
ASTR3007/4007/6007, Class 10: Low Mass Stellar Evolution 24 March

Our topic for today is the first of three classes about post-main sequence evolution. Today the
topic is low mass stars, with the line between low and high mass to be discussed in a bit.

I. Leaving the Main Sequence

A. Main Sequence Lifetime

Stars remain on the main sequence as long as their hydrogen fuel lasts. While on the
main sequence, their properties do not change much, but they do change some due
to the gradual conversion of H into He. As a result of this conversion, the hydrogen
mass fraction X decreases, while the helium mass fraction Y increases. As a result,
the mean atomic weight changes. Recall that
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Insterstellar gas out of which stars forms has roughly X = 0.74 and Y = 0.24 (in
contrast to X = 0.707 and Y = 0.274 in the Sun, which has processed some of its H
into He), which gives µ = 0.60. In contrast, once all the H has been turned into He,
X = 0 and Y = 0.98, which gives µ = 1.34.

In stars like the Sun that are radiative in their cores, the changes occur shell by shell,
so different shells have different compositions depending on their rate of burning. In
stars that are convective in their cores, convection homogenises the composition of
the different shells, so the entire convective core has a uniform composition.

The extent of convection makes a difference in how long it takes stars to leave
the main sequence. Stars with convection in their cores do not leave the main
sequence until they have converted all the mass in the convective region to He.
As the convective zone fills more and more of the star, the main sequence lifetime
therefore approaches the naively computed nuclear timescale tnuc = εMc2/L.

In contrast, stars with radiative cores, like the Sun, leave the main sequence once the
material in the very centre where nuclear burning occurs is converted to He. This
makes their lifetimes shorter than tnuc, with the minimum of tms/tnuc occurring near
1 M�, since that is where stars are least convective. This general expectation agrees
quite well with numerical results, as shown in Figure 1.

A general complication to this story is mass loss, which, for massive stars, can be
significant even while they are on the main sequence. The mass loss mechanism is
only generally understood. All stars have winds of gas leaving their surfaces, and
these winds become more intense for more massive stars. These numerical results
include a very approximate treatment of mass loss, but on the main sequence it is
only significant for stars bigger than several tens of M�.

B. Luminosity Evolution

Regardless of convection, the increase in µ results in an increase in luminosity. One
can estimate this effect roughly using an Eddington model. The Eddington quartic
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Figure 1: Top: numerically-
computed main sequence lifetime
(blue) and nuclear timescale (red)
versus stellar mass. Bottom: the
ratio of the two timescales.
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Thus the luminosity at fixed mass is proportional to (µβ)4.

For a low mass star, the first term in the Eddington quartic is negligible, so β ≈ 1
independent of µ, and thus L ∝ µ4. For very massive stars the first term in the
Eddington quartic dominates, which means that µβ ≈ constant, so L stays constant.
However, this will apply only to very, very massive stars. Thus in general we expect
L to increase with µ, with the largest increases at low masses and smaller increases
at high masses.

If an entire star were converted from H to He, this would suggest that its luminosity
should go up by a factor of (1.34/0.6)4 = 25 at low masses. Of course the entire star
isn’t converted into He except in fully convective stars that are uniform throughout,
and stars are fully convective only below roughly 0.3 M�. These stars have main se-
quence lifetimes larger than the age of the universe, so none have ever fully converted
into He. In more massive stars that have reached the end of the main sequence, µ
increases to 1.34 in their cores, but not elsewhere, so the mean value of µ and the
luminosity increase by a smaller amount.

This simple understanding is also in good agreement with the results of numerical
calculations. What is a bit less easy to understand analytically, but also happens, is
that stars’ radii swell, reducing their effective temperatures. The swelling is greatest
for the most massive stars, so, although they do not move very far in L, they move
a considerable distance in Teff . This effect is shown in Figure 2

II. The Red Giant Phase

A. The Schönberg-Chandrasekhar Limit

As stars reach the end of their main sequence lives, they accumulate a core of helium
that is inert, in the sense that no nuclear reactions are taking place, so the core
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Figure 2: A numerical calculation of the evolutionary tracks of 2 − 10 M� stars in the
HR diagram, from Paxton et al. (2011, http://adsabs.harvard.edu/abs/2011ApJS..192.
...3P). Stellar masses are as indicated by each track. Points on the tracks are as follows:
Red points indicate the ZAMS. Blue points indicate the exhaustion of hydrogen in the core.
Green points indicate when the core exceeds the Schönberg-Chandrasekhar limit and begins
contracting. Cyan points indicate where the track hits the Hayashi limit. Magenta points
indicate the onset of He burning. Brown points indicate the exhaustion of He. The sub-
giant branch is between the green (core contraction) and cyan (Hayashi limit) points. The
red giant branch (RGB) is between the cyan (Hayashi limit) and magenta (He burning)
points. The horizontal branch (HB) is between the magenta (He burning) and brown (He
exhaustion) points.

