and helium, it is convenient to express its
composition in terms of the fraction of the mass that is hydrogen, the fraction that is
helium, and the fraction that is everything else – the everything else we call metals.
Note that, to an astronomer, carbon, oxygen, and neon are all metals! We define X
as the hydrogen mass fraction, Y as the helium mass fraction, and Z as the metal
mass fraction. For the Sun, X = 0.707, Y = 0.274, and Z = 1−X − Y = 0.019.

We can write µI in terms of these definitions:

1

µI
=
X

1
+
Y

4
+

Z

〈A〉metals

, (22)

where 〈A〉metals is the mean atomic mass of the metals, which is about 20 in the Sun.
Thus for the Sun µI = 1.29.

We can similarly calculate the pressure due to electrons. In the outer layers of a star
where it is cold there are no free electons, but we showed using the virial theorem
that in the stellar interior the gas is close to fully ionised. Thus there is one free
electron per proton. If ni is the number density of ions of species i, then the number
density of electrons is

ne =
∑
i

Zini =
ρ

mH

∑
i

Xi
Zi
Ai
. (23)

Again, for convenience we give this sum a name:

1

µe
=
∑
i

Xi
Zi
Ai
. (24)

The meaning of µe is that it is the average number of free electrons per nucleon,
meaning per proton or neutron. In terms of our X, Y , and Z numbers,

1

µe
= X +

Y

2
+ Z

〈Z
A

〉
metals

, (25)

where the term 〈Z/A〉metals represents the ratio of electrons (or protons) averaged
over all the metal atoms.This is roughly 1/2, so to good approximation

1

µe
' X +

Y

2
+
Z

2
=

1

2
(X + 1), (26)

since Z = 1−X − Y . Thus for the Sun µe = 1.17.

Thus the pressures of the ions and the electrons are PI = (R/µI)ρT and Pe =
(R/µe)ρT , so the total pressure is P = PI + Pe = (R/µ)ρT , where

1

µ
=

1

µI
+

1

µe
. (27)

C. Relativistic gasses and radiation

The rule that pressures from different gasses just add is fairly intuitive, and one
could probably have guessed it without the kinetic theory. We do need the kinetic
theory, however, to generalize the concept of pressure to gasses that are not ideal,
classical gasses. The simplest generalization to make is to gases that are relativistic,
meaning that the particles within them are moving at close to the speed of light.
This occurs in some extreme stars. We will limit ourselves to considering gases in the
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extremely relativistic limit, where most particles have speeds very close to c. The
partially relativistic case is conceptually the same, but involves a great deal more
algebra.

For a relativistic gas the pressure is defined via Equation 6 exactly the same as for a
non-relativistic one. There are only two differences. The first is that the velocity v in
the integral is nearly c, the speed of light. The second is that energy and momentum
are no longer related by E = p2/(2m), and thus the momentum distribution dn(p)/dp
corresponding to the Boltzmann distribution is different. For particles of mass m,
this relationship between energy and momentum begins to change when the mean
particle energy, (3/2)kBT , becomes comparable to (1/2)mc2, the particle rest energy.
In the extreme relativistic limit, where the particle rest energy is small compared to
its kinetic energy, the energy and momentum of a particle are related by

E = pc. (28)

To compute the pressure, we need only compute the momentum distribution that
this relationship between E and p requires. This is

dn(p)

dp
= 4πkp2e−E/kBT = 4πkp2e−pc/kBT , (29)

and the constant k is again determined by requiring that

n = 4πk
∫ ∞
0

p2e−pc/kBT dp = 8πk

(
kBT

c

)3

(30)

k =
(

c

kBT

)3 n

8π
(31)

The pressure is

P =
n

6

c4

(kBT )3

∫ ∞
0

p3e−pc/kBT dp (32)

= nkBT (33)

This is exactly the same as for a non-relativistic gas.

However, for relativistic gasses we have a complication which is not present for
non-relativistic ones, which is that the number of particles is not necessarily fixed.
Instead, when particles are moving around with an energy comparable their rest
energy, collisions can create or destroy particles. Thus n and dn(p)/dp are no longer
fixed, and instead becomes functions of T . Our result is valid only for fixed n.

We will not solve this problem in general, but we will solve it for one particular type
of relativistic gas: radiation. We can think of photons as a relativistic gas, since
photons move at the speed of light and have energies much larger than their rest
energy (which is zero). To compute the pressure of a photon gas, we need to know
how the number density of photons and its distribution in momentum, dn(p)/dp,
varies with the temperature T . This distribution is

dn(ν)

dν
=

8πν2

c3
1

ehν/kBT − 1
(34)

dn(p)

dp
=

8πp2

h3
1

epc/kBT − 1
. (35)
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The first form is in terms of the frequency, and the second is in terms of the momen-
tum. The two are related by E = pc = hν. This distribution, known as Planck’s
Law, was first found empirically by Max Planck in 1901 and was finally understood
theoretically by Satyendra Nath Bose in 1924. An interesting historical aside: Bose
was a professor at the University of Dhaka in India, and when he first produced
this result, no journal in Europe was willing to accept his paper. Eventually he sent
the paper to Einstein, who recognized its significance and wrote a companion paper
in support of Bose’s. The two were then published together, giving rise to what is
known today as Bose-Einstein statistics.

