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ABSTRACT
The conservation of stellar actions is a fundamental assumption in orbit reconstruction studies in the Milky Way. However,
the disc is highly dynamic, with time-dependent, non-axisymmetric features like transient spiral arms and giant molecular
clouds (GMCs) driving local fluctuations in the gravitational potential on top of the near-axisymmetric background. Using
high-resolution magnetohydrodynamic simulations that incorporate gas dynamics and star formation, we quantify the rate at
which these effects drive non-conservation of the actions of young stars from Myr to Gyr timescales. We find that action evolution
is well described as a logarithmic random walk, with vertical action evolving more rapidly than radial action; the diffusion rate
associated with this random walk is weakly dependent on the stellar birth environment and scales approximately linearly with
the galactic orbital frequency at a star’s position. The diffusion rates we measure imply a fundamental limit of ∼ 100 Myr as the
timescale over which stellar orbits can be reliably reconstructed using methods that assume action conservation. By comparing
diffusion rates for younger stars to those measured for an older and more vertically-extended control population, we conclude
that radial action evolution is driven primarily by transient spiral arms, while vertical action evolution is driven by gravitational
scattering off gaseous structures. Our results have significant implications for galactic archaeology and disc dynamics studies,
necessitating a closer look at the timescales over which actions are assumed to be conserved in the disc.

Key words: Galaxy: kinematics and dynamics – astrometry

1 INTRODUCTION

Understanding the dynamical evolution of stellar orbits is fundamen-
tal to reconstructing the past history of galaxies. The use of actions
– adiabatic invariants in an axisymmetric potential – has been quite
successful for this purpose in galactic studies. In the Milky Way,
action-space analyses have been widely employed in studies iden-
tifying merger remnants and accreted substructures, as well as in
globular cluster studies (Helmi et al. 2018; Myeong et al. 2019;
Feuillet et al. 2020; Lane et al. 2022; Malhan et al. 2022; Limberg
et al. 2022; Callingham et al. 2022; Chen & Gnedin 2022; Cabr-
era Garcia et al. 2024). While these approaches have been highly
effective in the Galactic halo, where the environment is relatively
dynamically quiet, applying action-based reconstruction methods to
the disc presents additional challenges.

The orbits of stars within the galactic disc are shaped by both ex-
ternal perturbations (Antoja et al. 2018; Bland-Hawthorn et al. 2019;
Li 2021; Antoja et al. 2023; Darragh-Ford et al. 2023; Frankel et al.
2023) and by secular internal processes such as interactions with
giant molecular clouds (GMCs), spiral arms and the bar (Sellwood
& Binney 2002; Roškar et al. 2012; Vera-Ciro et al. 2014; Mackereth
et al. 2019; Tremaine et al. 2023). These perturbations lead to de-
viations of the gravitational potential away from the time-invariant,
axisymmetric state required for strict action conservation. Despite
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these complexities, efforts have been made to use actions for disc
studies (Trick et al. 2019; Coronado et al. 2020, 2022).

One prominent application of such methods is in cluster recon-
struction studies that employ traceback techniques to infer the past
positions and birth environments of stars. These methods typically
assume a static, axisymmetric Galactic potential and rely on the
conservation of stellar actions to extrapolate stellar trajectories back-
ward in time. Numerous studies have used traceback methods to
reconstruct the dispersal history of open clusters in the Milky Way
disc, particularly in the Solar neighbourhood (Miret-Roig et al. 2018,
2020, 2022; Galli et al. 2018; Crundall et al. 2019; Squicciarini et al.
2021; Heyl et al. 2021, 2022; Schoettler et al. 2020, 2022; Ma et al.
2022; Zucker et al. 2022; Galli et al. 2023; Couture et al. 2023; Pelko-
nen et al. 2024). However, the validity of these reconstruction studies
depends critically on the assumption of individual stellar actions
remaining conserved over the timescales involved.

Most existing studies of action evolution over time focus on the
global distribution of actions, particularly in the context of radial
migration and dynamical heating. Simulations have explored how
secular evolution redistributes angular momentum and heats the disc
over gigayear timescales (Roškar et al. 2008; Vera-Ciro et al. 2014;
Monari et al. 2016; Vera-Ciro & D’Onghia 2016; Halle et al. 2018;
Mikkola et al. 2020; Okalidis et al. 2022). Observational studies, on
the other hand, study action evolution by comparing the present-day
properties of stars of different ages, often in the context of, again,
disc heating and radial migration (Frankel et al. 2018; Ting & Rix
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2019; Frankel et al. 2020). However, these studies primarily describe
population-wide trends, while what matters for reconstruction studies
is the time evolution of the individual stars’ actions. This is analogous
to the distinction between the microscopic motion of gas molecules
and the macroscopic evolution of temperature in a thermodynamic
system – such a system may have a completely constant, predictable
temperature, yet it may still be impossible to backtrace the trajectory
of any individual molecule over any substantial period.

To quantify the time evolution of individual stars’ actions, action
diffusion provides a useful statistical framework. Prior studies have
explored the long-term evolution of action due to scattering by spiral
arms and bar-driven resonances (e.g., Solway et al. 2012; Daniel &
Wyse 2015; Halle et al. 2018; Kawata et al. 2021). However, short-
term diffusion, particularly in newly formed stars, remains largely
unexplored. Fujimoto et al. (2023) investigated GMC-driven scatter-
ing of stars on short timescales but did not compute actions, leaving
open questions about perturbations in action space. Moreover, ex-
isting studies of action conservation have largely been conducted
in 𝑁-body simulations, which lack gas dynamics and star formation
(e.g., Solway et al. 2012; Vera-Ciro & D’Onghia 2016; Mikkola et al.
2020). Stars form in dense, turbulent gas clouds (Federrath & Klessen
2012; Krumholz 2014), where gravitational potential evolves rapidly
due to gas accretion, stellar feedback and local dynamical instabili-
ties. Hence, the initial conditions of the stars are inherently linked to
an evolving potential, making a self-consistent treatment of gas dy-
namics essential for studying early action evolution. Hydrodynamic
plus N-body simulations that include self-gravity, radiative cooling
and galactic scale gas flows, such as spiral arms and galactic shear,
are the ideal tool for the purpose of exploring these effects.

These considerations motivate the present study, in which we use
a high-resolution magnetohydrodynamics (MHD) simulation of a
Milky Way-like disc galaxy to study the evolution of stellar actions.
By computing these at high temporal resolution, we aim to mea-
sure the rate of action diffusion and characterise the timescales over
which the actions deviate from conservation in the disc, providing
insights into the reliability of traceback methods that rely on these
assumptions. The remainder of this paper is organised as follows.
In section 2, we describe the galactic simulations used in this study,
section 3 details our method used to calculate stellar actions and
introduces key notation for studying their time evolution, section 4
presents our main results, including the distribution of actions, their
temporal evolution, and dependence of the evolution on stars’ birth
environment, and in section 5 we discuss the broader implications
of our findings before summarising our conclusions. The second
paper in this series will examine the use of actions to identify and
reconstruct dissolved star clusters.

