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ABSTRACT

The small-scale dynamo (SSD) amplifies weak magnetic fields exponentially fast via kinetic motions. While there

exist well-established theories for SSDs in incompressible flows, many astrophysical environments SSDs operate in

supersonic, turbulent gas. To understand the impact of compressibility on SSD-amplified magnetic fields, we perform

an extensive set of visco-resistive SSD simulations, covering a wide range of sonic Mach number M, hydrodynamic

Reynolds number Re, and magnetic Prandtl number Pm. We develop simple, robust methods for measuring char-

acteristic kinetic and magnetic energy dissipation scales ℓν and ℓη, as well as the scale at which magnetic fields are

strongest ℓp during the kinematic phase of these simulations. We show that ℓν/ℓη ∼ Pm1/2 is a universal feature in

the kinematic phase of Pm ≥ 1 SSDs, regardless of M or Re, and we confirm earlier predictions that SSDs operating

in incompressible plasmas (either M ≤ 1 or Re < Recrit ≈ 100) concentrate magnetic energy at the smallest scales

allowed by magnetic dissipation, ℓp ∼ ℓη, and produce fields organised with field strength and field-line curvature

inversely correlated. However, we show that these predictions fail for compressible SSDs (M > 1 and Re > Recrit),

where shocks concentrate magnetic energy in large-scale, over-dense, coherent structures in the plasma, with charac-

teristic size ℓp ∼ (ℓturb/ℓshock)
1/3ℓη ≫ ℓη, where ℓshock ∼ M2/[Re (M − 1)2] is the characteristic shock width, and

ℓturb is the outer scale of the turbulent field. Moreover, in this compressible regime, magnetic field-line curvature

becomes almost independent of the field strength. We discuss the implications of these results for galaxy mergers and

for cosmic-ray transport models in the interstellar medium that are sensitive to field-line curvature statistics.
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1 INTRODUCTION

As far as we understand, the Universe was born without mag-
netic fields. This, however, stands in stark contrast with the
present-day Universe, where dynamically important magnetic
fields are observed to be ubiquitous (see Krumholz & Feder-
rath 2019; Brandenburg & Ntormousi 2023, for recent reviews
on magnetic fields in galaxies and their impact on star for-
mation). The origin of these fields remains uncertain, but
two main candidates exist: phase transitions during inflation,
which could have generated fields with strengths ranging from
10−36 to 10−8 G, varying on ∼ Mpc scales (Quashnock et al.
1989; Sigl et al. 1997; Kahniashvili et al. 2013), and bat-

⋆ E-mail: neco.kriel@anu.edu.au

tery processes during the epoch of re-ionisation (z ∼ 35–6)
(Biermann 1950; Naoz & Narayan 2013), which could have
produced fields of around 10−24 G on ∼ 10 kpc scales. Re-
gardless of which mechanism seeded the first magnetic fields,
primordial fields are believed to have decayed until the struc-
ture formation era at z ∼ 2 (e.g., Brandenburg et al. 2017;
Vachaspati 2021; Hosking & Schekochihin 2022; Mtchedlidze
et al. 2022, 2023), by which time they would have been more
than 15 orders of magnitude weaker than the ∼ µG fields
observed on ∼ kpc scales in the Milky Way and in other
nearby galaxies (e.g., Kulsrud et al. 1997; Beck et al. 2019;
Shah & Seta 2021; Lopez-Rodriguez et al. 2022). Present-day
magnetic fields, therefore, cannot simply be relics from elec-
troweak phase transitions or battery processes in the early
Universe, and instead some mechanism must have amplified
them dramatically.

