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We now go on to the evolution of massive stars, defined as those with masses above ≈ 8 − 10
M�. We will see that the ultimate fate of these stars is quite different than that of their lower
mass brethren.

I. Post-main sequence evolution

A. Mass Loss

One important effect that distinguishes the evolution of massive stars from that of
lower mass stars is the importance of mass loss, both on the main sequence and
thereafter. Low mass stars do not experience significant mass loss before the AGB
phase, but massive stars can lose mass while still on the main sequence, and can lose
even more after they leave it.

Like other aspects of stellar mass loss, the exact mechanisms are not fully understood.
Some of the mass loss is certainly due to interactions with other stars – it turns out
that massive stars are very frequently in close binary systems, and as massive stars
evolve on the main sequence their radii tend to grow, as we will discuss below. If
they have a close companion, this growth can cause material toward the edges of the
star to cease to be bound to the parent star, and instead to be accreted onto the
companion. However, even for massive stars that do not have close companions, there
is considerable evidence that they can lose a significant amount of mass, particularly
for stars ∼ 100 M� in size.

The most observationally-spectacular example of this that we have is a star known
as η Carinae. This star is bright enough to be visible to the naked eye, and it was
catalogued by both European and Chinese astronomers by the 1600s, but not much
attention was paid to it. However, in the 1827 astronomer William Burchell noticed
that it was much brighter than it had been; in modern notation, it had gone from
being a magnitude 3-4 star to a magnitude 1 star. In 1837 it got even brighter,
becoming at one point the second-brightest star in the night sky. During this period
it was recorded in the oral histories of the Boorong people, whose traditional home
is about 400 km northwest of Melbourne, near Lake Tyrrell. η Carinae stayed bright
for a total of about 18 years before fading. It has shown repeated eruptions of this
sort since then, though not quite as bright as the 1830-40s event, known as the Great
Eruption.

Modern observations of η Carinae, as shown in Figure 1, show that it is a very
massive star that is in the process of ejecting much of its envelope. The huge shell
of dust and gas visible around it, known as the Homunculus Nebula, dates from
the Great Eruption. The mass in the nebula is not entirely certain, but modern
estimates mostly place it at ≈ 10− 15 M�, meaning that the star must have ejected
almost 1 M� per year of material during the Great Eruption. The mass of η Carinae
itself is not known, but is thought to be of order 100 M�, meaning that this star
managed to lose ∼ 10% of its mass in a span of ∼ 20 years.

As mass loss processes like those occurring in η Carinae, erode a star’s atmosphere,
its outer layers become less and less dominated by hydrogen, eventually reaching
X ≈ 0.1 or even less. We see these stars as somewhat lower mass (but still very
massive) stars whose atmospheres are dominated by helium rather than hydrogen.
These are called Wolf-Rayet stars, and they are effectively the bare cores of massive
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Figure 1: An im-
age of η Carinae
from the Hubble
Space Telescope.
Source: https:

//upload.

wikimedia.

org/wikipedia/

commons/f/fc/

Eta_Carinae.

jpg.
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Figure 2: An im-
age of the nebula
NGC 2359,
known as Thor’s
Helmet. The
nebula is a mix
of mostly swept-
up interstellar
material and
stellar ejecta,
and is emitting
due to illumi-
nation from the
Wolf-Rayet star
at its centre.

stars.

Stars become WR’s while they are still on the main sequence, i.e., burning hydrogen
in their centres. Stars in this case are called WN stars, because they are Wolf-
Rayet stars that show large amounts of nitrogen on their surfaces. The nitrogen is
the product of CNO cycle burning, which produces an equilibrium level of nitrogen
above the amount that the star began its life with.

WR stars continue to lose mass rapidly, often producing spectacular nebulae that
look like planetary nebulae. They shine for the same reason: the expelled gas is ex-
posed to the high energy radiation of the star, and it flouresces in response. Figure 2
shows an example

Mass loss continues after the star exhausts H and begin burning He – at this point
the surface composition changes and we begin to see signs of 3α burning. These are
WC stars. The continuing mass loss removes the enhanced nitrogen from the CNO
cycle, and convection brings to the surface the result of 3α burning, which is mostly
carbon. Very rarely, we see WR stars where the carbon is being blown off, and the
surface is dominated by oxygen.