Given this distribution, we derive the pressure as before:

P =
1

3

∫ ∞
0

c
hν

c

dn(ν)

dν
dp =

1

3
aT 4, (36)

where

a =
8π5k4B
15c3h3

=
4σ

c
(37)

is known as the radiation constant.

D. Degenerate gasses

The second generalisation we will consider is to gasses where quantum mechanical
effects become important. These are called degenerate gasses. A full theory of
degenerate gasses and their pressures is beyond what we will do in this class, but we
will deal with one limiting case, and we can use that to provide a good approximation
to the quantum effect.

Consider again the picture of the (px, py) plane, where we describe every particle’s
momentum in terms of a position in the plane. In classical mechanics, a particle can
occupy any position in the (px, py) plane, but quantum mechanics tells us that in
reality there actually only discrete, quantized values of px and py that particles are
allowed to have – in effect there is a grid in (px, py)-space, and particles can only be
found on the grid points (Figure 4).

Most of the time this doesn’t matter, because the grid points are packed so densely
that they might as well be a continuum. Particles can’t really be anywhere, but they
can be nearly anywhere. However, there are some situations where it does matter.
In the classical picture, the probability of being at a given point is e−E/kBT , where
E is the energy associated with that point. This distribution continues to apply in
quantum mechanics. If T is small, then E/kBT is a big number for most grid points,
so the particles all try to crowd into the points close to the origin, where E is small.
As a result, they’re all trying to occupy the same few grid points. However, the Pauli
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exclusion principle says that no two fermions (a category of particles that includes
electrons) can occupy the same quantum state. For electrons, which can be spin up
or spin down, no more than two can sit at any grid point. Because the electrons
can’t all pack into the few central grid points, they are forced to occupy a wider
range of momenta than classical mechanics would suggest they should. As a result,
their pressure is much higher than you would expect based on classical mechanics.

To know when this effect is important, we need to know what the density of grid
points is, since that will dictate when we start to have problems with too man
electrons trying to sit at the same site. Actually calculating this rigorously is beyond
the scope of this class, but one can obtain the basic result from the Heisenberg
uncertainty principle. The most common way of stating this is that there is an
irreducible uncertainty in the product of a particle’s momentum and its position:

∆x∆p ≥ h, (38)

where h = 6.63× 10−27 erg s is Planck’s constant. In 3D, we can write this as

∆V∆3p ≥ h3. (39)

This relates the uncertainty in the volume where a particle is located to the un-
certainty in its 3D momentum. An equally valid interpretation of the Heisenberg
uncertainty principle is that it is tell us how tightly packed the quantum grid points
are. If we have a volume of space ∆V , then the grid points for particles in that
volume each occupy a space ∆3p = h3/∆V in the (px, py, pz)-space.

This tells us that quantum effects are going to start become important in two cir-
cumstances. One is when the temperature is low, and all the particles try to pack
into the inner few gridpoints. The other is when the density of particles is high.
This is because a high density means a large number of particles in a small space
∆V . However, when ∆V is small, then the quantum grid points are spaced a larger
distance apart, which means there are few sites available for particles to occupy.

To apply this idea to calculating the pressure of a gas, consider the limit of a gas
where the temperature approaches 0. In this case, the particles will try to crowd
as close to the origin in (px, py, pz)-space as possible. One can imagine placing the
particles at the grid points. The first two electrons will go at the grid point closest
to the origin, the next two and the second closest point, and so forth until all the
electrons are used up. Thus the particles fill a circle of radius pF in the (px, py)-plane
in the 2D case, or a sphere in the (px, py, pz)-volume in the 3D case. All the grid
points with momentum p < pF are occupied, and all the grid points further from the
origin than pF will be empty. A gas of this sort is fully degenerate, meaning that the
particles are packed as closely as possible. The quantity pF is known as the Fermi
momentum.

To get the pressure in this fully degenerate state, we need to know the momentum
distribution dn(p)/dp – that is, we need to know how many electrons there are inside
the shell from p to p + dp. For the fully degenerate case this is easy. If p > pF ,
then dn(p)/dp = 0, because all the grid points at p > pF are empty. If p < pF , then
all the grid points are full, so the number of electrons is just twice the number of
grid points within the shell (since there are two electrons per grid point). Since the
shell has volume 4πp2 dp, and each grid point takes up a volume ∆3p = h3/∆V , the
number of electrons inside the shell is

Ne = 2
4πp2 dp

∆3p
=

2

h3
4πp2 dp∆V. (40)
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To change this to a number density, we just divide both sides by ∆V , which gives

dn(p)

dp
=

2

h3
4πp2 (41)

To figure out the Fermi momentum pF , we simply set it by the condition that, when
we integrate over all momenta, we get the right number of particles:

n =
∫ pF

0

2

h3
4πp2 dp (42)

=
8π

3h3
p3F (43)

pF =

(
3h3n

8π

)1/3

. (44)

Finally, we are in a position to calculate the pressure. Suppose that all the particles
have mass m. Then

