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In the first class we discussed stars’ light output and the things than can be derived directly
from it – luminosity, temperature, and composition. However, to build a physical theory we
require knowledge of one additional quantity: stars’ masses. In this class we will discuss how
those masses are derived, and begin a discussion of how we can use this information to build a
physical theory for stars’ structure.

I. Mass measurements using binaries

Measuring the masses of stars turns out to be surprisingly difficult – how do we measure
the mass of an object sitting by itself in space? The answer turns out to be that we
can’t, but that we can measure the masses of objects that aren’t sitting by themselves.
Fortunately, nature has provided for us. Roughly 2/3 of stars in the Milky Way appear
to be single stars, but the remaining 1/3 are members of multiple star systems, meaning
that two or more stars are gravitationally bound together and orbit one another. Of
these, binary systems, consisting of two stars are by far the most common. Binaries
are important because they provide us with a method to measure stellar masses using
Newton’s laws alone.

As a historical aside before diving into how we measure masses, binary stars are interesting
as a topic in the history of science because they represent one of the earliest uses of
statistical inference. The problem is that when we see two stars close to one another on
the sky, there is no obvious way to tell is the two are physically near each other, or if it is
simply a matter of two distant, unrelated stars that happen to be lie near the same line
of sight. In other words, just because two stars have a small angular separation, it does
not necessarily mean that they have a small physical separation.

However, in 1767 the British astronomer John Michell performed a statistical analysis of
the distribution of stars on the sky, and showed that there are far more close pairs than
one would expect if they were randomly distributed. Thus, while Michell could not infer
that any particular pair of stars in the sky was definitely a physical binary, he showed
that the majority of them must be.

A. Visual binaries

Binary star systems can be broken into two basic types, depending on how we dis-
cover them. The easier one to understand is visual binaries, which are pairs of stars
that are far enough apart that we can see them as two distinct stars in a telescope.

We can measure the mass of a visual binary system using Kepler’s laws. To see how
this works, let us go through a brief recap of the gravitational two-body problem.
Consider two stars of masses M1 and M2. We let r1 and r2 be the vectors describing
the positions of stars 1 and 2, and r = r2− r1 be the vector distance between them.
If we set up our coordinate system so that the centre of mass is at the origin, then we
know that M1r1 +M2r2 = 0. We define the reduced mass as µ = M1M2/(M1 +M2),
so r1 = −(µ/M1)r and r2 = (µ/M2)r.

The solution to the problem is that, when the two stars are at an angle θ in their
orbit, the distance between them is

r =
a(1− e2)
1 + e cos θ

, (1)
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Figure 1: Graphical illustra-
tion of an orbit in the re-
duced two-body problem.

where the semi-major axis a and eccentricity e are determined by the stars’ energy
and angular momentum (Figure 1). Clearly the minimum separation occurs when
θ = 0 and the denominator has its largest value, and the maximum occurs when
θ = π and the denominator takes its minimum value. The semi-major axis is the
half the sum of this minimum and maximum:

1

2
[r(0) + r(π)] =

1

2

[
a(1− e2)

1 + e
+
a(1− e2)

1− e

]
= a. (2)

The orbital period is related to a by

P 2 = 4π2 a3

GM
, (3)

where M = M1 +M2 is the total mass of the two objects.

This describes how the separation between the two stars changes, but we instead
want to look at how the two stars themselves move. The distance from each of the
two stars to the centre of mass is given by

r1 =
µ

M1

r =
µ

M1

[
a(1− e2)
1 + e cos θ

]
r2 =

µ

M2

r =
µ

M2

[
a(1− e2)
1 + e cos θ

]
. (4)

Again, these clearly reach minimum and maximum values at θ = 0 and θ = π, and
the semi-major axes of the two ellipses describing the orbits of each star are given
by half the sum of the minimum and maximum:

a1 =
1

2
[r1(0) + r1(π)] =

µ

M1

a a2 =
1

2
[r2(0) + r2(π)] =

µ

M2

a. (5)

Note that it immediately follows that a = a1 + a2, since µ/M1 + µ/M2 = 1.