Regardless of the evolutionary path, the effects of mass loss can be quite dramatic –
100 M� stars are thought to get down to nearly 30 M� by the time they evolve off
the main sequence.
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Figure 3: Evolutionary tracks
for massive stars as calculated
by the Geneva group. Source:
Meynet et al. (1994, Astron-
omy & Astrophysics, 103, 87,
http://adsabs.harvard.edu/

abs/1994A%26AS..103...97M.

B. Movement on the HR diagram

While these stars show dramatic mass loss, their luminosities do not evolve all that
much as they age. That is for the reason we mentioned last time in the context of
low mass stars’ luminosity evolution: the role of radiation pressure. The luminosity
varies as L ∝ µ4β4, and β is in turn given by the Eddington quartic:

0.003

(
M

M�

)2

µ4β4 + β − 1 = 0. (1)

For very massive stars, the first term is dominant, so µβ is roughly constant, and L
is too. This is simply a reflection of the fact that very massive stars are largely sup-
ported by radiation pressure. As a result, their luminosity is equal to the Eddington
luminosity, which depends only on total mass, not on composition.

This non-evolution of the luminosity continues to apply even after these stars leave
the main sequence. As the stars develop inert ash cores and burning shells like lower
mass stars, they cannot increase in luminosity, but they can increase in radius and
go to lower effective temperature. The net effect is that they move along nearly
horizontal tracks on the HR diagram. Figure 3 shows numerical calculations of this
phenomenon.

As the tracks show, the luminosities increase less and less for stars of higher and
higher masses, and instead they evolve at constant luminosity. Thus massive stars
never have a red giant phase, since that would require an increase in luminosity.

II. The stellar interior

In addition to showing major differences in their envelopes and external structure due to
mass loss, massive stars’ interiors are also quite different from those of low mass stars.
The principal difference has to do with when and where nuclear burning stops.

A. The Chandresekhar limit

As we saw last time, the most massive of low mass stars evolve into AGB stars, which
have cores of carbon and oxygen surrounded by an onion shell structure of helium
burning and hydrogen burning regions. The core becomes supported by degeneracy
pressure before getting hot enough to burn carbon and oxygen into heavier elements,
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and eventually the envelope is ejected. The final core mass that is left is of order
1 M�. We do not understand the mass loss process well enough to predict in great
detail the relationship between the final remnant mass and the initial mass of the
star, but we can say that, not surprisingly, the more massive the star is at birth, the
more massive the core it produces will be.

However, we will now demonstrate that there is an upper limit to the possible core
mass, known as the Chandresekhar limit. To start, recall that a degenerate gas can
be treated as polytrope, since it obeys and equation of state where the pressure
depends on density alone. For a non-relativistic degenerate electron gas, we have

P = K ′1

(
ρ

µe

)5/3

, (2)

so γP = 5/3, and n = 1/(γP − 1) = 3/2. The polytropic constant is KP = K ′1/µ
5/3
e .

Now recall the mass-radius relation for polytropes that we derived back in class 7:[
GM

−ξ21(dΘ/dξ)ξ1

]n−1(
R

ξ1

)3−n

=
[(n+ 1)KP ]n

4πG
. (3)

Since KP is a constant that is just determined by the composition of the stellar
material and by fundamental constants, it is the same for all carbon-oxygen cores.
If such a core is non-degenerate, then n = 3/2, and thus we

M1/2R3/2 ∝ const =⇒ R ∝M−1/3. (4)

Thus as the mass of the degenerate core increases, its radius shrinks: a larger mass
is able to compress the degenerate gas more than a smaller mass.

However, there is a limit to this. If the radius is getting smaller at fixed mass,
then the mean density must be rising, ρ ∝ M/R3 ∝ M−2. Also recall that, as the
density and pressure in a degenerate gas rise, the mean electron energy must rise too,
since more electrons crowded into the same space have to occupy higher and higher
energy states. Eventually the mean electron energy is high enough for the electrons
to be relativistic, and the gas switches from being degenerate and non-relativistic to
degenerate and relativistic. We showed back in class 4 that the threshold density at
which this transition occurs is ρcr ≈ 3× 106µe g cm−3.

To get a sense of whether this is relevant for stars, as and example consider a
degenerate core with a mass of 2 M� composed mostly of C and O, which will
give µe ≈ 2 (because C and O both have 2 nucleons per electron). Plugging in

K ′1 = 1.0×1013 dyne cm−2 ( g cm−3)
−5/3

, and using n = 3/2, which gives ξ1 = 3.654
and −ξ21(dΘ/dξ)ξ1 = 2.714, we obtain R = 8900 km. The corresponding mean
density is 7 × 105 g cm−3 – and recall that this is the mean density. The central
density must be even higher. Clearly for objects above ∼ 1 M�, we are going to be
getting into the relativistic regime.