© 2023 The Authors
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Dynamo action is believed to be the most plausible mech-
anism for amplifying primordially-produced fields to the lev-
els we observe in the present day (e.g., Latif et al. 2013;
Mtchedlidze et al. 2022, 2023), and broadly describes the
process by which initially weak magnetic fields are amplified
and subsequently maintained through the conversion of ki-
netic into magnetic energy (see Rincon 2019; Brandenburg &
Ntormousi 2023 for recent reviews, and Tzeferacos et al. 2018;
Bott et al. 2021, 2022 for recent laboratory experiments).
Such processes are categorised either as small-scale dynamos
(SSDs) or large-scale dynamos (LSDs), determined by the
scale on which magnetic fields are grown relative to the ki-
netic fields that amplify them. In the current paradigm for
the origin of galactic magnetic fields, both SSDs and LSDs are
believed to be important, but are understood to play very dif-
ferent roles (see Bhat et al. 2016; Pakmor et al. 2017; Rieder
& Teyssier 2017a,b; Steinwandel et al. 2023; Gent et al. 2023,
for recent works).

Starting with initially weak seed fields, SSDs that oper-
ate in regimes relevant for the interstellar medium (ISM)
of galaxies, for example, follow a three-stage process: (1)
first, random kinetic motions (e.g., Vainshtein et al. 1972;
Zel’Dovich et al. 1984; Archontis et al. 2003) amplify mag-
netic energy exponentially fast-in-time (also termed the kine-
matic phase of the SSD), then, (2) once magnetic fields are
strong enough to impart a backreation on the flow, via the
Lorentz force, the growth rate slows down to a linear-in-time
growth (e.g., Schekochihin et al. 2004; Xu & Lazarian 2016;
Seta & Federrath 2020), and (3) finally, once the magnetic
field is in close equipartition with kinetic energy, the field
strength saturates and continues to be maintained at this
level via the kinetic field (e.g., Schekochihin et al. 2002b;
Seta & Federrath 2021; Beattie et al. 2023). Galactic LSDs
are also capable of exponential magnetic growth, which could
be driven by a mix of helical turbulence (e.g., Bhat et al.
2016; Rincon 2021), galactic differential rotation/shear (e.g.,
Käpylä et al. 2008; Squire & Bhattacharjee 2015), and mag-
netic instabilities (e.g., Johansen & Levin 2008; Qazi et al.
2023). However, due to catastrophic quenching at low mag-
netic resistivity, they are not believed to be capable of am-
plifying primordial fields to the magnitudes we observe today
(see Brandenburg & Ntormousi 2023, for a recent, thorough
review of LSDs).

SSDs supported by supernova-driven turbulence are capa-
ble of amplifying magnetic energy far more rapidly than LSDs
(Schober et al. 2012; Gent et al. 2023), and have been shown
(using simulations) to be capable of amplifying primordial
magnetic fields with an e-folding time of ≈ 100Myr, reach-
ing a saturated field strength of 10–50µG (corresponding to
≈ 10% of equipartition with the kinetic energy) by z ∼ 3–2
(Pakmor et al. 2017; Rieder & Teyssier 2016, 2017a; Stein-
wandel et al. 2023), thus making the kinematic stage of the
SSD an important phase to study. By contrast, LSDs are too
slow to produce saturated fields at such high redshifts, but
are efficient at reorganising fields to produce large scale, co-
herent structures. Thus, as galaxies become more quiescent,
rotation creates a LSD that operates on the SSD-generated
fields to produce the larger scale, ordered fields that we see
today (Rieder & Teyssier 2017a; Gent et al. 2023).

This picture has been challenged, however, by the detec-
tion of ≲ 500µG magnetic fields ordered on 5 kpc scales in a
distant (z ∼ 2.6) gravitationally micro-lensed galaxy (Geach

et al. 2023). While the field strength remains poorly con-
strained1, the fact that it is ordered on ∼ kpc scales poses
a problem for the model outlined above, since a LSD would
not have had enough time to become established at z ∼ 2.6,
and SSDs have been traditionally thought to produce fields
that are chaotic on large scales, and only become ordered
on the smallest scales allowed by magnetic dissipation (e.g.,
Schekochihin et al. 2004; Kriel et al. 2022; Brandenburg et al.
2023), which are expected to be ≪ pc in size for ISM condi-
tions (Marchand et al. 2016). A similar problem exists in
galaxy mergers, where the rapid growth in magnetic field
strengths seen in simulations point to SSD action, but the
fields produced are correlated on ∼ kpc scales, which have
been thought to be too large scale for a SSD to generate
(e.g., Rodenbeck & Schleicher 2016; Basu et al. 2017; Brzy-
cki & ZuHone 2019; Whittingham et al. 2021).