2 SIMULATION

We analyse simulations of an isolated Milky Way-like disc galaxy
with flocculent spiral structure and no bar taken from Zhang et al.
(2025, hereafter Z25). This simulation is an extension of the full
galaxy zoom-in simulations described by Wibking & Krumholz
(2023) and Hu et al. (2023) (hereafter WK23 and H23, respectively).
Here, we summarise the details of this simulation and direct readers
to WK23, H23 and Z25 for further information.

2.1 Numerical method

The simulations solve the equations of ideal magnetohydrodynamics
using the gizmo code (Hopkins 2015, 2016; Hopkins & Raives 2016),

with gas and metal line cooling implemented via the GRACKLE
library (Smith et al. 2017) (see Appendix A in WK23 for justification
of this choice). The treatment for star formation in the simulation is
as follows: for gas particles with density 𝜌g exceeding a critical
threshold 𝜌crit, the local star formation density rate is calculated as

¤𝜌SFR = 𝜖ff
𝜌g
𝑡ff

, (1)

where 𝜖ff is the star formation efficiency, 𝜌g is the local gas density
and

𝑡ff =

√︄
3𝜋

32𝐺𝜌
(2)

is the local gas free-fall time. We set 𝜖ff = 0.01, consistent with the
mean value observed across a wide density range (Krumholz et al.
2019). The critical threshold density 𝜌crit depends on the simulation
resolution; as we discuss below, the simulation takes place in two
stages, a low-resolution one to allow the galaxy to settle to statistical
steady-state, followed by a higher resolution, shorter stage to capture
more detail. During the initial phase 𝜌crit = 100𝜇𝑚H cm−3, where
𝑚H is the mass of a hydrogen atom and 𝜇 = 1.4 is the mean mass
per H nucleus for gas of standard cosmic composition; this value
is chosen such that, for gas of density 𝜌crit and at the equilibrium
temperature implied by our cooling curve, the Jeans mass is nearly
equal to the simulation mass resolutionΔ𝑀 = 859.3 M⊙ – see WK23
for details. During the second stage of the simulations, we increase
𝜌crit to 1000𝜇𝑚H cm−3, which roughly maintains this condition at
the increased resolution. To avoid excessively small time steps and
limit the computational expense in following very dense regions,
we increase 𝜖ff to 106 for gas particles with 𝜌g ≥ 100𝜌crit, forcing
them to be converted instantly into collisionless star particles. Star
formation is implemented stochastically, such that the probability of
a gas particle being converted to a star particle in a time step of size
Δ𝑡 is

𝑃 = 1 − exp(−𝜖ffΔ𝑡/𝑡ff). (3)

See Z25 for further details.
Once star particles form, they interact with the galactic environ-

ment only through gravity and feedback. Since the resolution is high
enough during the high-resolution simulation phase that each star
particle does not represent an entire cluster sampling the full initial
mass function (IMF), we cannot use the gizmo treatment of IMF-
integrated stellar feedback. Instead, stellar feedback is determined
on a star-by-star basis by forming each star particle from a number
of individual stars, stochastically drawing a synthetic stellar popula-
tion from a Chabrier (2005) IMF using the slug stellar population
synthesis code (da Silva et al. 2012; Krumholz et al. 2015). The
evolution of each star follows the Padova stellar tracks (Bressan et al.
2012). The star’s atmosphere is modelled using slug’s “starburst99”
spectral synthesis method (Leitherer et al. 1999). This provides us
with each star’s ionising luminosity as a function of its mass and age,
which is injected back into the simulation using a Strömgren volume
method. We also determine which stars end their lives as supernovae
or asymptotic giant branch (AGB) stars, and inject feedback from
these events following the recipe for handling partially-resolved SNe
described by Hopkins et al. (2018). For full details on the treatment
of the feedback see Armillotta et al. (2019). The mass and metal
return in each time step for each star particle are based on its mass
and evolutionary stage, following Sukhbold et al. (2016) for type II
supernovae, Karakas & Lugaro (2016) for AGB stars, and Doherty
et al. (2014) for super-AGB stars.

MNRAS 000, 1–14 (2025)
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2.2 Initial conditions

As mentioned above, the simulation takes place in two stages. The
first, described by WK23, begins from the isolated Milky Way-analog
AGORA project initial conditions (Kim et al. 2016) and run using
an IMF-integrated treatment of feedback; Z25 then use the 600 Myr
snapshot from this simulation as the initial condition for their sim-
ulations. This snapshot exhibits a stable gas fraction similar to that
of the present-day Milky Way. The WK23 simulations have gas par-
ticles with a mass of 859.3 M⊙ , dark matter particles with a mass
of 1.254 × 105 M⊙ , and stellar disc and bulge particles with a mass
of 3.4373 × 103 M⊙ . Star particles formed during the simulation
inherit the mass of the gas particle from which they were created. To
enhance resolution from the original Δ𝑀 = 859.3 M⊙ to 286.4𝑀⊙ ,
Z25 first run without enhancing the resolution for 100 Myr, but using
the star-by-star feedback prescription, to generate a realistic popula-
tion of stellar particles for feedback and metal enrichment. They then
increase the resolution using the particle splitting method described
and used in H23. As shown in Fig. 3 of Z25, the star formation rate
initially spikes due to the resolution increase, but it then stabilises
within approximately 100 Myr.

We begin the analysis we describe below at this point, which for
the purposes of this paper we define as 𝑡 = 0. The simulations run
for 464 Myr from that point, with output snapshots written at 1 Myr
intervals, providing us with a data set of this duration and ≈ 300 M⊙
mass resolution to study the star particle dynamics. At 𝑡 = 464 Myr,
we have approximately 1.32 million star particles. In Figure 1 we
show 1% of the total star sample, selected at random. The greyscale
background shows the gas surface density, with darker regions indi-
cating higher densities. The overlaid stars are colour-coded according
to their ages, as indicated by the accompanying colour bar, showcas-
ing the spatial distribution and age variation of the stellar population.
It is important to note that these “star particles” do not represent
individual stars. Simulations resolving down to individual stars that
sample the entire IMF are not feasible at present. However, they are
small enough aggregates of stars that we can analyse them to ex-
amine the dynamical information that they retain about their birth
properties as if they were individual stars.

3 CALCULATING STELLAR ACTIONS

This section outlines how we calculate stellar actions from simulation
outputs and study their evolution. A basic outline of our procedure
is that we use the potential output for each particle to build an ax-
isymmetric model for the galaxy’s gravitational potential, and then
use the time-dependent position and velocity of each star particle to
compute its actions. The following subsections provide full details
of the method.

