
ASTR3007/4007/6007: Part I: Stars Semester 1, 2017

Problem set 2
Due Thursday, 23 March, 2017

1. Temperature Profiles of Stars. [20 points]
Consider a star with a density distribution ρ = ρ0(R/r), where R is the star’s outer
radius. The star’s luminosity is L, and all of its energy is generated in a small region near
r = 0. Outside that region the luminosity L(m) transmitted through each mass shell is
constant.

(a) [5 points] Find the surface temperature of the star Ts.

(b) [5 points] Assuming the opacity is dominated by electron scattering at all radii,
solve for the temperature as a function of radius inside the star, excluding the energy-
generating region. (Hint: the algebra will be easier if you rewrite the luminosity in
terms of Ts.)

(c) [5 points] Repeat the calculation from part (b) assuming the opacity is described
by a Kramers law approximation with κ = κ0ρT

−7/2.

(d) [5 points] Make a plot of log(T/Ts) versus log(r/R) for your answers to parts (b)
and (c), using the numerical values κes = 0.34 cm2 g−1, κ0ρ0T

−7/2
s = 108 cm2 g−1,

and ρ0R = 1011 cm.

2. The Brown Dwarf Boundary. [10 points]
Consider a star of Solar composition with density profile ρ = ρc(1 − r/R). As part of
problem 3 on problem set 1, we computed the central density and pressure, ρc and Pc in
terms of M and R.

(a) [5 points] Assuming that the gas at the centre of the star is non-degenerate, non-
relativistic, and that radiation pressure is negligible, derive a maximum central tem-
perature for a given mass.

(b) [5 points] “Stars” with masses below a certain value never reach central tempera-
tures high enough to start burning hydrogen; such objects are called brown dwarfs.
Estimate the mass that separates stars from brown dwarfs, assuming H burning
begins at T = 107 K. A more realistic density distribution puts this boundary at
around 0.075 M�; how does this compare to your simple estimate?

3. Classical Nuclear Reactions. [20 points]
In this problem we will make crude estimates for nuclear reaction rates using classical
mechanics, in order to demonstrate why quantum effects are necessary to explain nuclear
energy generation in the Sun. We will consider the first reaction in the pp-chain,

p+ p→ 2D + e+ + ν.

(a) [5 points] What is the Coloumb (electromagnetic) potential energy per proton
when the two protons are separated by a distance r? Assuming that the strong
nuclear force causes the potential to become negative for r < r0 ' 2 fm, what is the
maximum potential energy? This is called the Coulomb barrier. Express your result
in MeV.

(b) [5 points] The rate at which a proton experiences collisions with other protons
is nσv, where n is the number density, σ is the cross-section, and v is the proton



velocity. Take v to be the mean proton velocity, and compute σ assuming that the
protons must get within a distance r0 of one another to react. Estimate the collision
rate using conditions appropriate to the centre of the Sun: proton density n ' 1026

cm−3 and temperature T = 1.6× 107 K.

(c) [5 points] The rate at which collisions penetrate the Coulomb barrier is roughly
nσvPpenetrate, where, in the absence of quantum tunnelling, Ppenetrate is the proba-
bility that the energy of the collision is sufficient for the protons to penetrate the
Coulomb barrier. Compute this probability, assuming that the protons follow a
Maxwellian velocity distribution

n(E) dE =
2n

π1/2(kBT )3/2
E1/2e−E/kBT dE,

where E is the proton energy. (Hint: integrate by parts and make some substitutions,
and then use the approximation that

∫ ∞
x0

e−x
2

dx ≈ e−x
2
0

π1/2x0

for x0 � 1.)

(d) [5 points] Using your result from part (c), estimate the reaction rate for a proton at
the centre of the Sun. Given this reaction rate, and the fact that there are ∼M�/mp

protons in the Sun, how many nuclear reactions could have occurred during the Sun’s
∼ 1010 yr lifetime if there were no quantum tunnelling?

4. Convection with Composition Gradients. [20 points]
In deriving the stability condition and the Brunt-Väisäla frequency for convective motions,
we assumed that the mean molecular weight µ was constant. However, in evolved stars
there can be composition gradients (due to differing amounts of nuclear burning as a
function of radius), so that µ varies with r. Composition gradients are also present in
other convective systems, such as planetary atmospheres and the Earth’s ocean, where
salinity and thus mean molecular weight varies with depth. In this problem we will extend
our analysis of convective stability to gas with a composition gradient.

(a) [10 points] Derive the adiabatic temperature gradient (dT/dr)ad in an ideal gas
where the composition varies with radius, i.e., where dµ/dr 6= 0. Give your answer
in terms of g and dµ/dr.

(b) [10 points] As for a system with uniform composition, the gas is stable against
convection only if dT/dr > (dT/dr)ad. In most situations dµ/dr < 0, since material
of lower particle mass tends to be found at higher altitude. Does a value of dµ/dr >
0 make a system more or less stable against convection? In other words, is the
temperature gradient required to start convection shallower or steeper in a system
with dµ/dr > 0 than in one with dµ/dr = 0? Give a physical interpretation of your
answer, as well as a mathematical justification.

5. Luminosity Variation from Stellar Pulsation. [ASTR 4007/6007 only; 15
points]
In this problem we will make a crude estimate of how the luminosity variation of a pul-
sating star is related to the variation in its radius. This provides a way of estimating
the amount by which the radius is changing for a star that we observe to pulse. We will
consider a star whose unperturbed state consists of a luminosity L0, a radius R0, and a
surface temperature T0.



(a) [5 points] The star’s luminosity is related to its radius and surface temperature
by L = 4πR2σT 4. Suppose that, as a result of pulsation, the radius changes by an
amount δR and the surface temperature changes by an amount δT . Estimate the
resulting change in luminosity δL. You may assume that δR, δT , and δL are all
small, so the equations can be linearised.

(b) [5 points] Assume that the star is composed of an adiabatic, ideal gas with adiabatic
index γa, and that the expansion and contraction of the star are homologous. Using
these assumptions, derive a relationship between δR and δT .

(c) [5 points] Use the result of part (b) to eliminate δT from your answer to part (a),
and arrive at an estimate for the relationship between δL and δR. Based on this
result, does the peak luminosity of a pulsating star with γa = 5/3 occur when its
radius is at its maximum value or its minimum value?