In this paper we explore a possible resolution to the prob-
lems highlighted above for galaxy mergers. The expectation
that SSDs only produce small-scale structure is based on ex-
tensive explorations of SSDs in incompressible (e.g., subsonic)
flow regimes, which is the regime we explored in Paper I of
this series (Kriel et al. 2022, herein Fundamental Scales I).
In Fundamental Scales I, we used direct numerical simula-
tions to confirm theoretically predicted properties of mag-
netic fields produced during the kinematic phase (see semi-
nal works by, e.g., Kazantsev 1968; Vainshtein 1982; Vincenzi
2002; Schekochihin et al. 2004; Boldyrev & Cattaneo 2004),
highlighting how the bulk of magnetic energy is localised at
the smallest possible scales in the incompressible problem,
i.e., the scale where magnetic fields dissipate. However, both
the first galaxies (Maio et al. 2011; Mandelker et al. 2020) and
later galaxy mergers (Geng et al. 2012; Sparre et al. 2022) are
expected to host highly compressible (i.e., supersonic) turbu-
lence, since the great majority of their mass and a substantial
fraction of their volume consists of dense, atomic and molec-
ular gas (Cox et al. 2006; Krumholz et al. 2009; Popping
et al. 2014; Nandakumar & Dutta 2023) where rapid cooling
keeps the sound speed well below the characteristic flow ve-
locity (Rees & Ostriker 1977; White & Rees 1978; Birnboim
& Dekel 2003; Krumholz et al. 2020; Li et al. 2020). While it
has been shown that supersonic flows decreases the efficiency
of SSDs (Federrath et al. 2011, 2014; Achikanath Chirakkara
et al. 2021; Seta & Federrath 2021, 2022; Hew & Federrath
2023), there has to date, been no systematic study of how
compressibility changes magnetic field geometry, characteris-
tic scales, or structure. Our goal in this paper is to provide
such a study, and in turn to explore its implications both
for galaxy mergers and for other phenomena that depend on
magnetic field structure, most notably cosmic ray transport
(e.g., Kempski et al. 2023; Lemoine 2023).

The remainder of this paper is structured as follows. In Sec-

1 Geach et al. (2023) arrive at an upper bound for the magnetic
field strength based on the assumption of energy equipartition be-
tween magnetic and kinetic energy. However, even the most effi-

cient dynamos do not reach perfect equipartition in the t → ∞
saturation (e.g., Federrath et al. 2011, 2014; Kriel et al. 2022;
Beattie et al. 2023). For supersonic dynamos, which are expected
to be at play in the molecular gas that they trace for this galaxy,
the final saturation is more likely ∼ 1%, which means the field

is ∼ µG, making it consistent with the field strengths of modern

galaxies.
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tion 2 we describe the numerical simulation suite we use to
develop our theoretical model for compressible SSDs. In Sec-
tion 3 we present and interpret the simulation results, and in
Section 4 we discuss their implications for a variety of astro-
physical systems. We summarise our results and conclusions
in Section 5.

2 NUMERICAL APPROACH

In this study we use direct numerical simulations to explore
the kinematic phase of SSDs in flows ranging from viscous
to turbulent, and subsonic to supersonic. In Section 2.1 we
introduce the basic equations that we solve, the numerical
method by which we do so, and the initial conditions for our
simulations. In Section 2.2 we introduce the key dimensionless
parameters that describe different flow regimes, and how we
vary these parameters to explore different flow properties. In
Section 2.3, we then discuss issues of convergence.