3.1 Gravitational potential profile

To accurately model the time-dependent gravitational potential of
the galaxy, we first define an appropriate reference frame. We cannot
simply use the simulation frame because, although the simulation
is initialised with the galactic plane at rest at 𝑧 = 0 and cylindri-
cally symmetric about the origin, over the duration of the simulation
supernova explosions drive an asymmetric wind off the galaxy, im-
parting a non-negligible momentum to the remaining gas. To correct
for this shift, and thereby ensure that we are calculating our actions
with respect to the rest frame of the galaxy, we calculate the centre
of mass (COM) of cold gas particles (those with temperature ≤ 104
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Figure 1. A snapshot of the simulation at 𝑡 = 464 Myr (the final snapshot).
We show the log of the gas surface density in greyscale in the background,
with darker shades corresponding to higher densities. Overlaid on this is a
random subsample representing 1% of the total star sample we use for our
analysis, with the colour of each particle indicating its age as shown by the
accompanying colour bar.

K) at each snapshot; we plot the resulting position in 𝑧-direction as a
function of time in Figure 2. We observe a velocity ∼ 2 km/s in the 𝑧

direction and ∼ 1 km/s in the 𝑥 and 𝑦 directions, and this movement
of the COM of the cold gas is consistent with what we expect: the
simulation produces galactic winds with a mass flux ∼ 1 𝑀⊙ /yr and
a velocity of a few hundred km/s (WK23), so over the simulation
timescale of ∼ 500 Myr winds eject ∼ 5 × 108𝑀⊙ , roughly 10% of
the total cold gas mass ≈ 4.7 × 109𝑀⊙ at the start of the simulation.
If the winds were completely one-sided, this would therefore be suf-
ficient to accelerate the gas disc to several tens of km s−1, but since
the winds are only somewhat asymmetric some of the momentum
cancels. In addition, gravitational forces transfer some of the mo-
mentum from the gas to the stellar disc, which is roughly ten times
as massive. Consequently, the net velocity is reduced to only a few
km/s. The 𝑧 velocity is greater than the 𝑥 and 𝑦 velocities due to the
greater escape of winds normal to the galactic plane.

The combination of lower velocity in the 𝑥𝑦 plane and the much
larger extent of the disc in this direction mean that the displacements
in the plane can be safely ignored. By contrast, this is not true in the
𝑧 direction, with the displacement of ≈ 0.8 kpc over the course of
the simulation is several times larger than the scale height of the thin
disc. To remove this drift, we carry out a linear fit to the 𝑧 position
as a function of time, which we show as the straight orange line
in Figure 2. This line defines a time-dependent COM position and
constant velocity for the galaxy relative to the simulation frame, and
our first step in computing the galactic potential is therefore to shift
all particle positions and velocities for all time snapshots into this
frame. However, we note that the linear fit is clearly not a perfect
representation of the actual COM position as a function of time,
which is not surprising, since acceleration of the galaxy by recoil
from galactic winds applies a stochastically-varying acceleration.

MNRAS 000, 1–14 (2025)
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Figure 2. Coordinates of the centre of mass of cold gas in the simulation
with time in the 𝑧 direction. We also show a least-squares linear fit to the 𝑧

position (solid line), the functional form for which is provided in the legend
(with position in units of pc and times in units of Myr); the 𝑅2 value for the
fit is 0.94.

This potentially complicates the situation, as it suggests the absence
of an inertial frame in which the galactic plane remains at rest.
Such a scenario foreshadows the non-conservation of stellar actions,
which would be a fundamental issue since most analyses rely on the
assumption of a stable inertial frame for dynamical calculations (e.g.,
Bovy 2015; Sanders & Binney 2016). We return to this point below.

Having established our reference frame, we are now ready to com-
pute our best estimate of an azimuthally symmetric galactic potential
from large but sparse samples at our star particle positions. To do so,
for each simulation snapshot we define a grid in cylindrical coordi-
nates that spans the entire galaxy, with radial coordinates extending
from 0.1 pc to 20 kpc, a vertical range of ±1 kpc, and a resolution
of 1 pc in both directions. The grid in the azimuthal direction has a
resolution of 2𝜋/25 radians. For each point on the defined grid, we
identify the nearest-neighbour particle and assign its potential value
(which is computed by the gizmo gravity solver) to that grid point.
We then average over the 𝜙 direction to create an axisymmetric 2D
potential grid in (𝑅, 𝑧). Figure 3 shows some sample slices through
the 2D potential we derive for one time snapshot.

3.2 Action calculation

Our next step is to calculate the actions of each star. Performing
this calculation in full generality requires computationally-expensive
numerical integration. However, we are solely concerned with stars
that are both young – age ≲ 0.5 Gyr – and near the galactic plane
– root mean square height ⟨𝑧2⟩1/2 < 200 pc, and |𝑧 | < 1 kpc for
all stars. For stars with these properties, the epicyclic approximation,
whereby we decompose stellar orbits into independent radial and
vertical oscillations about a guiding center, is highly accurate (Hunt
& Vasiliev 2025). Quantitatively, Solway et al. (2012) find that, even
in the presence of spiral structures, for stars up to 1 kpc off the plane,
and over a timescale of a few Gyr, vertical actions computed using
the epicyclic approximation change by 20.7%, compared to 15.6%
with a more exact calculation; this small difference confirms that
the epicyclic approximation is appropriate for our purposes. This is
advantageous, because in the epicyclic approximation actions are far
cheaper to compute.

Given these considerations, we proceed using the expressions for
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Figure 3. Variation in potential Φ with 𝑅 at sample 𝑧-values (top), and with
𝑧 at sample 𝑅 values (bottom), for the 𝑡 = 100 Myr simulation snapshot.

the epicyclic approximation provided by Binney & Tremaine (2008).
In this approximation, stellar oscillations are characterised by the
radial (𝜅) and vertical (𝜈) epicyclic frequencies, while the azimuthal
rotation about the galactic centre is defined by the 𝑧-component of
angular momentum 𝐿𝑧 . The guiding centre radius 𝑅𝑔 is related to
the angular momentum 𝐿𝑧 as

|𝐿𝑧 | = 𝑅2
𝑔Ω(𝑅𝑔) (4)

where

Ω(𝑅) =
√︄

1
𝑅

𝜕Φ

𝜕𝑅

����
𝑅,𝑧=0

(5)

is the circular frequency. The epicyclic frequencies are related to the
potential as

𝜅2 =

(
𝑅
𝜕Ω2

𝜕𝑅
+ 4Ω2

)
(𝑅=𝑅𝑔 ,𝑧=0)

(6)

𝜈2 =
𝜕2Φ

𝜕𝑧2

����
(𝑅=𝑅𝑔 ,𝑧=0)

. (7)

We compute 𝑅𝑔, 𝜅 and 𝜈 for each star as follows. We first use the
star’s radial position 𝑅 and azimuthal velocity 𝑣𝜙 to evaluate its
angular momentum 𝐿𝑧 = 𝑅𝑣𝜙 , and then to use Equation 4 together
with the galactic rotation curve Ω(𝑅) to evaluate the star’s guiding
radius 𝑅𝑔. Once 𝑅𝑔 is known, we can then evaluate 𝜅(𝑅𝑔) and 𝜈(𝑅𝑔)
from Equation 6 and Equation 7 using the known rotation curve and
potential. The primary challenge to executing this strategy is that
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the gravitational potential from the simulation is discrete and subject
to numerical noise, and thus considerable care is required when
evaluating the derivatives that appear in the expressions above. We
provide a detailed description of our full methodology in section A.