3

http://adsabs.harvard.edu/abs/2011ApJS..192....3P
http://adsabs.harvard.edu/abs/2011ApJS..192....3P


generates no energy. The consequences of this become clear if we examine the two
stellar structure equations that describe energy generation and transport:
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= qnuc (6)
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. (7)

Strictly we should write down the possibility for convective as well as radiative
transport in the second equation, but we will see in a moment that is not necessary.

If there is no nuclear energy generation in the He core, then qnuc = 0, which means
dL/dm = 0 in the core. Thus the flux through the core must be constant, and,
since there is no flux emerging from m = 0, this means that the core must have
L = 0. It immediately follows that dT/dm = 0 in the core as well – that is, the
core is isothermal. This is why we do not need to worry about convection: since
dT/dr = 0, the temperature gradient is definitely sub-adiabatic. Thus if there was
any convection going on in the core, it shuts off once the nuclear reactions stop due
to lack of fuel.

The star as a whole is not necessarily pushed out of thermal equilibrium by this
process because nuclear burning can continue in the material above the core that
still has hydrogen in it. This can be enough to power the star. However, as this
material depletes its hydrogen, it too becomes inert, adding to the mass of the helium
core. Thus the core grows to be a larger and larger fraction of the star as time passes.

We can show that this configuration of a growing isothermal core continue indefi-
nitely, and, indeed, must end well before the entire star is converted to He. This
point was first realized by Schönberg and Chandrasekhar in 1942, and in their hon-
our is known as the Schönberg-Chandrasekhar limit. There are several ways to
demonstrate the result, but the most straightforward is using the virial theorem.

We will apply the virial theorem to the isothermal core. It requires that

PsVc −
∫ Mc

0

P

ρ
dm =

1

3
Ωc, (8)

where Vc is the volume of the core, Mc is its mass, and Ωc is its binding energy.
The term Ps is the pressure at the surface of the core, and it is non-zero. This is
somewhat different than when applying the virial theorem to the star as a whole:
normally when we do so, we drop the surface term on the grounds that the surface
pressure of a star is zero. In this case, however, the core is buried deep inside the
star, so we cannot assume that the pressure on its surface is zero.

Evaluating both the integral and the term on the left hand side is easy. For
the term on the right hand side, we will just use our standard approximation
Ωc = −αGM2

c /Rc, where α is a constant of order unity that depends on the core’s
internal structure. For the integral, because the core is isothermal and of uniform
composition, with a temperature Tc and a mean atomic mass µc = 1.34, appropriate
for pure helium. Assuming the core is non-degenerate (more on this in a bit), we
have P/ρ = (R/µc)Tc, which is constant, so

PsVc −
R
µc
TcMc = −1

3
α
GM2

c

Rc

. (9)
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Re-arranging this equation, we can get an expression for the surface pressure:
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, (10)

where we have replaced the core volume with Vc = 4πR3
c/3.

An interesting feature of this expression is that, for fixed Mc and Tc, the pressure Ps
reaches a maximum at a particular value of Rc. We can find the maximum in the
usual way, by differentiating Ps with respect to Rc and solving:
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Plugging this in, the maximum pressure is

Ps,max =
37R4

210πα3G3

T 4
c

µ4
cM

2
c

. (13)

The physical meaning of this maximum is as follows: if one has a core of fixed mass
and temperature, and exerts a certain pressure on its surface, it will pick a radius
such that it is in equilibrium with the applied surface pressure. At low surface
pressure Rc is big. In such a configuration self-gravity, represented by the term
αGM2

c /(4πR
4
c) in the equation for Ps, is unimportant compared to internal thermal

pressure, represented by the term 3RTcMc/(4πµcR
3
c). As the external pressure is

increased, the radius shrinks, and the thermal pressure of the core goes up as R−3
c .