2.1 Numerical Model, Method, and Initial Conditions

For all the simulations in this study, we solve the compress-
ible set of non-ideal (visco-resistive) magnetohydrodynamical
(MHD) fluid equations, which in conservative form are

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂ρu

∂t
+∇ ·

[
ρu ⊗ u − 1

4π
b ⊗ b

+

(
c2sρ+

b2

8π

)
I− 2νρS

]
= ρf , (2)

∂b

∂t
−∇× (u × b − ηj ) = 0, (3)

∇ · b = 0, (4)

for an isothermal plasma evolving over a uniformly discre-
tised, cubic-domain ℓ(x,y,z) ∈ [0, ℓbox], with triply periodic
boundary conditions. Here we use constant (in both space
and time) kinematic shear viscosity and Ohmic resistivity,
parameterised by the coefficients ν and η, respectively, in
combination with an external forcing field f , to achieve flows
with desired plasma numbers (see Section 2.2 for details). The
remaining quantities in the equations are the gas density ρ,
the gas velocity u , the sound speed cs, the current density
j = ∇× b/(4π), and the magnetic field b = b0 + δb, which
has mean field b0, and fluctuating (turbulent) field δb com-
ponents. Finally, our viscosity model is based on the traceless
strain rate tensor, S, where

S =
1

2

(
∇⊗ u + (∇⊗ u)T

)
− 1

3
(∇ · u) I, (5)

and ⊗ is the tensor product ∇⊗ u ≡ ∂iuj .
We solve Equation 1-Equation 4 with a modified version

of the finite-volume flash code (Fryxell et al. 2000; Dubey
et al. 2008), employing a second-order conservative MUSCL-
Hancock 5-wave approximate Riemann solver, described in
Bouchut et al. (2007, 2010), and implemented into flash by
Waagan et al. (2011), who showed that it possesses excellent
stability properties for highly supersonic MHD flows, with
improved efficiency and stability compared with Roe-type
solvers. Since our primary interest lies in studying the effects
of shocks (a hallmark of supersonic flows), this solver proves

highly suitable. Moreover, we utilise the parabolic divergence-
cleaning method described by Marder (1987) to enforce that
∇ · b = 0 errors are diffused away.
All our simulations use a dimensionless unit system where

the simulation box size ℓbox = 1, mean density ρ0 = 1, the
sound speed cs = 1, and magnetic fields are measured in
units of ρ

1/2
0 cs = 1. We initialise every simulation with uni-

form density ρ = ρ0 = 1, zero velocity u = 0 , and zero
mean magnetic field b0 = 0 . Since there is no mean mag-
netic field, and magnetic flux through the simulation volume
is conserved, only a fluctuating component can exist, b = δb.
We initialise this fluctuating component with a spectral dis-
tribution (using TurbGen; Federrath et al. 2022) that is non-
zero only over the wavenumber range 1 ≤ kℓbox/2π ≤ 3, with
a parabolic profile that peaks at kℓbox/2π = 2, and goes to
zero at kℓbox/2π = 1 and kℓbox/2π = 3. Here, the isotropic
wavenumber k is defined as per usual: k ≡ 2π/ℓ. We choose
the amplitude of this initial parabolic δb profile such that the
plasma–β ≡ pth/pmag = 8πc2sρ0/b

2 = 1010. We note that the
exact configuration of the initial seed δb field is not impor-
tant, because it is quickly forgotten by the Markovian-like
flow dynamics, and has been shown to not affect the am-
plification nor the final saturation of the dynamo (Seta &
Federrath 2020; Bott et al. 2022; Beattie et al. 2023).