Finally, we find expressions for radial, vertical, and azimuthal
actions in the epicyclic approximation. In an axisymmetric potential,
the azimuthal action 𝐽𝜙 is defined as

𝐽𝜙 =
1

2𝜋

∮
𝑣𝜙𝑅 𝑑𝜙. (8)

Using 𝑣𝜙 = 𝑅 ¤𝜙 and 𝐿𝑧 = 𝑅2 ¤𝜙, and solving the above integral, we
get

𝐽𝜙 = 𝐿𝑧 . (9)

For the purpose of computing the radial and vertical actions, we note
that in the epicyclic approximation we treat the radial and vertical
motion as two independent harmonic oscillators, so that the Hamil-
tonian for the perturbation about the circular orbit is

𝐻pert =
𝑣2
𝑅

2
+ 𝜅2

2
(𝑅 − 𝑅𝑔)2 +

𝑣2
𝑧

2
+ 𝜈2

2
𝑧2 (10)

where 𝑣𝑅 and 𝑣𝑧 are the velocities in the radial and vertical direc-
tions, respectively, and 𝑧 is the vertical coordinate of the star. The
potential energy terms (𝜅2/2) (𝑅− 𝑅𝑔)2 and (𝜈2/2)𝑧2 correspond to
the radial and vertical oscillations around the equilibrium orbit. The
usual simple harmonic oscillator has Hamiltonian 𝐻 = 1

2 (𝑣
2+𝜔2𝑥2)

for velocity 𝑣, displacement 𝑥, and oscillator frequency 𝜔, and the
corresponding action is 𝐸/𝜔, where 𝐸 is the energy. By analogy, for
our epicyclic approximation Hamiltonian the radial energy 𝐸𝑅 is

𝐸𝑅 =
𝑣2
𝑅

2
+ 𝜅2

2
(𝑅 − 𝑅𝑔)2. (11)

and the corresponding radial action is

𝐽𝑅 =
𝐸𝑅

𝜅
=

𝑣2
𝑅
+ 𝜅2 (𝑅 − 𝑅𝑔)2

2𝜅
, (12)

Similarly, the vertical energy 𝐸𝑧 is

𝐸𝑧 =
𝑣2
𝑧

2
+ 𝜈2

2
𝑧2, (13)

and the vertical action 𝐽𝑧 is

𝐽𝑧 =
𝑣2
𝑧 + 𝜈2𝑧2

2𝜈
. (14)

Thus given the radial and vertical epicyclic frequencies and guiding
radii computed above, together with the stellar radial and vertical
velocities, we can compute the radial and vertical actions for all
stars.

3.3 Action evolution study

Once we have computed the actions for all stars at each snapshot, we
are in a position to investigate their temporal evolution. Initial analysis
reveals that a significant fraction of stars exhibit rapid variations
in their actions over short (few Myr or less) timescales, likely the
result of being part of gravitationally bound structures such as star
clusters; we discuss these structures further in section 5, and they
will be the principal focus of Paper II in this series. For the moment
we wish to focus on the longer term secular evolution of actions,
and to isolate these from the high-frequency variations we apply
a Butterworth filter with a cut-off frequency of 1/30 Myr−1 to the
time series of actions, effectively suppressing variations occurring
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Figure 4. An example of a star that exhibits rapid variation in actions, likely
because it is part of a star cluster. The top two panels show the 𝑅 and 𝑧 position
as a function of time, while the bottom three show action versus time. The
grey lines represent the actual actions we compute, while the pink lines show
the actions after applying the low-pass filter as discussed in subsection 3.3.
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on timescales shorter than 30 Myr. Figure 4 illustrates an example of
a star displaying rapid variations in its actions, along with the impact
of the low-pass filter in smoothing these fluctuations.

To characterise the change in action over time, we compute the
absolute and relative differences in each component of the action
between every possible pair of snapshots. Formally, for each star we
define the absolute difference as

Δ𝐽𝑖 (𝑡,Δ𝑡) = |𝐽𝑖 (𝑡 + Δ𝑡) − 𝐽𝑖 (𝑡) | (15)

where 𝑖 = (𝑅, 𝑧, 𝜙) is the component, 𝑡 is the time of the snapshot,
Δ𝑡 is the time interval between the two snapshots and 𝐽𝑖 (𝑡) is the
𝑖 component of the star’s action action at time 𝑡 in the simulation.
Similarly, we define the relative difference as

𝛿𝑖 (Δ𝑡) =
Δ𝐽𝑖 (𝑡,Δ𝑡)

𝐽𝑖 (𝑡)
. (16)

We have ≈ 450 time snapshots, and therefore ≈ 105 snapshot pairs,
and ∼ 106 stars, so our total sample for analysis consists of ∼ 1011

action differences.

4 RESULTS

We are now prepared to characterise the time-evolution of the ac-
tions. We first examine the evolution of the distribution of actions
in subsection 4.1, and then study the properties of the time series
describing individual stars rather than the full population in subsec-
tion 4.2. We discuss how the evolution varies with the environmental
conditions under which stars are born in subsection 4.3 and subsec-
tion 4.4. In subsection 4.5, we compare the action evolution for two
different population of stars.

4.1 Distribution of actions

Before examining the evolution of individual stellar actions over time,
we first study the distribution of stellar actions and its time evolution.
We do so by selecting our final snapshot (𝑡 = 464 Myr) and examining
the action distribution as a function of stellar age, since this provides
a snapshot of the data that can be compared directly to observations.
We place all stars at the last snapshot in 1 kpc-wide bins of radial
position 𝑅, and in Figure 5 we show the distributions of radial (𝐽𝑅),
azimuthal (𝐽𝜙), and vertical (𝐽𝑧) actions for stars as a function of
stellar age for the 4-5 kpc, 9-10 kpc, and 12-13 kpc radial bins. The
solid central lines represent the medians of these distributions, while
the shaded areas show the 16th to 84th percentile range.