However, if the pressure is increased enough, the self-gravity of the core is no longer
unimportant. As self-gravity grows in importance, one has to decrease the radius
more and more quickly to keep up with an increase in surface pressure, because more
and more of the pressure of the core goes into holding itself up against self-gravity,
rather than opposing the external pressure. Eventually one reaches a critical radius
where the core is exerting as much pressure on its surface as it can. Any further
increase in the external pressure shrinks it further, and self-gravity gets stronger
faster than the internal pressure grows. The surface pressure therefore diminishes.

The outcome of this analysis is that, if the external pressure ever exceeds the max-
imum we have just calculated, the core cannot be in hydrostatic equilibrium. It
cannot satisfy the virial theorem. To see if this condition is met in a star with a he-
lium core, we can estimate the pressure exerted on its surface by the rest of the star.
To calculate this, we note that the envelope must obey the equation of hydrostatic
equilibrium, and that we can integrate this from the surface of the isothermal core
to the surface of the star:

dP

dm
= − Gm

4πr4
=⇒

∫ 0

Ps

dP = −Ps = −
∫ M

Mc

Gm

4πr4
dm. (14)

To get a lower limit on Ps, we note that r < R everywhere inside the star, so the
integrand

Gm

4πr4
≤ Gm

4πR4
. (15)
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Plugging this into the integral gives a lower limit as well:
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Since this is a lower limit on the pressure at the surface of the core, and we know
that the core can only sustain a certain maximum pressure at its surface, combining
this with our previous result gives a condition that the star must satisfy if it is to
remain in hydrostatic equilibrium:

GM2

8πR4
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210πα3G3

T 4
c

µ4
cM

2
c

(17)

To see when this is likely to be violated, consider the gas just above the surface of
the isothermal core. The temperature and pressure must change continuously across
the core edge, so the envelope pressure and temperature there obey Tenv = Tc and
Penv = Ps. Applying the ideal gas law to the envelope we have

Tenv = Tc =
Psµenv

Rρenv

, (18)

where µenv and ρenv are the mean molecular weight and density just above the en-
velope. The maximum temperature occurs when Ps is at its maximum value, and
substituting in Ps = Ps,max gives
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)
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(21)

As an extremely rough estimate we can also take ρenv ∼ 3M/(4πR3), and plugging
this in gives

T 3
c ≈

28α2G3
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cM

2
cM
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. (22)

Thus we have now estimate Tc terms of the properties of the star. Plugging this into
our condition for stability gives
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Doing the analysis more carefully rather than using crude approximations, the coef-
ficient turns out to be 0.37:

Mc

M
≤ 0.37

(
µenv

µc

)2

. (25)

Since µenv < µc, this implies that the core can only reach some relatively small
fraction of the star’s total mass before hydrostatic equilibrium becomes impossible.
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Using µenv = 0.6 and µc = 1.3, the limit is that Mc . 0.1M�. Once a star reaches
this limit, the core must collapse.

This limit applies to stars that are bigger than about 2 M�. For smaller stars, the gas
in the He core becomes partially degenerate before the star reaches the Schönberg-
Chandrasekhar limit. Since in a degenerate gas the pressure does not depend on
the temperature, the pressure can exceed the result we got assuming isothermal gas.
This allows the core to remain in hydrostatic equilibrium up to higher fractions of
the star’s mass.

B. The Sub-Giant and Red Giant Branches

Collapse of the core causes it to cease being isothermal, because it provides a new
source of power: gravity. The collapse therefore allows hydrostatic equilibrium to be
restored, but only at the price that the core shrinks on a Kelvin-Helmholtz timescale.

The core also heats up due to collapse, and this in turn heats up the gas around it
where there is still hydrogen present. This accelerates the burning rate in the shell
above the helium core. Moreover, it does so in an unstable way. The increase in
temperature is driven by the KH contraction of the core, which is not sensitive to the
rate of nuclear burning because none of the burning goes on in the collapsing core.
Thus the burning rate will accelerate past the requirements of thermal equilibrium,
and Lnuc > L.

Consulting the virial theorem, we can understand what this implies must happen.
Recall that we have shown several times that for stars with negligible radiation
pressure support,

Lnuc − L =
dE

dt
=

1

2

dΩ

dt
= −dU

dt
. (26)

Since Lnuc > L, the left hand side is positive, and we conclude that Ω must increase
and U must decrease. The potential energy −Ω ∝ GM2/R, and the thermal energy
U ∝ MT . Since the mass is fixed, the only way for Ω to increase is if R gets larger
(since this brings Ω closer to zero), and the only way for U to decrease is for the
mean temperature T to decrease.