2.2 Dimensionless Numbers and Flow Regimes

In this study we explore 34 different simulation configura-
tions, each parameterised by a set of dimensionless numbers
that characterise the MHD flow regime. Here we introduce
each of these numbers, as well as the range of values over
which we vary them, before summarising our full set of sim-
ulations in Table 1.

2.2.1 Sonic Mach Number

For all our simulations we produce an isotropic, smoothly
varying (in time and space) acceleration field via the forcing
term, f , in Equation 2, which is modelled with a generalisa-
tion of the Ornstein-Uhlenbeck process in wavenumber-space
(Eswaran & Pope 1988; Schmidt et al. 2006, 2009; Feder-
rath et al. 2010; Federrath et al. 2022) using TurbGen. We
choose to drive the acceleration field with purely solenoidal
modes, i.e., ∇· f = 0, because they produce motions that are
the most efficient at amplifying magnetic energy (Federrath
et al. 2011, 2014; Martins Afonso et al. 2019; Chirakkara et al.
2021), and tune the amplitude of f in each of our simulations
to achieve a root-mean-squared (rms) gas velocity dispersion,

⟨u⟩1/2V , on the driving (outer) scale, ℓturb, that lies within 5%
of our desired value, uturb; the notation ⟨q⟩V indicates the vol-
ume average of quantity q over the entire simulation domain
V ≡ ℓ3box. We choose ℓturb = ℓbox/2 for all of our simula-
tions to maximise the scale separation between kinetic fields
and the small-scale magnetic fields they generate, which we
achieve by driving f with a parabolic power spectrum that is
non-zero only over the wavenumber range 1 ≤ kℓbox/2π ≤ 3,
peaking at kℓbox/2π = 2, and falling to zero at kℓbox/2π = 1
and kℓbox/2π = 3. The corresponding autocorrelation time
of f , and hence the kinetic field, is

tturb = 2π/(kturbuturb). (6)

MNRAS 000, 1–24 (2023)



4 Kriel, et al., 2023

Even though cs = 1 in our simulations, it is convenient to
express the flow velocity relative to the sound speed, i.e., the
sonic Mach number

M ≡ uturb

cs
. (7)

To study the effect of compressibility, we run simulations
spanning a wide range of M, with M = 0.3, 1, 5, and 10. On
the lower end of M, we run 11 simulations with M = 0.3,
where incompressibility in the probability density function
(PDF) ofM values in V holds up to 3-sigma fluctuations2 (as-
suming Gaussianity). This is the regime we explored in Fun-
damental Scales I, and is relevant for studying Kolmogorov
(1941)-like turbulence. We also run a set of four transsonic
simulations, M = 1, but then turn most of our attention
towards the supersonic flow regime, where we run 16 simu-
lations with M = 5 and three simulations with M = 10.
Here, in the highly-compressible (M ≳ 1) flow regime, one
expects to see Burgers (1948)-like turbulence (see for example
Federrath 2013; Federrath et al. 2021).

2.2.2 Hydrodynamic Reynolds Number

The second dimensionless parameter that characterises our
simulations is the hydrodynamic Reynolds number

Re ≡ |∇ · (ρu ⊗ u)|
|∇ · (2νρS)| ∼ uturb ℓturb

ν
, (8)

which describes the relative importance of inertial to viscous
forces in a flow. In Fundamental Scales I we found evidence
that Re ≈ Recrit ≈ 100 is a critical value for Re during
the kinematic phase, separating viscous (Re < Recrit) from
turbulent (Re > Recrit) flows, with several flow properties
changing across this boundary. For example, velocity gradi-
ents – which are responsible for viscous dissipative events (see
for example Schumacher et al. 2014) – have sub-Gaussian
kurtosis in flows with Re < Recrit, and super-Gaussian kur-
tosis (i.e., intermittent velocity fluctuations) in Re > Recrit
flows. Similarly, the kinetic energy3 dissipation (viscous) scale
follows the theoretically-expected scaling ℓν ∼ Re3/4 (Kol-
mogorov 1941) when Re > Recrit, and then as ℓν ∼ Re3/8

when Re < Recrit (Fundamental Scales I). While ℓν is the
characteristic viscous scale, there are in fact a whole range
of scales ≲ ℓν over which dissipation takes place (e.g., Frisch
& Vergassola 1991; Chen et al. 1993), which have also been
shown to be directly affected by the degree of intermittency
of velocity gradient fluctuations (e.g., Schumacher 2007).