Our results reveal that the overall distribution of actions remains
relatively stable over the simulation period. We find that 𝐽𝜙 is essen-
tially static, which is not surprising, given that our ≈ 500 Myr run
time is too short for significant radial mixing. There is some weak
evolution of 𝐽𝑅 and 𝐽𝑧 distributions, and the latter is particularly
useful because there have been several observational studies of this
evolution to which we can compare. Ting & Rix (2019) examine this
quantity for stars of age up to 8 Gyr and observe significant broad-
ening of the distribution, but this timescale is much larger than that
for which our simulations run and is therefore not directly compara-
ble. More recently, Garzon et al. (2024) performed a similar analysis
for stars younger than 0.5 Gyr, well-matched to the timescale of our
simulation. We overlay their results in the bottom row of our plot (in
red). Since their analysis is limited to stars with the Galactocentric
radii within 8 to 13 kpc, we only have comparisons for two of the
radial bins plotted. For the 9-10 kpc radial bin, we find that our results
agree very well with their mean 𝐽𝑧 values across ages. However, in

the 12-13 kpc radial bin, we find significantly lower actions and less
evolution. Garzon et al. (2024) suggest that the very large change
in action evolution from 9 − 10 kpc to 12 − 13 kpc that they find
may be due to the warping of the outer Milky Way disc (e.g., Uppal
et al. 2024, and references therein), a feature that is absent from our
simulations, since we begin with a flat disc and do not include per-
turbations from dwarf galaxies or dark matter sub-halos that might
induce a warp. This is likely the reason that we do not reproduce this
aspect of the observations in our simulations. This also means that
the results we derive below for the rates at which individual stellar
actions evolve are likely to be underestimates in the far outer disc
beyond ∼ 10 kpc where the warp is significant. We should therefore
think of the results we obtain as lower limits that describe action
evolution in the absence of large-scale external perturbations to the
galactic potential.

4.2 Change in actions over time

We now investigate the evolution of individual stellar actions over
time as characterised by the absolute changes Δ𝐽𝑅 , Δ𝐽𝑧 and Δ𝐽𝜙
(Equation 15). These quantities are functions of both the current
stellar age 𝑡∗ and the time lag Δ𝑡, and we therefore place all stars in
2D bins of these quantities and compute the median in each bin; we
use medians rather than means to ensure robustness against outliers.
We show the result in Figure 6; in this plot, stellar age appears on the
𝑥−axis and the time lag Δ𝑡 on the 𝑦−axis. The expected behaviour is
immediately visible – small variations at short time intervals appear
as the darkest colours in a horizontal band at the bottom of the plot.
We see only a weak dependence on stellar age, as there are no very
obvious vertical features in the heatmap.

To take a closer look, we extract vertical slices from the heatmap
at ages 5, 10, 50, 100, 200, 300 and 400 Myr, as shown by the dashed
lines in Figure 6. These slices, illustrated in Figure 7, show how the
absolute change in actions depends on the time lag for stars of differ-
ent ages. We see here that there is a weak dependence of Δ𝐽 on stellar
age, but in a direction that is opposite what one might naively expect
– we expect younger stars to exhibit larger changes in their actions
than older stars because they are more likely to reside near their natal
molecular clouds (Lada & Lada 2003), where ongoing interactions
with dense gas or other stars can lead to greater dynamical perturba-
tions. Conversely, older stars have typically migrated away from their
birth regions and are less influenced by such perturbations. Contrary
to these expectations, we instead find that older stars undergo more
rapid changes to their actions, as indicated by the larger slopes in
Figure 7.

To understand why this occurs, we next examine relative rather
than absolute changes in actions, focusing on 𝐽𝑅 and 𝐽𝑧 since 𝐽𝜙 is
dominated by circular orbital motion and is less sensitive to dynami-
cal perturbations. Figure 8 shows the median square relative changes
of these two actions, 𝛿𝐽2

𝑅
and 𝛿𝐽2

𝑧 , as a function of time lag for the
same stellar ages as shown in Figure 7. In this plot, we see that the
different stellar age bins collapse onto nearly a single line, suggesting
a universal behaviour among stars of all ages.

The linear increase in 𝛿𝐽2
𝑅

and 𝛿𝐽2
𝑍

with time before 100 Myr
suggests that the process of stellar action change can be described as
a random walk in the logarithm of the action, and that the process can
therefore be approximated as diffusive. As discussed earlier, this dif-
fusion is due to dynamical perturbations in the smooth, axisymmetric
gravitational potential caused by structures such as giant molecular
clouds and spiral arms, together with the large-scale acceleration of
the disc due to galactic winds.

This clearly highlights a key result: actions are not conserved for
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Figure 5. Distribution of actions (row-wise in order: 𝐽𝑅 , 𝐽𝜙 and 𝐽𝑧) for stars of different ages at the last snapshot, 𝑡 = 464 Myr, in the radial bins 4-5 kpc (left),
9-10 kpc (middle), and 12-13 kpc (right). The orange, blue and green lines represent the medians of the distributions, with shading indicating the 16th and 84th
percentile range. The red lines in the two right-most columns of the bottom row show the mean 𝐽𝑧 values as a function of age reported by Garzon et al. (2024,
their Figure 6).

individual stars, placing constraints on reconstructing stellar orbits
using present-day actions. To quantify the rate of diffusion, we carry
out a least-squares find of the data shown in Figure 8 to a diffusion
model of the form〈
𝛿𝐽2

𝑅

〉
= 2𝐷𝑅 Δ𝑡, (17)

and similarly for 𝑧, where here 𝐷 is the diffusion coefficient; we
carry out this fit from Δ𝑡 = 5 − 50 Myr for 𝐷𝑅 and for 5 − 40
Myr for 𝐷𝑧 , covering the age range when the behaviour is close to
linear, and for the purpose of the fit we include all stars regardless
of age 𝑡∗. We show our fits, together with the data, in Figure 9. Our
best-fitting values for the diffusion coefficients are 𝐷𝑅 = 2.5 Gyr−1

and 𝐷𝑧 = 4.8 Gyr−1. The inverses of these values correspond to
characteristic diffusion timescales of approximately 400 Myr for 𝐽𝑅
and 200 Myr for 𝐽𝑧 , meaning that over these timescales individual
stars forget their individual actions. The shorter timescale for 𝐽𝑧
reflects stronger dynamical perturbations in the vertical direction.
In both cases, however, we see that the curve in Figure 8 flattens
beyond ≈ 100 Myr, indicating that actions have reached maximum
decorrelation by this point, corresponding to around 50% median
square relative change. By this age stellar actions are essentially
drawn at random from the distribution of actions for stars of the
appropriate age, and retain no memory of their values ≈ 100 Myr
earlier.

While this is a good first-order description of the results, close
examination of Figure 9 does reveal a weak age dependence of ac-
tion diffusion: younger stars (represented by lighter colours) exhibit
steeper slopes compared to older stars (darker colours) for both 𝐽𝑅
and 𝐽𝑧 , as indicated by the fact that the lighter-coloured lines corre-
sponding to the younger stars lie predominantly above the red dashed
line representing the entire dataset, while the darker lines for older

stars lie below it. This is consistent with our expected age dependence
for action diffusion: younger stars are more susceptible to perturba-
tions near their birth sites, changing their actions rapidly, while older
stars’ actions change comparatively slowly. However, we can now
see that this is true only for relative actions, while older stars experi-
ence faster changes in their absolute actions because they have larger
radial and vertical actions on average. The difference is not large,
however.