Thus the unstable increase in nuclear burning causes the radius of the star to expand,
while its mean temperature drops. In the HR diagram, this manifests as a drop in
Teff . As a result, the star moves to the right in the HR diagram. The phase is called
the sub-giant branch, as illustrated in Figure 2.

In low mass stars the migration is slow, because the core is restrained from outright
collapse by degeneracy pressure. In more massive stars the migration is rapid, since
the core collapses on a KH timescale. For this reason we only see fairly low mass
stars on the sub-giant branch. More massive stars cross it too rapidly for us to have
any chance of finding one.

There is a limit to how red a star can get, called the Hayashi limit. This limit comes
from the opacity of the star: as the surface temperature drops below ∼ 4000 K, the
hydrogen is all neutral, and even metals with lower ionisation potentials start to be
come neutral. As a result, there are no free electrons, and the opacity drops like a
rock. Consequently, the star becomes transparent. This causes the outer layers of
the star to cool and fall inward, heating up again. The net effect is that there is a
minimum temperature stars can reach, called the Hayash limit.

As a post-main sequence star moves to the right in the HR diagram, it eventually
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bumps up against this limit. Since it can no longer deal with having Lnuc > L
by getting any colder at its surface, it instead has to increase its radius instead.
This allows the internal temperature and the gravitational binding energy to drop,
complying with energy conservation, and it also increase the luminosity, decreasing
the difference between Lnuc and L. This phase of evolution is known as the red giant
phase, and stars that are at low temperature and high and rising luminosity are
called red giants, as shown in Figure 2.

Red giants also display an interesting phenomenon called dredge-up. The high opac-
ity of the low-temperature envelope of the red giant guarantees that it will be con-
vectively unstable, and the convective zone reaches all the way down to where the
region where nuclear burning has taken place. It therefore drags up material that
has been burned, changing the visible composition of the stellar surface. Nuclear
burning destroys lithium and increases the abundance of C and N, and in red giants
we can observe these altered compositions.

III. The Helium Burning Phase

We showed earlier that the temperature of the isothermal core of the star is given ap-
proximately by

T 3
c ≈

28α2G3

36R3

µ4
cM

4
c ρenv

µenv

. (27)

As the star ascends the red giant branch, ρenv is dropping, but at the same time Mc is
rising as more and more mass is added to the core, and its 4th power-dependence beats
the first power dependence on the dropping ρenv. Thus the core heats up with time. Once
it violates the Schönberg-Chandresekhar limit, and it becomes powered by gravitational
contraction, it heats up even more. Thus the core is always getting hotter during the red
giant phase. Eventually this can produce a new source of energy: helium burning.

A. The Triple-α Reaction

Once hydrogen has burned to helium-4, we are at the first big peak in the curve
of binding energy per nucleon. The next big peak in the binding energy cure is at
carbon-12, which suggests that we should expect sufficiently hot stars to burn 4He
to 12C. However, how to actually get there is a challenge. The most obvious reaction
to start is

4
2He + 4

2He 
 8
4Be. (28)

However, the 8
4Be nucleus is violently unstable, and disintegrates in about 3× 10−16

s. Nor can we get out of the problem by hoping for a weak reaction to convert a
proton into a neutron, because there is no stable nucleus with an atomic number
A = 8.

Thus we need to jump past atomic number 8 in order to burn He. The solution to
this problem was found by Edwin Salpeter in 1952. If the density and temperature
get high enough, it may be possible for the 8

4Be nucleus to collide with another 4
2He

nucleus before it decays. Then it will undergo the reaction

8
4Be + 4

2He A
12
6 C + γ, (29)

and arrive at carbon-12, which is stable and is another peak of binding energy
per nucleon. This reaction is known as the triple-α process, because it effectively
involves a three-way collision between three helium-4 nuclei, which are also known
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as α particles. It is not a true three-way collision, because some extra time for the
third collision is provided by the lifetime of the 8

4Be nucleus, but it is nearly so.

In addition to the short-lived beryllium state, another factor that helps this reaction
go is the existence of a resonance. It turns out that there is an excited state of
the carbon-12 nucleus that coincides closely in energy with the energy of a helium-4
nucleus plus a beryllium-8 nucleus. This greatly enhances the rate at which the
second step in the reaction chain takes place. Indeed, were it not for this resonance,
stars would not produce significant amounts of carbon. This observation allowed
Fred Hoyle to predict the existence of the 12C resonance before it was actually
observed, based on the argument that stars must produce carbon since carbon is
observed to exist in abundance.