We can measure the mass of a visual binary using Kepler’s laws. Recall that there
are three laws: first, orbits are ellipses with the centre of mass of the system at
one focus. Second, as the bodies orbit, the the line connecting them sweeps out
equal areas in equal times – this is equivalent to conservation of angular momentum.
Third, the period P of the orbit is related to its semi-major axis a by

P 2 = 4π2 a3

GM
, (6)

where M is the total mass of the two objects.

With that background out of the way, let us think about what we can actually
observe, starting with the simplest case where the orbits of the binary lie in the
plane of the sky, the system is close enough that we can use parallax to measure
its distance, and the orbital period is short enough that we can watch the system
go through a complete orbit. In this case we can directly measure four quantities,
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Figure 2: The motion of a visible bi-
nary whose orbit lies in the plane of
the sky as seen from Earth.

which in turn tell us everything we want to know: the orbital period P , the angles
subtended by the semi-major axes of the two stars orbits, α1, and α2, and the
distance of the system, d (Figure 2).

The first thing to notice is that we can immediately infer the two stars’ mass ratio
just from the sizes of their orbits. The semi-major axes of the orbits are a1 = α1d
and a2 = α2d. We know that M1r1 ∝ M2r2, and since a1 ∝ r1 and a2 ∝ r2 by
the argument we just went through, we also know that M1a1 ∝ M2a2. Thus it
immediately follows that

M1

M2

=
a2
a1

=
α2

α1

. (7)

Note that this means we can get the mass ratio even if we don’t know the distance,
just from the ratio of the angular sizes of the orbits.

Similarly, we can infer the total mass from the observed semi-major axes and period
using Kepler’s 3rd law:

M = 4π2 (a1 + a2)
3

GP 2
= 4π2 (α1d+ α2d)3

GP 2
, (8)

where everything on the right hand side is something we can observe. Given the
mass ratio and the total mass, it is of course easy to figure out the masses of the
individual stars. If we substitute in and write everything in terms of observables, we
end up with

M1 =
α2

α1 + α2

4π2 (α1d+ α2d)3

GP 2
M2 =

α1

α1 + α2

4π2 (α1d+ α2d)3

GP 2
. (9)

This is the simplest case where we see a full orbit, but in fact we don’t have to
wait that long – which is a good thing, because for many visual binaries the orbital
period is much longer than a human lifetime! Even if we see only part of an orbit,
we can make a very similar argument. All we need is to see enough of the orbit that
we can draw an ellipse through it, and then we measure α1 and α2 for the inferred
ellipse. Similarly, Kepler’s second law tells us that the line connecting the two stars
sweeps out equal areas in equal times, so we can infer the full orbital period just by
measuring what fraction of the orbit’s area has been swept out during the time we
have observed the system.

The final complication to worry about is that we don’t know that the orbital plane
lies entirely perpendicular to our line of sight, a situation illustrated in Figure 3.
In fact, we would have to be pretty lucky for this to be the case. In general we do
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Figure 3: The motion of a visible bi-
nary whose orbit is inclined relative
to the plane of the sky as seen from
Earth.

not know the inclination of the orbital plane relative to our line of sight. For this
reason, we do not know the angular sizes α′1 and α′2 that we measure for the orbits
are different than what we would measure if the system were perfectly in the plane of
the sky. A little geometry should immediately convince you that that α′1 = α1 cos i,
where i is the inclination, and by convention i = 0 corresponds to an orbit that is
exactly face-on and i = 90◦ to one that is exactly edge-on. The same goes for α2. (I
have simplified a bit here and assumed that the tilt is along the minor axes of the
orbits, but the same general principles work for any orientation of the tilt.)

This doesn’t affect our estimate of the mass ratios, since α1/α2 = α′1/α
′
2, but it does

affect our estimate of the total mass, because a ∝ α1. Thus if we want to write out
the total mass of a system with an inclined orbit, we have

M = 4π2 (α′1d+ α′2d)3

GP 2 cos3 i
. (10)

We get stuck with a factor cos3 i in the denominator, which means that instead of
measuring the mass, we only measure a lower limit on it.

Physically, this is easy to understand: if we hold the orbital period fixed, since we
can measure that regardless of the angle, there is a very simple relationship between
the stars’ total mass and the size of their orbit: a bigger orbit corresponds to more
massive stars. However, because we might be seeing the ellipses at an angle, we
might have underestimated their sizes, which corresponds to having underestimated
their masses.