2 From the density dispersion-Mach relation we expect M = 0.3
fields driven by solenoidal forcing to have ≈ 10% fluctuations in
the density field (Padoan et al. 1997; Passot & Vázquez-Semadeni

2003; Federrath et al. 2008, 2010; Price et al. 2010; Gerrard et al.
2023).
3 In turbulence theory, naming conventions originally inspired by

Kolmogorov (1941), primarily apply to incompressible (M ≪ 1)
flows, where the time-derivative of the mean kinetic energy

∂t
[
⟨Ekin⟩V

]
= 0.5 ⟨ρ⟩V ∂t

[〈
u2

〉
V
]
, because density fields are con-

stant in time, and velocity fields are time-varying. However, when
addressing highly compressible (M ≫ 1) flows, it becomes neces-

sary to adjust our naming conventions to acknowledge that both
ρ and u (as well as the covariance between these fields) are time-
varying, and hence ℓν is the characteristic dissipation scale of ki-

netic energy, rather than purely the velocity field.

Based on this, we explore 10 ≤ Re ≤ 3000, where we run
most of our simulations with Re > 100 (in the turbulent
regime), and dedicate a small portion of our simulations to
10 ≤ Re ≤ 100, to explore the transitional regime towards
viscous flows.

2.2.3 Magnetic Prandtl Number

Our final two dimensionless numbers4 are the magnetic
Reynolds number,

Rm ≡ |∇ × (u × b)|
|η∇× j | ∼ uturb ℓturb

η
, (9)

which, analogously to the hydrodynamic Reynolds number,
characterises the relative importance of magnetic induction
compared with magnetic (Ohmic) dissipation, and the mag-
netic Prandtl number,

Pm ≡ Rm

Re
∼ ν

η
. (10)

Pm characterises the relative strength of the magnetic and
kinetic energy dissipation, and thereby gives us control of the
relative position of the characteristic kinetic and magnetic
energy dissipation scales, ℓν and ℓη, respectively. We focus
on the Pm ≥ 1 regime, because it is relevant for most of the
gas in the ISM, and explore 1 ≤ Pm ≤ 300.

Now, during the kinematic phase of M < 1, Pm > 1 SSDs,
there exist well-established theoretical expectations for the
relationship between key MHD length scales: ℓturb, ℓν , and ℓη,
along with the scale ℓp on which magnetic fields are strongest.
In this regime, Schekochihin et al. (2002b, 2004) predicted,
and Fundamental Scales I, and Brandenburg et al. (2023) con-
firmed numerically, that ℓp ∼ ℓη ∼ ℓν Pm

−1/2 (i.e.,magnetic
energy is strongest on the magnetic dissipation scale). One of
the primary goals of our study is to test whether this hierar-
chy of scales also holds in the M > 1 regime.

2.2.4 Choice of Simulation Parameters

The discussion of dimensionless numbers above motivates our
choice of simulation parameters. To determine the scaling
behaviour of ℓη and ℓp in compressible flows, we first run
a set of eight simulations with Rm = 3000, where we vary
1 ≤ Pm ≤ 300 while keeping M = 5. To isolate the role of
compressibility, we then also run a subset of these simulations
with M = 0.3, 1, and 10. Next, we run three Re = 500,
M = 5 simulations, with Pm = 1, 2, and 4, and four Re = 10,
M = 5 simulations with 25 ≤ Pm ≤ 250. Then, to explore
the transition from turbulent to viscous flows, we run a set of
four M = 0.3 simulations, where we fix Rm = 500 and vary
1 ≤ Pm ≤ 50. Finally, we run two simulations with Re = 2000
and Pm = 5 (which gives Rm = 10000), with M = 0.3 and 5,
respectively, to confirm that our findings in both the subsonic
and supersonic regimes hold in the high-Rm limit.