In environments where a significant amount of carbon builds up and the temperature
is high, carbon will occasionally capture an additional helium nucleus and jump to
the next peak in the binding energy curve, oxygen-16:

12
6 C + 4

2He A
16
8 O + γ. (30)

Thus stars in which the triple-α process takes place wind up containing a mixture
of carbon and oxygen, with the exact ratio depending on their age, density, and
temperature. Further He captures are also possible, but become increasingly unlikely
as one moves up in atomic number due to the increasing Coulomb barrier.

To figure out how helium burning works in stars, we must compute the rate at which
the triple-α process releases energy. The net energy released can be calculated by
comparing the mass of the carbon-12 nucleus to that of three helium-4 nuclei:

Q = (3mHe −mC)c2 = 7.28 MeV. (31)

The capture of a fourth He nucleus leading to oxygen-16 yields another 7.16 MeV.

To compute the reaction rate and its temperature-dependence, one can assume that
there is always a small amount of 8

4Be by equating the creation and destruction rates
– a process that we will not go through, but which yields an amount of 8

4Be that is
roughly independent of temperature. It does not depend on temperature because
the limiting factor in how much beryllium is present is the very rapid spontaneous
decay of the beryllium nucleus, not the Coulomb barrier to creating it. Calculations
show that the beryllium fraction is ∼ 1 part in 1010.

All the temperature-dependence in the reaction rate comes in the next step that
of converting beryllium-8 to carbon-12. As discussed a moment ago, the reaction
process for creating carbon-12 depends on a resonance. We will not go through the
details of how to calculate a resonant reaction in class, but we can sketch it out
briefly in order to understand the temperature-dependence of the reaction. Recall
from that the reaction rate is proportional to

R ∝
∫ ∞

0

σ(E)Ee−E/kBT dE. (32)

For a non-resonant reaction, we evaluated this by using a calculation of quantum
tunnelling to estimate σ(E). For a resonant reaction, however, the process is much
simpler: when there is a dominant resonance, essentially all reactions take place at
energies very close to the energy required to hit the resonance. For this reason we
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can treat the factor Ee−E/kBT as nearly constant over the resonance, and take it out
of the integral, yielding

R ∝ ERe
−ER/kBT

∫ ∞
0

σ(E) dE, (33)

where ER is the energy that the incoming particle must have in order to hit the
resonance. Then if we let

τR =
ER
kBT

, (34)

we have

R ∝ e−τR
∫ ∞

0

σ(E) dE. (35)

As with the non-resonant case, all the temperature-dependence is encapsulated in
the parameter τR, which varies as T−1.

The second step in the triple-α process relies on a resonance that is at an energy
ER = 379.5 keV above the energy of the beryllium-8 nucleus, so that is the energy an
incoming particle must have to trigger the resonance. (Note that the state in question
has an energy 7.95 MeV above the ground state of carbon-12, but the relevant
question is the difference between that energy and the energy of the beryllium-8
nucleus, which is much smaller.)

τR =
379.5 keV

kBT
= 44.0

(
108 K

T

)
. (36)

This is normalized to 108 K, which is about the ignition temperature for this reaction.
To go further in computing the reaction rate, we must recall that triple-α effectively
requires a three-way collision. For a single particle, we said that the rate at which it
encounters other particles is proportional to n. We can also view this as a probability:
the probability of a collision per unit time is proportional to n. For a three-body
process, we need to ask about the probability of two of them striking simultaneously
or nearly so (within the 10−16 s lifetime of the 8

4Be nucleus. The rate at which such
double-collisions occurs is proportional to the probability of one collision times the
probability of another: n2v2. Thus we expect a collision rate that varies as n2. We
will not walk through putting this in terms of a rate coefficient, but a straightforward
generalization of our existing calculation shows that the reaction rate per unit volume
varies as Rn3, while the kinetic part rate coefficient itself varies as T−3 – it is T−3

instead of the usual T−3/2 because the collision rate varies as n2 rather than n.

B. Evolutionary Paths of He Burning

Now that we understand how He burns, and that it will do so once the gas reaches
∼ 108 K, we can use that knowledge to deduce the next stages of evolution for low
mass stars.