Thus let us consider the case for the opposite limit, an extreme relativistic degenerate
electron gas. In this case the equation of state is

P = K ′2

(
ρ

µe

)4/3

, (5)
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and we have an n = 3 polytrope with KP = K ′2/µ
4/3
e . Using the mass-radius relation

again, we see that for n = 3 the term that depends on R disappears, and we get
something that is a function of M only. Specifically, we get

M = Mch = − 4√
π
ξ21

(
dΘ

dξi

)
ξ1

(
KP

G

)3/2

(6)

=

√
3

23/2π

[
−ξ21

(
dΘ

dξi

)
ξ1

](
hc

GmH

)3/2
1

µ2
e

(7)

=
5.83

µ2
e

M�, (8)

where in the second step we replaced K ′2 with its formula in terms of elementary
constants. For µe = 2, this corresponds to a mass of 1.46 M�.

The physical implication is clear. Imagine considering CO cores of larger and larger
mass. At masses well below 1 M�, the core can be held up by electron degeneracy
pressure with no difficulty. As the mass increases, the radius shrinks and the density
and pressure go up. As it passes 1.2 or 1.3 M�, the electrons start to become
relativistic, and by 1.46 M�, they are completely relativistic. However, there is
nowhere to go beyond this. A core that is larger than this mass cannot be supported
by electron degeneracy pressure, because even in the ultra-relativistic limit, the
largest mass that can be supported is 1.46 M�. Thus if the core is above this limit,
electron degeneracy will fail to support it, and if there is no other source of support,
the core will begin to collapse.

A historical note: this limit is named after Subrahmanyan Chandrasekhar. As a
young man living in India, he was awarded a scholarship from the (at the time
British-controlled) government of India to study at Cambridge, and in 1930 he
boarded a ship to make the long trip from his home in Madras to England. The
trip would take 2-3 weeks. He derived the basic idea behind what we now call the
Chandrasekhar limit during that ship journey... and he was just 20 years old.

B. Implications of the Chandrasekhar limit: the onion structure

The existence of the Chandrasekhar limit means that stars that form carbon-oxygen
cores larger than about 1.4 M� cannot evolve into white dwarfs. Instead, electron
degeneracy pressure will be unable to support the core, and once it exceeds the
Schönberg-Chandrasekhar limit for its host star (i.e., once the core is too large a
fraction of the entire star’s mass), it must collapse further.

As it collapse it will heat up, and will eventually reach the ignition temperature for
the components of the carbon-oxygen core to burn. The set of nuclear reactions gets
fairly complex, but we can list some major ones:

12
6 C + 12

6 C A
20
10Ne + 4

2He (9)
12
6 C + 12

6 C A
23
11Na + 1

1H (10)
16
8 O + 16

8 O A
28
14Si + 4

2He (11)
16
8 O + 16

8 O A
31
15Si + 1

1H (12)

Following our rule that the temperature required to start up a reaction scales with
the Coulomb barrier, for carbon to burn requires temperatures of 5 × 108 K or
more, while oxygen burning requires a temperature of ≈ 2× 109 K. However, since
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the Chandrasekhar limit means that cores cannot become supported by electron
degeneracy if they are too massive, even this high temperature must eventually be
achieved.

Nuclear burning stabilises the core temporarily, but the reprieve gets shorter and
shorter as we march up the periodic table. This is for two reasons, one obvious
and one subtle. The obvious one is the curve of binding energy: heavy nuclei release
much less energy per unit mass when they fuse than lighter nuclei. Burning hydrogen
to helium releases 7 MeV per nucleon, and burning helium to oxygen releases about
1 MeV per nucleon. In contrast, burning O to Si releases only 0.3 MeV per nucleon.

The subtle reason is neutrino losses. As the temperature increases, more and more of
the photons inside the star have energies larger than the rest energy of two electrons.
Such photons can create electron-positron pairs when they interact with atomic
nuclei:

γ A e− + e+. (13)

The positrons immediately annihilate with electrons, and the great majority then
go back into being photons. However, some small fraction decay via

e+ + e− A νe + νe, (14)

forming an electron neutrino - anti-electron neutrino pair. The neutrinos then escape
them the star, carrying away their energy. As the core temperature rises, neutrino
losses get more and more severe, lessening the time for which a given nuclear reaction
can support the star.