4 Instead of parameterising our flows with respect to the dimen-

sionless Alfvénic Mach number, we use, by dynamo-theory con-
vention, the magnetic to kinetic energy ratio, which are directly

related: MA = (4πρ)1/2
〈
u2

〉1/2
V /

〈
b2
〉1/2
V = (Emag/Ekin)

−1/2, to
determine the relative importance of Lorentz forces in the flow. In

the kinematic phase: Emag/Ekin ≪ 1, and therefore MA ≫ 1.

MNRAS 000, 1–24 (2023)
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We summarise the full set of simulations we carry out in Ta-
ble 1. In this table, and throughout the remainder of this pa-
per, we adopt a naming convention whereby simulations are
named MMMMReRRRPmPPP, where MMM, RRR, and PPP give the
numerical values of the sonic Mach number, hydrodynamic
Reynolds number, and magnetic Prandtl number for that
simulation, respectively. Thus, for example M0.3Re600Pm5
indicates a simulation with M = 0.3, Re = 600, and Pm = 5.

2.3 Numerical Convergence in Time and Resolution

To ensure well-sampled statistics, we run all of our simula-
tions for a duration of t = 100 tturb (i.e., 100 autocorrelation
times of the forcing field), which we show below extends well
beyond the kinematic phase and into the saturated state of
the dynamo for all of our simulations. We also collect data
every t = 0.1 tturb to ensure well-sampled temporal statistics.
To ensure convergence with regard to spatial resolution,

we systematically run each of our simulation setups at pro-
gressively higher resolution, until our measurements of key
characteristic scales: ℓν , ℓη, and ℓp converge. All our simula-
tions use a uniform, cubic grid of N3

res cells, where we test
for convergence by carrying out simulations at resolutions
Nres = 18, 36, 72, 144, and 288, and then for a subset of our
simulations, as required, we also run at higher resolutions of
Nres = 576, 1152 (we indicate these simulations in column 13
of Table 1); we defer a discussion of how we assess conver-
gence to Section 3.4.

3 RESULTS

Before we detail our methods for characterising field struc-
tures in our simulations, we first confirm that we measure
dynamo growth for all our simulations in Section 3.1, discuss
the effect of compressibility on the efficiency of it, and define
how we isolate the time-range corresponding with the kine-
matic phase. Then in Section 3.2 we compare magnetic field
morphologies in the subsonic and supersonic regimes, which
motivate our methods for measuring characteristic scales de-
scribed in Section 3.3. We evaluate convergence in Section 3.4,
and then analyse the trends of converged, characteristic scales
across our full parameter range in Section 3.5 and 3.6.

3.1 Simulation Phases

In Figure 1 we plot the time evolution of the rms M and
volume-integrated ratio of magnetic to kinetic energy,

Eratio ≡ Emag

Ekin
=

ˆ
V
b2/(8π) dV
ˆ
V
ρu2/2 dV

(11)

for two representative simulations, M0.3Re600Pm5 in pur-
ple and M5Re600Pm5 in yellow. These runs have identi-
cal dimensionless plasma numbers, Re = 600 with Pm = 5,
but differ in M. In both simulations shown, and in fact for
all our simulations (see Table 1), we identify four distinct
phases: a transient phase at the start of the simulation, im-
mediately followed by the exponential-growth (kinematic),
linear-growth, and finally saturated dynamo phase.
The transient phase roughly spans 0 ≤ t/tturb ≤ 5, and is