1. Stars ∼ 1.8− 9 M�

First consider fairly massive stars, which turn out to be those larger than 1.8
M�. In such stars, as they ascend the RGB, the core temperature eventually
reaches ∼ 108 K, which is sufficient for He burning via the 3α process. At this
point He burning provides a new source of energy in the core, which halts its
contraction. Burning of hydrogen continues in the shell around the He core,
but, since it is no longer being driven out of equilibrium by the contraction of
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the He core, it slows down. This allows the star to cease expanding and instead
begin to contract, and the star’s luminosity to decrease. The result is that the
star comes back down from the red giant branch, and moves down and to the
left on the HR diagram – higher effective temperature, lower luminosity. This
is shown in Figure 2.

After a short period the luminosity stabilises, and since Lnuc < L, the star
responds by having its envelope contract. That contraction leaves the luminosity
unchanged, but moves the star to higher effective temperature. The motion is
roughly horizontal in the HR diagram, so this is known as the horizontal branch..
The duration of this phase is roughly 108 yr, set by the amount of energy that
is produced by a combination of He burning in the core and H burning in the
shell. It ends when the core has been entirely transformed into C and O.

2. Stars 1− 1.8 M�

For stars from 1−1.8 M�, the helium core becomes degenerate before it violates
the Schönberg-Chandrasekhar limit. This does not stop it from heating up, but
it does change what happens once the He ignites. Recall our discussion of run-
away nuclear burning instability. In a degenerate gas, the pressure and density
are not connected to the temperature. As a result, once a nuclear reaction stars
it heats up the gas, but does not cause a corresponding expansion that pushes
the temperature back down. This tends to cause the reaction rate to increase,
leading to a runaway. This is exactly what happens in the He core of a low mass
star. Once helium burning stars, it runs away, in a process called the helium
flash.

The helium flash ends once the nuclear reactions generate enough energy to
lift the degeneracy in the core, leading it to undergo rapid expansion. This
only takes a few seconds. Thereafter, the envelope responds in a way that is
essentially the opposite of what happens due to core collapse in the red giant
phase: it contracts and heats up. The star therefore moves down off the red giant
branch and across into the horizontal branch much like a more massive star, but
it does so rapidly and violently, on a KH timescale rather than something like
a nuclear timescale.

3. Stars Below 1 M�

For an even smaller star, the core never heats up enough to reach He ignition,
even once much of the core mass has been converted to He. In this case the
remainder of the envelope is lost through processes that are not completely
understood, and what is left is a degenerate helium core. This core then sits
there and cools indefinitely. This is a helium white dwarf. Stars in this mass
range therefore skip the AGB and PN phases we will discuss in a moment, and
go directly to white dwarfs.

C. The AGB and PN Phases

The He burning phase ends when the core has been completely converted to carbon
and oxygen. At that point, what happens is essentially a repeat of the red giant
phase. The core begins to contract, driving out-of-equilibrium He burning on its
surface. This forces the envelope to expand, so the star moves back to the left, and
lower temperature, on the HR diagram. Once the temperature drops to ∼ 4000 K
at the surface, the star is up against the Hayashi limit, and the envelope cannot
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cool any further. Instead, the star’s radius expands, leading its luminosity to rise
as well. The result is that the star climbs another giant branch, this one called the
asymptotic giant branch, or AGB for short.

As in the red giant phase, the cool envelope become convective, and this convection
drags up to the surface material that has been processed by nuclear burning. This is
called second dredge-up, and it manifests in an increase in the helium and nitrogen
abundances at the surface.

While the core is contracting and the envelope is expanding, the hydrogen burning
shell goes out as its temperature drops. However, contraction of the core halts once
it becomes supported by degeneracy pressure. At that point the hydrogen shell
reignites, and his leads to a series of unstable thermal pulses. Thermal pulses work
in the following cycle. As hydrogen burns, it produces helium, which sinks into a
thin layer below the hydrogen burning shell. This layer has no source of energy, so
it contracts and heats up. Once it gets hot enough, it ignites, and, as we showed in
the tutorial, nuclear burning in a thin shell is also unstable, because the shell can’t
expand fast enough to keep its temperature from rising. Thus all the accumulated
He burns explosively, driving the core of the star to expand and cool, just like in the
helium flash. This expansion also extinguishes the hydrogen burning. Once the He
is gone, however, the cycle can resume again.