B. Spectroscopic binaries

A second type of binary is called a spectroscopic binary. As we mentioned earlier,
by measuring the spectrum of a star, we learn a great deal about it. One thing
we learn is its velocity along our line of sight – that is because motion along the
line of sight produces a Doppler shift, which displaces the spectrum toward the
red or the blue, depending on whether the star is moving away from us or toward
us. However, we know the absolute wavelengths that certain lines have based on
laboratory experiments on Earth – for example the Hα line, which is produced by
hydrogen atoms jumping between the 2nd and 3rd energy states, has a wavelength
of 6562.8 Å. If we see the Hα line at 6700 Å instead, we know that the star must be
moving away from us.

The upshot of this is that we can use spectra to measure stars’ velocity. In a binary
system, we will see the velocities change over time as the two stars orbit one another.
The homework assignment includes a calculation showing how it is possible to use
these observations to measure the masses of the two stars.
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The best case of all is when a pair of stars is observed as both a spectroscopic and
a visual binary, because in that case you can figure out the masses and inclinations
without needing to know the distance. In fact, it’s even better than that: you can
actually calculate the distance from Newton’s laws!

Unfortunately, very few star systems are both spectroscopic and visual binaries.
That is because the two stars have to be pretty far apart for it to be possible to
see both of them with a telescope, rather than seeing them as one point of light.
However, if the two stars are far apart, they will also have relatively slow orbits with
relatively low velocities. These tend to produce Doppler shifts that are too small to
measure. Only for a few systems where the geometry is favourable and where the
system is fairly close by can we detect a binary both spectroscopically and visually.
These systems are very precious, however, because then we can measure everything
about them. In particular, for our purposes, we can measure their masses absolutely,
with no uncertainties due to inclination or distance.

II. Hydrostatic balance

Simply by knowing stars’ masses and approximate sizes, we can deduce a surprising
amount about their physical state. In particular, we can show that stars must be in
approximate hydrostatic balance, we can estimate their internal temperatures, and we
can show that stars must be composed of gas rather than a solid or liquid.

A. The dynamical timescale

For a spherical ball of gas like a star, there are two basic forces acting on any given
fluid parcel: pressure and gravity. We begin with a basic question: are these forces
in balance, so that their sum must add up to zero? To answer that question, consider
the counterfactual, i.e., that the two forces were significantly out of balance. What
when would happen?

To answer this consider a shell of material near the surface of a star with mass M
and radius R. If gravity is significantly stronger than pressure, then this material
will begin to fall. If we neglect pressure entirely compared to gravity, then at the
time when the shell of material has reached a radius r, assume that the mass within
the shell remains the same, we can compute its velocity simply from conservation
of energy. Its initial gravitational potential energy per unit mass when it reaches
radius r is −GM/r, and if we set this equal to its kinetic energy per unit mass v2/2,
we have

v =
dr

dt
=
√

2GM

√
1

r
− 1

R
. (11)

This is a simple ordinary differential equation for the radius r as a function of time,
and it can be solved by making the trigonometric substitution r = R cos2 ξ. Making
this substitution gives

−2R cos ξ sin ξ
dξ

dt
=

√
2GM

R

√
1

cos2 ξ
− 1 (12)

2 cos ξ sin ξ
dξ

dt
=

√
2GM

R3
tan ξ (13)

2 cos2 ξ dξ =

√
2GM

R3
dt (14)
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ξ +
1

2
sin 2ξ =

√
2GM

R3
t. (15)

The radius reaches r = 0 when ξ = π/2, so we can substitute in ξ = /π/2 to find the
time when the shell of material at the outside of the star would reach the centre:

t =
π

2

√
R3

2GM
(16)

= 1770

(
R

R�

)3/2 (
M

M�

)−1/2
s. (17)

We refer to this time as the dynamical timescale; it is the time that would be required
for the star to radically change its state if the forces acting on the material in it were
out of pressure balance. For a star like the Sun, this time scale is only about half an
hour. We can immediately conclude that stars like the Sun must be in exquisitely
fine pressure balance, because even if they were out of balance only by a little bit,
so that it took 1000 of these timescales for them to move, they would have collapse
(or exploded if pressure was greater) long ago.