4.3 Dependence on local birth density

The slightly more rapid diffusion of relative actions that we measure
for younger stars suggests an environmental effect – younger stars
may diffuse more quickly because they are in closer proximity to
denser regions with stronger local, non-axisymmetric gravitational
pulls. However, tracking a star’s density history over its entire lifetime
or orbit on the timescales considered is complex, as any given star
may transverse different regions of varying densities. Instead, to test
whether density matters, we restrict our focus to the contribution of
local density of the birth environment of the star to changes in its
action.

To achieve this, we define ‘newborn star cohorts’ at each snapshot,
consisting of all stars formed in the past 1 Myr. For each star in this
cohort, we find the fifth nearest neighbour distance (𝑑5) to another star
in the cohort as a proxy for the local density at which each star formed.
Smaller 𝑑5 values correspond to stars forming in denser environments
where stars are packed more closely together. By combining these
measurements across snapshots, we obtain a distribution of 𝑑5 values,
allowing us to assess the effect of environments in which stars are
born. We find that the central parts of the distribution of 𝑑5 are
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Figure 6. Heatmap of the median of the absolute change in stellar actions
(row-wise in order: Δ𝐽𝑅 , Δ𝐽𝑧 , and Δ𝐽𝜙) as a function of the time lag and
stellar age. The dotted lines indicate stellar ages of 5, 10, 50, 100, 200, 300
and 400 Myr, corresponding to the time slices plotted in Figure 7.

relatively smooth, with a 10th percentile value of 0.34 pc and 90th
percentile value of 2.64 pc, thus spanning roughly a factor of 500 in
stellar density (which scales as 𝑑−3

5 ). There is also a low-density tail to
the distribution, so that the 95th and 99th percentiles increase sharply
to 87.2 pc and 1323.53 pc, respectively. Given that the smoothing
length in our simulation is ∼ 0.5 pc, we define ‘dense’ birth regions
as those where 𝑑5 < 0.5 pc, moderately sparse regions as those
for which 𝑑5 is between 89th and 91st percentile value, and ‘very
sparse’ regions defined as those with 𝑑5 beyond the 99th percentile,
i.e., 𝑑5 > 1323.5 pc.

To see whether birth density affects the rate of action diffusion,
we plot the square median relative change in radial and vertical ac-
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Figure 7. Median of the absolute change in stellar actions (row-wise in order:
Δ𝐽𝑅 , Δ𝐽𝑧 , and Δ𝐽𝜙) for stars of different ages across the simulation as
a function of time lag. Different stellar age groups are shown in different
colours as indicated in the legend.

tions, ⟨𝛿𝐽2
𝑅
⟩ and ⟨𝛿𝐽2

𝑧 ⟩, for stars in our three sample density bins in
Figure 10. The solid line represents stars that formed in dense en-
vironments, while the dashed lines correspond to those originating
in sparse and very sparse regions – dark blue for the 90th percentile
in 𝑑5 (2.64 pc) and cyan for the 99th percentile in 𝑑5 (1323.5 pc).
For reference, we also overlay the best-fit diffusion relation from
the previous section (shown as star markers), which we compute for
all stars regardless of their birth density. The results show that the
stars formed in dense and sparse regions both follow the same trend
as the overall dataset, closely matching the linear fit, and indicat-
ing no significant dependence on density. Stars born in very sparse
regions exhibit smaller changes in action, particularly at lower Δ𝑡
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values, consistent with the hypothesis that stars born in denser envi-
ronments suffer more environmental perturbations and thus diffuse
more rapidly. However, the effect is extremely weak, and affects only
a small fraction of stars: there is no visible difference for stars at the
90th, or even 95th (not shown), percentile of density. Only the ∼ 1%
of stars born in the quietest, most isolated environments show signif-
icantly reduced rates of action diffusion. It is worth noting that while
birth density does not appear to strongly influence action changes,
this does not rule out the possibility that the density of the environ-
ment a star encounters throughout its orbit could play a role. A more
comprehensive analysis would involve tracking the density of regions
that stars pass through over time and correlating this with changes in
their actions. However, such an investigation is beyond the scope of
this paper.

4.4 Dependence on birth radius

Since disc structure and density, and hence frequency of perturba-
tions, should vary with galactocentric radius, we next examine how
rates of action diffusion vary with this quantity. We bin our stars by
the galactocentric radius at which they are born, using 1 kpc-wide
bins, and show the square of the median relative change in radial and
vertical actions, ⟨𝛿2

𝑅
⟩ and ⟨𝛿𝐽2

𝑧 ⟩, for different radial bins in Figure 11.
The left panels present the result in absolute time, while the right
panels show the same with the time normalised by the orbital period
at the centre of the radial bin.

In absolute time, the rate of action change varies significantly with
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Figure 9. Same as Figure 8, but now zooming in on ages < 100 Myr. The red
dashed lines indicate linear fits to the data, as described in the main text. The
expressions and 𝑅2 values for the fits are indicated in the legend, with times
in units of Myr.

radius. The outer disc regions consistently show slower evolution
compared to the inner disc for both 𝑅 and 𝑧 actions. This would
suggest that the processes driving action diffusion are less efficient at
larger radii. However, we must keep in mind that the orbital period is
higher at higher radii. When time is normalised by the orbital period
(𝜏orb), this trend becomes much less pronounced as seen in the right
panels of Figure 11, suggesting that to a first-order approximation,
the rate of action diffusion is constant when time is measured in units
of the orbital period. However, a residual difference still remains
for cohorts of stars born in different radial bins even after dividing
by the orbital period, indicating that the gravitational perturbations
responsible for action evolution are less frequent in the outer disc
than in the inner regions even accounting for the longer orbital pe-
riod. This is not surprising given that the stellar density is higher
and gravitational interactions with GMCs and spiral arms are more
frequent in the inner disc regions. Additionally, it is worth noting
that within 60% of the orbital period, squares of relative change in
actions are already between 30−50%. This clearly highlights the lim-
itation of using methods that rely on the long-term conservation of
action for reconstructing past orbits or predicting future trajectories.
Hence, for practical applications of actions, careful consideration
of the timescales over which they are assumed to be invariant is
required.
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Figure 10. Square median relative change in stellar actions (row-wise: 𝛿𝐽2
𝑅

and 𝛿𝐽2
𝑧 ) for stars born in regions of different density. The solid line shows

stars born in the ‘dense’ regions, while the dashed lines show those born
in ‘sparse’ (dark blue) ‘very sparse’ (cyan) regions – see main text for full
definitions. The star markers indicate our linear fits to the full sample without
subdividing by density, as shown in Figure 9; the functional form of the fit is
provided in the label, with Δ𝑡 in units of Myr.