This chain of reactions and explosive burning has two other noteworthy effects.
First, it temporarily produces neutron-rich environments, which synthesise elements
heavier than iron by neutron capturing onto elements. Second, it briefly churns
up carbon from the core and convects it to the surface. The result is that carbon
appears in significant quantities on the stellar surface, producing what is known as
a carbon star. This process is called third dredge-up.

AGB stars also have significant stellar winds, which drive large amounts of mass
loss from them. The details are not at all understood, but observationally we know
that mass loss rates can reach ∼ 10−4 M� yr−1. The mechanism responsible for
carrying the winds is likely radiation pressure, which is very significant in these
stars due to their high luminosities. These winds carry lots of carbon with them,
which condenses as the gas moves away from the stars and produces carbonaceous
dust grains in interstellar space. The winds also reduce the total mass of the star
significantly.

The winds eventually remove enough mass from the envelope that all nuclear burning
there ceases, and the star finally goes out. However, the core remains very hot, and,
once enough mass is removed, it is directly exposed and shines out the escaping gas.
The high energy photons produced by the hot core surface are sufficient to ionize
this gas, and the entire ejected shell of material lights up like a Christmas tree. This
object is known as a planetary nebula. (Even though it has nothing to do with
planets, the people who named it didn’t know that at the time, and through a very
low resolution telescope they look vaguely planetary.)

PN are some of the most visually spectacular objects in the sky, due to the variety
of colours produced by the ionised gas, and the complex shapes whose origins we do
not understand, as shown in Figure 3.

IV. White Dwarfs

The final state once the gas finishes escaping is a degenerate core of carbon and oxygen
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Figure 3: The Cat’s Eye Neb-
ula, a planetary nebula, as
seen in a combination of X-
ray emission (blue) and optical
emission (green and red). From
https://en.wikipedia.org/

wiki/Planetary_nebula.

with a typical mass of ∼ 0.6 M�. Lower mass stars that cannot ignite helium end up
with masses of ∼ 0.2−0.4 M�. We can understand the final evolution of these stars with
a simple model. The center of the star consists of a degenerate electron gas. However,
the pressure must go to zero at the stellar surface, so at some radius the pressure and
density must begin to drop, and the gas ceases to be degenerate. Thus the star consists
of a degenerate core containing most of the mass, and a non-degenerate envelope on top
of it. Within the degenerate part, thermal conductivity is extremely high, so the gas is
essentially isothermal – it turns out that a degenerate material acts much like a metal,
and conducts very well.

In the non-degenerate part of the star, the standard equations of hydrostatic balance and
radiative diffusion apply:

dP

dr
= −ρGM

r2
(37)

dT

dr
= − 3

4ac

κρ

T 3

L

4πr2
. (38)

Note that we have M and not m in the numerator of the hydrostatic balance equation
because we’re approximating that all of the star’s mass is in the inner, degenerate part.
We also approximate that all the energy lost from the star comes from the inner, degen-
erate part, so L = constant in the non-degenerate layer. Finally, note that the energy
conservation equation dl/dm = q does not apply, because we are not assuming that the
star is in thermal equilibrium – indeed, it cannot be without a source of nuclear energy.

We assume that the opacity in the non-degenerate part of the star is a Kramer’s opacity

κ = κ0ρT
−7/2 =

κ0µ

R
PT−9/2, (39)

where we have used the ideal gas law to set ρ = (µ/R)(P/T ). Substituting this into the
radiative diffusion equation gives

dT

dr
= − 3

4ac

1

T 3

(κ0µ

R
PT−9/2

)
ρ
L

4πr2
= − 3κ0µ

16πacR
Pρ

T 15/2

L

r2
. (40)
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If we now divide by the equation of hydrostatic balance, we obtain

dT

dP
=

3κ0µ

16πacRG
P

T 15/2

L

M
(41)

P dP =
16πacRG

3κ0µ

M

L
T 15/2 dT. (42)

We can integrate from the surface, where P = 0 and T = 0 to good approximation,
inward, and obtain the relationship between pressure and temperature∫ P

0

P ′ dP ′ =
16πacRG

3κ0µ

M

L

∫ T

0

T ′15/2 dT ′ =⇒ P =

(
64πacRG

51κ0µ

)1/2(
M

L

)1/2

T 17/4.