B. The equation of hydrostatic balance

Having established that stars should have zero net force acting on them, we are in
a position to express that mathematically, and in turn to use that formula to derive
a remarkable result known as the virial theorem. Consider a star of total mass M
and radius R, and focus on a thin shell of material at a distance r from the star’s
centre. The shell’s thickness is dr, and the density of the gas within it is ρ. Thus
the mass of the shell is dm = 4πr2ρ dr (Figure 4).

Let the mass interior to radius r be m. In this case the gravitational force acting on
the shell is

Fg = −Gmdm

r2
= −4πGρmdr, (18)

where the minus sign indicates that the force is inward.

The other force acting on the shell is gas pressure. Of course the shell feels pressure
from the gas on either side of it, and it feels a net force only due to the difference
in pressure on either side. This is just like the forces caused by air the room. The
air pressure is pretty uniform, so that we feel equal force from all directions, and
there is no net force in any particular direction. However, if there is a difference in
pressure, there will be a net force. To calculate this, note that force is pressure times
area. Thus if the pressure at the base of the shell is P (r) and the pressure at its top
is P (r + dr), the net force that the shell feels is

Fp = 4πr2 [P (r)− P (r + dr)] (19)
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Note that the sign convention is chosen so that the force from the top of the shell (the
P (r+ dr) term) is inward, and the force from the bottom of the shell is outward. In
the limit dr → 0, it is convenient to rewrite the pressure force in a more transparent
form using the definition of the derivative:

dP

dr
= lim

dr→0

P (r + dr)− P (r)

dr
. (20)

Substituting this into the pressure force gives

Fp = −4πr2
dP

dr
dr. (21)

If there is zero net force on the stellar material, then the gravitational and pressure
forces must sum to zero, and thus we must have

dP

dr
= −ρGm

r2
. (22)

This equation expresses how much the pressure changes as we move through a given
radius in the star, i.e., if we move upward 10 km, by how much will the pressure
change? Sometimes it is more convenient to phrase this in terms of change per unit
mass, i.e., if we move upward far enough so that an additional 0.01 M� of material is
below us, how much does the pressure change. We can express this mathematically
via the chain rule. The change in pressure per unit mass is

dP

dm
=
dP

dr

dr

dm
=
dP

dr

(
dm

dr

)−1
=
dP

dr

1

4πr2ρ
= − Gm

4πr4
. (23)

This is called the Lagrangian form of the equation, while the one involving dP/dr
is called the Eulerian form. We will usually work with Lagrangian equations in this
class.

In either form, since the quantity on the right hand side is always negative, the
pressure must decrease as either r or m increase, so the pressure is highest at the
star’s centre and lowest at its edge. In fact, we can exploit this to make a rough
estimate for the minimum possible pressure in the centre of star. We can integrate
the Lagrangian form of the equation over mass to get∫ M

0

dP

dm
dm = −

∫ M

0

Gm

4πr4
dm (24)

P (M)− P (0) = −
∫ M

0

Gm

4πr4
dm (25)

On the left-hand side, P (M) is the pressure at the star’s surface and P (0) is the
pressure at its centre. The surface pressure is tiny, so we can drop it. For the right-
hand side, we know that r is always smaller than R, so Gm/4πr4 is always larger
than Gm/4πR4. Thus we can write

P (0) ≈
∫ M

0

Gm

4πr4
dm >

∫ M

0

Gm

4πR4
dm =

GM2

8πR4
(26)

Evaluating this numerically for the Sun gives Pc > 4× 1014 dyne cm−2. In compari-
son, 1 atmosphere of pressure is 1.0×106 dyne cm−2, so this argument demonstrates
that the pressure in the centre of the Sun must exceed 108 atmospheres. In fact, it
is several times larger than this.
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III. The Virial Theorem

We will next derive a volume-integrated form of the equation of hydrostatic equilibrium
that will prove extremely useful for the rest of the class, and, indeed, is perhaps one of
the most important results of classical statistical mechanics: the virial theorem. The first
proof of a form of the virial theorem was accomplished by the German physicist Claussius
in 1851, but numerous extensions and generalisations have been developed since. We will
be using a particularly simple version of it, but one that is still extremely powerful.