As each element is used up in the core, a degenerate ash region builds up at the
centre of the star, surrounding by actively-burning regions above it. The ash core
then collapses until it is hot enough to ignite the next stage of nuclear burning. The
resulting stellar structure is an onion-skin, consisting of a core with one element
burning and a series of shells with ever lighter elements burning above it, all the way
through a very thin hydrogen burning shell on top of the star. Figure 4 shows an
example.

A. The final stages

This process of burning successively more massive elements sounds like it can’t go
on forever, and it can’t. We now consider the final fate of massive stars.

B. The iron core

Once the temperature in the core reaches around 3 × 109 K, photons have enough
energy to start disintegrating nuclei, and this happens to some silicon atoms:

28
14Si + γ A

24
12Mg + 4

2He. (15)

The resulting helium nuclei can then be added to other silicon atoms to build up
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Figure 4: The structural evolution of a 22 M� star, displayed in a style known as a Kippenhahn
diagram. The x axis is time until core collapse, measured on a logarithmic scale, so that the
fast stages at the end of the star’s life are spread out and visible. The y axis shows mass
coordinate within the star. Colours indicate the rate of nuclear energy generation or loss, with
blue indicating net nuclear energy generation (darker for more rapid energy generation) and
purple indicating net loss (mostly due to neutrino loss; darker is a higher loss rate). Hatched
regions indicate parts of the star that are convective. Source: Alex Heger’s website at Monash,
http://2sn.org/stellarevolution/explain.gif.
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heavier elements:

28
14Si + 4

2He A
32
16S (16)

32
16S + 4

2He A
36
18Ar (17)

36
18Ar + 4

2He A
40
20Ca (18)

40
20Ca + 4

2He A
44
22Ti (19)

44
22Ti + 4

2He A
48
24Cr (20)

48
24Cr + 4

2He A
52
26Fe (21)

52
24Fe + 4

2He A
56
28Ni (22)

Each of these reactions is exothermic, and as long as the He nuclei produced by pho-
todisintegration are eventually reassembled into other elements, the entire process
is net exothermic as well.

However, this is the end of the line, because 56
26Ni is right near the peak of the binding

energy curve, known as the iron peak. Adding another helium nucleus to make 60
30Zn

is an endothermic process, not an exothermic one. The 56
28Ni can eventually decay to

56
26Fe and release a little bit more energy, but the energy release is small and comes
mostly in the form of neutrinos that will not be captured. Moreover, this requires
weak reactions that take weeks. This is time the star does not have. The silicon
burning phase exhausts the available silicon in only ∼ 1 day, mostly due to the
extremely large neutrino losses incurred. The result is a core that consists solely of
iron peak elements, Fe and Ni.

C. Collapse

Once a core consisting of iron and nickel is produced, there is no more energy gen-
erating capacity available. The core will continue to collapse and heat up. At first
this collapse proceeds on a Kelvin-Helmholtz timescale, limited by the rate at which
energy can leak out of the core, but this very rapidly converts into a dynamical
collapse due to a series of instabilities.

The first is photodisintegration. At a temperature of 6− 7× 109 K, photons at the
tail of the energy distribution have enough energy to reverse the burning process of
adding He nuclei to produce heavier elements. Instead, photons stars photodisinte-
grating nuclei, converting them to less massive elements plus helium. The 52

26Fe and
56
26Fe are converted back into 4

2He, essentially taking back all of the energy that was re-
leased by nuclear burning. Each time one of these nuclei is reduced to its constituent
He atoms, 2 MeV per nucleon is removed from the radiation field. At slightly higher
temperatures, even the He can be photodisintegrated into is component protons and
neutrons, and this absorbs another 7 MeV per nucleon.

Second, at the high pressures found in the core, heavy nuclei can undergo reactions
of the form

I(A,Z) + e− A J (A,Z − 1) + νe,

i.e., nucleus I captures a free electron, which converts one of its protons into a
neutron. We’ll discuss why these reactions happen in a moment. However, for now
notice the effect: reactions of this sort reduces the number of electrons, and thus the
degeneracy pressure.