P =
1

3

∫ ∞
0

dn(p)

dp
pv dp (45)

=
1

3

∫ pF

0

(
2

h3
4πp2

)
p
(
p

m

)
dp (46)

=
(

3

π

)2/3 h2

20m
n5/3 (47)

=
(

3

π

)2/3 h2

20mem
5/3
H

(
ρ

µe

)5/3

, (48)

where in the last step we have assumed that the particles are electrons, and we have
inserted the electron density for a fully ionized gas. The result applies equally well to
protons and neutrons, since they are fermions too, but since the degeneracy pressure
varies as 1/m, the much higher mass of these particles means that their degeneracy
pressure is much lower. Thus we are generally concerned only with electrons. The
combination of constants in front of the ρ term comes up often enough that it is
useful to compute it. We define

K ′1 =
(

3

π

)2/3 h2

20mem
5/3
H

= 1.00× 1013 dyn cm−2
(
g cm−3

)−5/3
, (49)

so that P = K ′1(ρ/µe)
5/3.

This is the pressure of a fully degenerate gas, and it represents a lower limit on the
pressure, which is achieved at zero temperature. In reality at any finite tempera-
ture the pressure is higher than this, and those of you enrolled in ASTR4007/6007
will compute the result for finite temperature on your homework. As a very crude
approximation, we can write the electron pressure as

Pe = max

R ρ

µe
T,K ′1

(
ρ

µe

)5/3
 , (50)

i.e., the electron pressure is either the thermal pressure or the degeneracy pressure,
whichever is greater. The transition between degenerate and non-degenerate occurs
roughly where these two pressures are equal, which requires that

ρ

µe
=

(
R
K ′1

T

)3/2

= 750
(

T

107 K

)3/2

g cm−3. (51)
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One subtle by important thing to notice is that the degeneracy pressure, unlike the
thermal pressure, does not depend on the gas temperature – a degenerate gas has
essentially fixed pressure until the temperature rises high enough to make it non-
degenerate. We will see that this has profound consequences for the evolution of
degenerate stars. It causes some of them to explode.

E. Relativistic degenerate gasses

In some very dense stars, the gas is degenerate, and it is also dense enough so that
the electrons have speeds that approach the speed of light. In this case we have
a relativistic degenerate gas. Again, the procedure to calculate the pressure is the
same, except that the velocity is now c, and the energy and momentum are related
by E = pc. In the degenerate case, however, the change in the relationship between
energy and momentum doesn’t matter, because the momentum distribution is dic-
tated by how many particles you can pack into a given volume in momentum-space,
not by Boltzmann factors. Thus dn(p)/dp is the same as for the non-relativistic case,
and we have

P =
1

3

∫ pF

0

(
2

h3
4πp2

)
pc dp =

2πc

3h3
p40 =

(
3

π

)1/3 hc

8
n4/3 =

(
3

π

)1/3 hc

8m
4/3
H

(
ρ

µe

)4/3

.

(52)
Again, in the last step we have assumed that the particles in question are electrons.

As with the non-relativistic degenerate case, it is convenience to give the collection
of constants a name, so we say that

P = K ′2(ρ/µe)
4/3, (53)

where K ′2 = 1.24× 1015 dyn cm−2 (g cm−3)
−5/3

. Again, note that tthe pressure does
not depend on temperature.

The condition for a degenerate gas to be relativistic is that p0 must be large enough
so that the kinetic energy is comparable to the rest energy of the electron. Thus the
gas becomes relativistic when p2F/(2me) ∼ mec

2. This requires that

ρ

µe
=

16π
√

2

3

mHm
3
ec

3

h3
= 3× 106 g cm−3. (54)

The condition for a relativistic gas to become degenerate is that the degeneracy
pressure equal the gas pressure, which requires that

ρ

µe
RT = K ′2

(
ρ

µe

)4/3

(55)

ρ

µe
=

(
RT
K ′2

)3

= 0.3
(

T

107 K

)3

g cm−3 (56)

F. Regimes of pressure

We summarise the four cases we have just derived for relativistic and non-relativistic,
degenerate and non-degenerate gasses in Figure 5, by combining the conditions for
switching between the regimes. The plot indicates where each case applies.

One thing that initially seems surprising about this plot is that it seems to suggest
that fluid at a density of 1 g cm−3 should be degenerate unless its temperature is more
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Figure 5: Regimes of pressure.

than 105 K or so. Does this mean that water at room temperature is degenerate? The
answer is no. Recall that this plot is for electrons. A gas of free electrons with the
density of water and a temperature comparable to room temperature would indeed
be degenerate. However, water molecules are not free electrons. The H2O molecule
has a mass of 18mH, which is 3.3 × 104 electron masses. Recall that degeneracy
pressure varies as 1/m, so the degeneracy pressure of water is 33,000 times smaller
than that of electrons. If we use the mass of a water molecule to compute K ′1 instead
of the mass of an electron, we find that at a density of 1 g cm−3 degeneracy does not
set in until the temperature drops below 4 K. This does make an important point,
however: for fully ionised gasses, it is much easier to be degenerate than one might
think.
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