A. Derivation

To derive the virial theorem, we will start by taking both sides of the Lagrangian
equation of hydrostatic balance and multiplying by the volume V = 4πr3/3 interior
to some radius r:

V dP = −1

3

Gmdm

r
. (27)

Next we integrate both sides from the center of the star to some radius r where the
mass enclosed is m(r) and the pressure is P (r):

∫ P (r)

0
V dP = −1

3

∫ m(r)

0

Gm′ dm′

r′
. (28)

Before going any further algebraically, we can pause to notice that the term on the
right side has a clear physical meaning. Since Gm′/r′ is the gravitational potential
due to the material of mass m′ inside radius r′, the integrand (Gm′/r′)dm′ just
represents the gravitational potential energy of the shell of material of mass dm′

that is immediately on top of it. Thus the integrand on the right-hand side is just
the gravitational potential energy of each mass shell. When this is integrated over
all the mass interior to some radius, the result is the total gravitational potential
energy of the gas inside this radius. Thus we define

Ω(r) = −
∫ m(r)

0

Gm′ dm′

r′
(29)

to the gravitational binding energy of the gas inside radius r.

Turning back to the left-hand side, we can integrate by parts:∫ P (r)

0
V dP = [PV ]r0 −

∫ V (r)

0
P dV = [PV ]r −

∫ V (r)

0
P dV. (30)

In the second step, we dropped PV evaluated at r′ = 0, because V (0) = 0. To
evaluate the remaining integral, it is helpful to consider what dV means. It is the
volume occupied by our thin shell of matter, i.e., dV = 4πr2 dr. While we could
make this substitution to evaluate, it is even better to think in a Lagrangian way,
and instead think about the volume occupied by a given mass. Since dm = 4πr2ρ dr,
we can obviously write

dV =
dm

ρ
, (31)

and this changes the integral to∫ V (r)

0
P dV =

∫ m(r)

0

P

ρ
dm. (32)
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Putting everything together, we arrive at our form of the virial theorem:

[PV ]r −
∫ m(r)

0

P

ρ
dm =

1

3
Ω(r). (33)

If we choose to apply this theorem at the outer radius of the star, so that r = R,
then the first term disappears because the surface pressure is negligible, and we have∫ M

0

P

ρ
dm = −1

3
Ω, (34)

where Ω is the total gravitational binding energy of the star.

This might not seem so impressive, until you remember that, for an ideal gas, you
can write

P =
ρkBT

µmH

=
R
µ
ρT, (35)

where µ is the mean mass per particle in the gas, measured in units of the hydrogen
mass, and R = kB/mH is the ideal gas constant. If we substitute this into the virial
theorem, we get ∫ M

0

RT
µ
dm = −1

3
Ω. (36)

For a monatomic ideal gas, the internal energy per particle is (3/2)kBT , so the
internal energy per unit mass is u = (3/2)RT/µ. Substituting this in, we have∫ M

0

2

3
u dm = −1

3
Ω (37)

U = −1

2
Ω, (38)

where U is just the total internal energy of the star, i.e., the internal energy per
unit mass u summed over all the mass in the star. This is a remarkable result. It
tells us that the total internal energy of the star is simply −(1/2) of its gravitational
binding energy.

The total energy is

E = U + Ω =
1

2
Ω. (39)

Note that, since Ω < 0, this implies that the total energy of a star made of ideal gas
is negative, which makes sense given that a star is a gravitationally bound object.
Later in the course we’ll see that, when the material in a star no longer acts like a
classical ideal gas, the star can have an energy that is less negative than this, and
thus is less strongly bound.

Incidentally, this result bears a significant resemblance to one that applies to orbits.
Consider a planet of mass m, such as the Earth, in a circular orbit around a star of
mass M at a distance R. The planet’s orbital velocity is the Keplerian velocity

v =

√
GM

R
, (40)

so its kinetic energy is

K =
1

2
mv2 =

GMm

2R
. (41)
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Its potential energy is

Ω = −GMm

R
, (42)

so we therefore have

K = −1

2
Ω, (43)

which is basically the same as the result we just derived, except with kinetic energy
in place of internal energy. This is no accident: the virial theorem can be proven
just as well for a system of point masses interacting with one another as we have
proven it for a star, and an internal or kinetic energy that is equal to −1/2 of the
potential energy is the generic result.