4.5 Comparison with initial stars

As described in subsection 2.2, the WK23 simulations include a
population of stellar disc particles that are already present in the
initial conditions of Z25. We refer to these pre-existing particles as
‘initial stars’. In contrast, the star particles discussed so far are those
born during the simulation and hence are all younger than 464 Myr.
To understand the underlying mechanisms driving action evolution, it
is illuminating to compare these two populations. Since the potential
grid used to calculate action (see section 3 and section A) extends
only to the disc, this comparison is restricted to stars within the disc
region.

The key differences between these two populations are their ver-
tical height distributions and their distribution relative to dense gas.
Initial stars have positions that are uncorrelated with gas, while stars
that form in the simulation are necessarily in close proximity to dense
gas structures at least at birth. Similarly, the root mean square height
⟨𝑧2⟩1/2 of initial stars remains between 380 − 405 pc during the
simulation, whereas, as already mentioned, for stars born during the
simulation, it is much lower, between 130 − 200 pc. Thus the initial
stars spend much more time away from the midplane while their
younger counterparts remain confined to the midplane.

In Figure 12, we show the median square relative changes in radial
and vertical actions, 𝛿𝐽2

𝑅
and 𝛿𝐽2

𝑍
, as a function of time lag for stars

of different stellar ages born in the simulation (same as in Figure 8)
along with the same for initial stars, represented by the blue dashed
line. Despite the differences between the two populations, the change
in radial action over time is quite similar. The fact that even the
oldest stars experience a comparable level of radial action change to
newly born stars suggests that this change is driven by a mechanism
that is present throughout the disc and does not depend strongly
on birth conditions and proximity to small-scale gas structures. The
natural candidate that meets this requirements are transient spiral
arms, which are known to be a key feature of disc dynamics and
which extend over a range of vertical heights, since for a Milky Way-
like disc they involve strongly-coupled perturbations in both gas and
stars (e.g., Romeo & Mogotsi 2017).

On the other hand, the evolution of the vertical action differs sig-
nificantly between the two populations. For initial stars, the vertical
action remains nearly conserved, flattening out to about 20% change
by the end of the simulation. In contrast, as seen already in previ-
ous sections, the stars born during the simulation show much larger
changes in the vertical action. This suggests that the mechanism for
out-of-plane action evolution is different from the mechanism for in-
plane action evolution, and relies on proximity to gaseous structures
in the midplane. This leaves scattering by GMCs, which are con-
centrated near the midplane, as the natural candidate: initial stars,
which spend most of their time at greater heights, experience fewer
encounters with GMCs and thus retain more of their initial vertical
actions.

To further confirm our hypotheses, we examine phase-space orbits
of sample initial stars and stars born in the simulation in Figure 13.
We select for this purpose stars whose action evolution lies close
to the median values of their respective populations, ensuring that
these orbits are typical trajectories for both the categories. Since we
applied a low-pass filter to the action time series (see subsection 3.3),
we handpick stars that do not seem to be part of clusters to minimise
the impact of filtering. The figure shows that orbits do confirm the
expected trend: initial stars with larger actions have nearly-closed
orbits, as expected for a conserved action, while the stars born during
the simulation follow more irregular trajectories, which is consistent
with stronger vertical action evolution for the younger population.

5 CONCLUSION

In this paper, we use high-resolution MHD simulations to study the
evolution of actions in young stars from Myr to Gyr timescales while
self-consistently incorporating gas dynamics, star formation, and a
live stellar disc. Our key findings can be summarised as follows:

• The distributions of actions over our simulation time of ≈ 500
Myr remains almost constant, broadening only slightly. For parts of
the disc interior to≈ 12 kpc, and thus interior to the warp in the Milky
Way disc, we find good agreement between the rate of broadening in
the simulation and that observed in the Milky Way.

• Individual stellar actions, however, are not conserved and in-
stead undergo relatively rapid evolution. The effect is strong enough
that over timescales of a few hundred Myr stellar actions become
fully decorrelated, and it is no longer possible to trace stars back-
ward under the assumption of an axisymmetric time-steady poten-
tial. Contrary to expectation, absolute actions change more rapidly
for older stars than for younger ones. However, we show that if we
instead consider actions normalised by their initial values, younger
stars indeed experience more rapid evolution as expected from the
stronger perturbations near their birth environments.
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Figure 11. Square median relative change in stellar actions (row-wise: 𝛿𝐽2
𝑅

and 𝛿𝐽2
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by different colours indicated in the legend. The red dashed line shows the values for the full sample without subdividing into radial bins. The left panels show
the result in absolute time, while the right panels display the same data with time normalised by the orbital period (𝜏orb) in each radial bin.

• At ages ≲ 100 Myr before stellar actions are fully decorrelated,
the square median relative change in action increases roughly linearly
with time lag, suggesting a random walk in logarithmic action space.
We fit a diffusion model to these trends and find diffusion coefficients
of 𝐷𝑅 = 2.5 Gyr−1 and 𝐷𝑧 = 4.5 Gyr−1 for radial and vertical
actions respectively.

• We find that for the great majority of stars, the density of the
stellar birth environment has little effect on the rate of action dif-
fusion. However, this rate does vary with galactocentric radius. To
first order, the diffusion coefficient simply scales as the inverse of
the local galactic rotation period, and to second order, action diffu-
sion is somewhat slower at larger radii even normalised to the orbital
period. This is expected, given the lower stellar density and reduced
frequency of encounters with GMCs and spiral arms in the outer
disc.

• Comparing newborn stars to an older population with a factor
of ≈ 2 − 3 larger scale height, we find both populations have similar
rates of evolution for radial action evolution, but that the vertical
action evolves significantly more slowly for the older, more vertically-
extended population. This suggests that different mechanisms drive
changes in radial and vertical actions: predominantly transient spiral

arms for the radial action, and predominantly scattering of the thin
gas disc for the vertical action.

While the rapid action evolution we measure might at first seem
surprising, it is important to remember that many previous studies of
stellar action conservation have been conducted in the context of a
purely collisionless stellar disc, and even in these cases actions are not
perfectly conserved (e.g., Solway et al. 2012; Mikkola et al. 2020).
Other studies that include gas find that its gravitational influence
strongly scatters young stars (e.g., Fujimoto et al. 2023), and the gen-
eral importance of gas becomes apparent if we recall that, while gas
makes up only ∼ 15% of the mass of the Milky Way disc, its smaller
scale height means that at the midplane gas and stars contribute about
equally to the vertical gravitational acceleration (e.g., McKee et al.
2015; Krumholz et al. 2018). In this context it is worth considering as
an example the Local Bubble, which is effectively a void in the local
ISM, which otherwise has a mean density of ∼ 1 atom cm−3, several
hundred pc across (Linsky et al. 2022; Zucker et al. 2022; O’Neill
et al. 2024). The free-fall time of this structure is (Equation 2) ≈ 51.5
Myr, comparable to the epicyclic periods in the Solar neighbourhood
(𝑇𝜅 ≈ 170 Myr and 𝑇𝜈 ≈ 85 Myr; Binney & Tremaine 2008), and
its size means stars passing through this region experience a non-
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axisymmetric gravitational perturbations over a significant portion
of their orbit. It is therefore not surprising that a structure of this size
should be able to perturb stellar orbits significantly.