(43)
Using the ideal gas law ρ = (µ/R)(P/T ) again, we can turn this into

ρ =

(
64πacµG

51κ0R

)1/2(
M

L

)1/2

T 13/4. (44)

This relationship between density and temperature must hold everywhere in the ideal gas
region, and so we can apply it at the boundary between that region and the degenerate
region. The pressure in the non-degenerate region is just

Pnd =
R
µe
ρT, (45)

where we’ve used µ = µe because the electron pressure completely dominates. Just on
the other side of the boundary, in the degenerate region, the pressure is

Pd = K ′1

(
ρ

µe

)5/3

. (46)

Pressure, density, and temperature must change continuously across the boundary, so
the ρ that appears in these two expressions is the same. Moreover, since the core is
isothermal, T = Tc, where Tc is the core temperature. Finally, since the pressures must
match across the boundary, we have

R
µe
ρTc = K ′1

(
ρ

µe

)5/3

(47)

T =
K ′1

Rµ2/3
e

ρ2/3 (48)

=
K ′1

Rµ2/3
e

[(
64πacµG

51κ0R

)1/2(
M

L

)1/2

T 13/4

]2/3

(49)

L

M
=

64πacGK ′31 µ

51R4κ0µ2
e

T 7/2
c . (50)

We have therefore derived the luminosity of a white dwarf in terms of the temperature of
its degenerate core. Plugging in typical values gives

L/L�
M/M�

≈ 6.8× 10−3

(
Tc

107 K

)7/2

. (51)
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We can use this relation to infer how long white dwarfs will shine brightly enough for us
to see them. The internal energy of the white dwarf is just the thermal energy of the gas.
Since the electrons are degenerate they cannot lose energy – there are no lower energy
states available for them to occupy. The ions, however, are not degenerate, and they can
cool off. Since the ions are a non-degenerate ideal gas, their internal energy is

UI =
3

2

R
µI
MTc, (52)

and conservation of energy requires that

L = −dUI
dt

= −3

2

R
µI
M
dTc
dt
. (53)

It is convenient to recast this relation in terms of the luminosity. Using our temperature-
luminosity relationship we have

Tc =

(
51R4κ0µ

2
e

64πacGK ′31 µ

L

M

)2/7

(54)

dTc
dt

=
2

7

(
51R4κ0µ

2
e

64πacGK ′31 µ

1

M

)2/7

L−5/7dL

dt
(55)

Plugging this into the equation for L gives

L = −3

7

R15/7

µI
M5/7

(
51κ0µ

2
e

64πacGK ′31 µ

)2/7

L−5/7dL

dt
. (56)

Separating the variables and integrating from an initial luminosity L0 to a luminosity L
at some later time, we have∫ L

L0

L′−12/7 dL′ = −7

3

µI
R15/7

M−5/7

(
51κ0µ

2
e

64πacGK ′31 µ

)−2/7 ∫ t

0

dt′ (57)

−7

5

(
L−5/7 − L−5/7

0

)
= −7

3

µI
R15/7

M−5/7

(
51κ0µ

2
e

64πacGK ′31 µ

)−2/7

t (58)

L = L0

[
1 +

5

3

µI
R15/7

(
L0

M

)5/7(
51κ0µ

2
e

64πacGK ′31 µ

)−2/7

t

]−7/5

(59)

For long times t, we can drop the +1, and we find that L ∝ t−7/5. Since the white
dwarf birthrate in the galaxy is about constant, this immediately yields an important
theoretical prediction. The number of white dwarfs we see with a given luminosity should
be proportional to the amount of time they spend with that luminosity, which we have
just shown varies as t ∝ L−5/7. Thus luminous white dwarfs should be rare because
they cool quickly, while dimmer ones should be more common because they cool more
slowly, and the ratio of the number of white dwarfs with luminosity L1 to the number
with luminosity L2 should vary as (L1/L2)−5/7. Observations confirm this result.

We can also define a characteristic cooling time tcool as the time it takes a white dwarf’s
luminosity to change significantly. This is simply the time required for the second term
in parentheses to become of order unity, which is

tcool ≈
3R15/7

5µI

(
51κ0µ

2
e

64πacGK ′31 µ

)2/7(
M

L0

)5/7

≈ 2.5× 106

(
M/M�
L/L�

)5/7

yr. (60)

Thus we conclude that white dwarfs with luminosities of L ∼ 104L�, typical of the
planetary nebula phase, should last only a few thousand years, while those with much
lower luminosities ∼ L� can remain at that brightness for of order a million years.
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