The combination of photodisintegration and electron capture change the number of
free particles, and thus we are in a regime much like the one we considered within
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the ionisation layers of stars. Any work done on the core (in this case by gravity)
goes not into increasing the temperature, but into changing the chemical state of
the gas. As a result, the adiabatic index is effectively γa < 4/3, which renders the
star unstable. As a result, the star goes into a runaway collapse.

D. Neutronisation

As the star collapses, its temperature rises, and ever more of its nuclei are photodis-
integrated into their constituent protons and neutrons, yet another chemical change
occurs: neutronisation. The physics is as follows. Protons are slightly lower mass
than neutrons, and for this reason neutrons are unstable outside an atomic nucleus –
this is why the universe contains protons without neutrons (in the form of hydrogen
atoms), but not the other way around. Free neutrons spontaneously decay via

nA p+ e− + νe (23)

with a lifetime of 614 seconds. The energy release is

∆E = (mn −mp)c
2 = 1.3 MeV. (24)

However, we are not in free space. We are considering a gas that is full of an
electron gas that is not incredibly relativistic and incredibly degenerate. Consider
the energetic implications. If a new electron is created by neutron decay, it cannot go
into a ground state, because the gas is degenerate, and the ground state is occupied.
It must instead go into the lowest energy unoccupied state.

We showed in our discussion of the equation of state that, for a degenerate gas, the
lowest energy unoccupied state has a momentum equal to the Fermi momentum,

pF =

(
3h3n

8π

)1/3

, (25)

where n is the number density. Since the electrons are extremely relativistic, the
corresponding energy is

EF = pF c =

(
3h3n

8π

)1/3

. (26)

If we set this equal to the energy difference ∆E between a proton and a neutron, we
find that the Fermi energy is larger once

n >
8π

3

(
∆E

hc

)3

, (27)

or, in terms of mass density,

ρ >
1

µe
nmH =

4π

3µe

(
∆E

hc

)3

= 1.6× 107/µe g cm−3. (28)

As the core collapses, it will exceed this threshold density, and as a result the free
neutrons produced when He is photodisintegrated cannot turn into protons. How-
ever, we must also consider the reverse process:

p+ e− A n+ νe. (29)
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From one standpoint, this reaction is highly endothermic, and for it to occur requires
electrons with > 1.3 MeV of energy. However, we have just demonstrated that,
thanks to the degeneracy of the gas in the collapsing core, there are plenty of such
electrons available.

From another standpoint this reaction is highly exothermic: each time it occurs,
it consumes 1.3 MeV, but by reducing the number of free electrons it reduces the
energy of the Fermi gas of degenerate electrons by more than 1.3 MeV. Can can
treat this as a chemical potential, and if we do so, then we can say that the total free
energy of the system is decreased rather than decreased each time a proton combines
with an electron to make a neutron, so the reaction can occur spontaneously. The
excess energy is carried off by the neutrino.

Note that this same argument is the reason why electron capture onto nuclei tends
to happen in iron cores prior to all the nuclei being photodisintegrated. Electron
captures that would be energetically unfavourable in free space, with zero chemical
potential, become energetically favourable thanks to the high chemical potential
associated with the degenerate electron gas.

In any event, the net result of this process is that the core of the star, as it collapses,
is converted mostly to neutrons. Outer layers of the star, where the pressure and
density are less, remain ordinary nuclei.

E. Neutron degeneracy

What happens next is somewhat hazy. As the collapse continues, on certain thing
is that eventually the neutrons become degenerate, and they provide a source of
pressure. Whether this is enough to support the core of the star depends on how
massive it is, but also on complex nuclear physics that is only poorly understood.

A degenerate neutron gas is significantly more complex than a degenerate electron
one. In a degenerate electron gas, there is degeneracy pressure, and that is the only
force. A gas of pure electrons would repel each other by Coulomb force, but in a
star they are mixed with an equal number of protons so the gas is overall electrically
neutral, and we can neglect the electric force. In a neutron gas, on the other hand,
there are strong nuclear forces that, when the neutrons are packed together at high
density, are non-negligible.

As a result, the equation of state of the matter post-neutronisation is significantly
uncertain, and we cannot easily calculate the resulting stellar structures. However,
we have significant empirical constrains, and we know that, in at least some cases,
the equation of state is very stiff, so that the neutronised matter all of a sudden
becomes very resistant to compression above some threshold density. When this
happens, the core of the star can stop collapsing suddenly, and the material above
the core that was falling will “bounce”. When this happens, the star can explode.
We will return to this topic in the next class.
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