Our results imply that disc stars, unlike halo stars, do not follow
regular, predictable orbits, and therefore that reliable stellar orbit
reconstruction relative to the disc past ∼ 100 Myr is not feasible.
However, this does not necessarily mean that star clusters are en-
tirely irrecoverable. While individual stars undergo a random walk
in logarithmic action space, our preliminary analysis indicates that
stars born together tend to remain correlated with each other in action
space over time. This correlation is not surprising, given that much
of the change in action appears to be driven by relatively large-scale
perturbations such as the Local Bubble – stars born closer to one
another than the characteristic sizes of such structures are subjected
to similar perturbations, and therefore should experience compara-
ble changes in their actions and remain together in action space. In
essence, while stars drift randomly in action space, those that form
together “hold hands” as they move, thus preserving clustering sig-
natures in action space that could still be used to reconstruct star
clusters and associations, if not to trace them back to their formation
locations. We will explore this idea further in Paper II of this series.
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Figure 13. Examples of phase-space orbits for initial stars (cyan) and star
particles born in the simulation (dark blue). The x-axis shows their vertical
positions in parsecs, while the y-axis shows vertical velocities in km/s.
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APPENDIX A: COMPUTING EPICYCLIC FREQUENCIES

In this appendix, we describe in detail the procedure that we use for
calculating epicyclic frequencies 𝜅 and 𝜈 for each star particle. We
begin with the 2D potential grid that spans from 0.1 pc to 20 kpc in
the radial direction and from −1 to +1 kpc in the vertical direction,
computed as described in subsection 3.1, and we must evaluate partial
derivatives of this potential to compute 𝜅 and 𝜈. Naive numerical
evaluation of these derivatives yields extremely noisy estimates, and
we must therefore adopt a smoothing procedure.

The guiding radius 𝑅𝑔 and radial epicyclic frequency depend on
𝜕Φ/𝜕𝑅 and 𝜕2Φ/𝜕𝑅2 evaluated at 𝑧 = 0. Our first step to estimate
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these quantities is to extract the potential grid values within ±2 pc
of the midplane, corresponding to five grid points in the vertical
direction, and average them to produce a one-dimensional function
of 𝑅. This averaging reduces the noise. We next apply a Gaussian
filter1 with a standard deviation of 30 pc using ‘nearest’ mode to
prevent artificial edge effects; this further smooths the data. Finally,
we fit the smoothed data with a B-spline with smoothing parameter
𝑠 = 200 to obtain a continuous, differentiable function Φ(𝑅, 𝑧 = 0).

With this smooth function at hand, we are now prepared to evaluate
the radial derivatives of Φ and the quantities that depend upon them.
We first define a new radial grid with a resolution of 0.5 pc with its
inner edge placed at the larger of 2 kpc and 5 kpc inward from the
smallest radial position of any star at the time we are sampling, and
its outer edge at the smaller of 17.5 kpc and 5 kpc outward from the
largest stellar radial position; this ensures that we have good coverage
over the full disc, but that we are not extrapolating to radii where we
sample the potential poorly. We then evaluate Ω𝑖 at each radial grid
point 𝑅𝑖 from Equation 5 using our B-spline representation of Φ(𝑅).
The corresponding specific angular momentum at each grid point is
𝐿𝑧,𝑖 = 𝑅2

𝑖
Ω𝑖 , and thus our grid represents a set of (𝑅𝑖 , 𝐿𝑧,𝑖) pairs.

Since the guiding radius 𝑅𝑔 for each star is defined implicitly by its
angular momentum 𝐿𝑧,∗ and the condition 𝐿𝑧,∗ = 𝑅2

𝑔Ω(𝑅𝑔), we can
use the (𝑅𝑖 , 𝐿𝑧,𝑖) pairs as a lookup table to find the guiding radius
corresponding to any 𝑅𝑔. In practice we do this by defining a new B-
spline function 𝑅𝑔 (𝐿𝑧) from our (𝑅𝑖 , 𝐿𝑧,𝑖) pairs using a smoothing
factor 𝑠 = 2, and use the resulting function to evaluate 𝑅𝑔 for every
star. We then drop from our sample stars for which 𝑅𝑔 lies outside
the range 2 − 16 kpc, on the grounds that they lie too close to our
grid edge to be reliable.

Once the guiding radii are determined, we use them to compute the
radial epicyclic frequencies via an analogous strategy. We calculate
𝜅(𝑅𝑔) using Equation 6 at each grid point, again using our smooth
B-spline approximation to Φ(𝑅, 𝑧 = 0) to evaluate derivatives. This
yields a set of (𝑅𝑖 , 𝜅𝑖) pairs, to which we apply another B-spline fit
with smoothing factor 𝑠 = 3 to obtain a smooth function 𝜅(𝑅). We
plug the guiding radii for each star in our sample into this function
to obtain 𝜅 values for each of them.

The calculation of the vertical epicyclic frequency 𝜈 follows a
similar but slightly more complex process, since we require the sec-
ond derivative of Φ(𝑧) at each star’s guiding radius (see Equation 7),
rather than for the radial case which only requires derivatives ofΦ(𝑅)
evaluated at 𝑧 = 0. To achieve this, we construct a sparse radial grid
with a resolution of 200 pc, spanning the range 2 − 16 kpc to match
the guiding radius constraints that we imposed earlier. At each radial
grid point, we extract the potential from the 2D grid by averaging
over all radial values within ±1 pc of the sparse grid point. This
averaging, as in the radial case, reduces local noise and provides a
better estimate of the galactic potential as a function of 𝑧. We then
smooth the resulting Φ(𝑧) data by applying a Savitzky-Golay filter
with a window length of 101 pc and a polynomial order of 2, which
smooths the data while preserving the underlying curvature, followed
by a Gaussian filter with standard deviation of 2 pc, which we apply
three times. Finally, we use the smoothed data as input to a B-spline
fit with 𝑠 = 50 to generate a smooth, continuously-differentiable
functional form of Φ(𝑧) at each sparse radial grid point. We use this
smooth function to evaluate 𝜕2Φ/𝜕𝑧2 at 𝑧 = 0, the quantity required
to evaluate 𝜈 using Equation 7. This yields a set of (𝑅𝑖 , 𝜈𝑖) pairs
on our sparse radial grid. We fit these data with a B-spline fit with

1 This and all subsequent operations use the implementations provided in
SciPy version 1.11.4; see Virtanen et al. (2020).

𝑠 = 1000 to obtain a continuous function 𝜈(𝑅). Finally, we determine
𝜈 for each star by inputting its guiding radius into this function.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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