B. Application to the Sun

We’ll make use of the virial theorem many times in this class, but we can make
one immediate application right now: we can use the virial theorem to estimate the
mean temperature inside the Sun. Let T̄ be the Sun’s mass-averaged temperature.
The internal energy is therefore

U =
3

2
M
RT̄
µ
. (44)

The gravitational binding energy depends somewhat on the internal density distri-
bution of the Sun, which we are not yet in a position to calculate, but it must be
something like

Ω = −αGM
R

, (45)

where α is a constant of order unity that describes our ignorance of the internal
density structure. Applying the virial theorem and solving, we obtain

3

2
M
RT̄
µ

=
1

2
α
GM2

R
(46)

T̄ =
α

3

µ

R
GM

R
(47)

If we plug in M = M�, R = R�, µ = 1/2 (appropriate for a gas of pure, ionised
hydrogen), and α = 3/5 (appropriate for a uniform sphere), we obtain T̄ = 2.3×106

K. This is quite impressively hot. It is obviously much hotter than the surface
temperature of about 6000 K, so if the average temperature is more than 2 million
K, the temperature in the centre must be even hotter.

It is also worth pausing to note that we were able to deduce the internal temperature
of Sun to within a factor of a few from nothing more than its bulk characteristics,
and without any knowledge of the Sun’s internal workings. This sort of trick is what
makes the virial theorem so powerful!

We can also ask what the Sun’s high temperature implies about the state of the
matter in its interior. The ionisation potential of hydrogen is 13.6 eV, and for
T = 2 × 106 K, the thermal energy per particle is (3/2)kBT = 260 eV. Thus the
thermal energy per particle is much greater than the ionisation potential of hydrogen.
Any collision will therefore lead to an ionisation, and we conclude that the bulk of
the gas in the interior of a star must be nearly fully ionised.
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C. Further application: which celestial objects are gasses?

Here is one more application of the virial theorem: deciding which celestial objects
will have gaseous centres (like the Sun), and which will have liquid or solid centres
(like the Earth). The distinguishing characteristic of a gas is that the potential
energy associated with inter-particle forces at the typical particle-particle separation
is small compared to the particles’ thermal energy. In other words, a gas is a set of
particles that are moving around at high enough speeds that the forces they exert
on one another are negligible except on those rare occasions when they happen to
pass extremely close to one another.

To check this for a star, consider a region of density ρ and temperature T , consisting
of atoms with atomic mass A and atomic number Z. The number density of the
particles is n = ρ/(AmH), so the typical distance between them must be

d = n−1/3 =

(
AmH

ρ

)1/3

.

The typical electromagnetic potential energy is therefore at most

E ' Z
2e2

d
= Z2e2

(
ρ

AmH

)1/3

,

where e is the electron charge. The “at most” is because this assumes that the
potential energy comes from the full charge of the nuclei, neglecting any cancellation
coming from electrons of opposite charge “screening” the nuclear charges.

To see how this compares to the thermal energy, i.e., to compute the ratio E/kBT ,
ideally we would check at every point within the object since both ρ and kBT change
with position. However, we can get a rough idea of what the result is going to be if we
use mean values of ρ and T . For an object of mass M and radius R, ρ = 3M/(4πR3),
the virial theorem tells us that the mean temperature will be

T =
α

3

µ

R
GM

R
=
α

3

A
R
GM

R
,

where α is a constant of order unity, and µ ≈ A is the mean atomic mass per
particle. (If the gas is fully ionized then µ will be lower, but we are interested in
an order of magnitude result, so we will ignore this for now). Substituting ρ and T ,
and dropping constants of order unity, we find

E

kBT
∼ Z2e2

GA4/3m
4/3
H M2/3

= 0.011
Z2

A4/3

(
M

M�

)−2/3

Even for a pure iron composition, Z = 26 and A = 56, we have E/kBT =
0.035(M/M�)−2/3. This may vary some within a star, but the general result is
that E � kBT , so something with the mass of a star is essentially always going
to be a gas, unless something very strange happens (which is does in some exotic
cases). In contrast, if we plug in M = M⊕ = 6.0× 1027 g and consider pure iron, we
get a ratio of 167 – the centre of the Earth is definitely not a gas!

More generally, if we go back to hydrogen composition, Z = A = 1, then this result
suggests that E/kBT when M ∼ 10−3 M�, or about the mass of Jupiter. Thus solid
or liquid phases should be absent in bodies substantially larger than Jupiter, and
begin to appear once the mass drops to that of Jupiter or less.
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