Figure 1. Time evolution of the root-mean-squared sonic Mach
number (top panel) and the ratio of the volume-integrated mag-

netic to kinetic energy (bottom panel) for M0.3Re600Pm5 (pur-

ple) and M5Re600Pm5 (yellow). Both plasmas have Re = 600 and
Pm = 5, but M = 0.3 and 5, respectively. We indicate four distinct

phases in the simulations: (1) a transient phase where the turbu-

lent velocity field becomes fully established (grey shaded region);
(2) a kinematic phase when the magnetic field grows exponentially

in time (black solid lines show exponential model fits); (3) a linear

growth phase that begins once magnetic fields are strong enough
to suppress some of the kinetic motions (dashed black lines in the

inset panel show linear fits); (4) a saturated phase that begins once

the magnetic energy is close to equipartition with the kinetic en-
ergy (dotted horizontal lines). We report the measured exponential

growth rate, and saturated energy ratio for each of our simulation
setups in columns (8) and (9) of Table 1, respectively.

associated with the time it takes for the forcing field to ac-
celerate the plasma into a fully developed (statistically sta-
tionary) state. During this transient time, the magnetic field
reorganises itself out of this initial configuration, and in the
case of subsonic turbulence, into a self-similar configuration
that has most of its energy concentrated on the smallest scales
(e.g., Fundamental Scales I and Beattie et al. 2023). This re-
organisation leads to a short-lived decay in Emag.

During the kinematic phase, Emag grows exponentially
fast, amplifying the magnetic energy by more than 7 or-
ders of magnitude, until it reaches ∼ 10% of the kinetic
energy. We measure the growth rate, γ, of magnetic en-
ergy during this phase by fitting each simulation with an
exponential model, Emag(t) ∼ exp(γt), over the time range
5tturb ≤ t ≤ tend, where tend is implicitly defined by
Eratio(tend) = 10−2. For the two simulation show, namely
M0.3Re600Pm5 and M5Re600Pm5, we measure growth
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Table 1. Main simulation parameters and derived quantities.

Sim. ID Re Rm Pm νtturb/ℓ2turb
ηtturb/ℓ2turb M γ tturb

(
Emag

Ekin

)
sat

kν/kbox kη/kbox kp/kbox Extra N3
res

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

M = 0.3

M0.3Re500Pm1 500 500 1 3.0× 10−4 3.0× 10−4 0.30± 0.01 0.42± 0.01 0.14± 0.03 23.9± 0.5 13± 1 4± 1 –

M0.3Re100Pm5 100 500 5 1.5× 10−3 3.0× 10−4 0.30± 0.02 0.48± 0.01 0.36± 0.06 8.4± 0.2 9± 1 4± 1 –

M0.3Re50Pm10 50 500 10 3.0× 10−3 3.0× 10−4 0.30± 0.02 0.46± 0.01 0.4± 0.1 5.8± 0.2 9± 1 4± 1 –
M0.3Re10Pm50 10 500 50 1.5× 10−2 3.0× 10−4 0.29± 0.02 0.40± 0.01 0.05± 0.06 3.0± 0.1 9± 1 4± 1 –

M0.3Re3000Pm1 3000 3000 1 5.0× 10−5 5.0× 10−5 0.29± 0.01 0.76± 0.01 0.32± 0.04 75.5± 1.3 41± 1 16± 1 5763

M0.3Re600Pm5 600 3000 5 2.5× 10−4 5.0× 10−5 0.31± 0.01 1.00± 0.01 0.43± 0.05 27.7± 0.6 30± 1 10± 1 5763

M0.3Re300Pm10 300 3000 10 5.0× 10−4 5.0× 10−5 0.30± 0.01 0.93± 0.01 0.7± 0.1 16.7± 0.3 22± 1 8± 1 –

M0.3Re100Pm30 100 3000 30 1.5× 10−3 5.0× 10−5 0.30± 0.01 0.76± 0.01 0.9± 0.2 8.4± 0.2 20± 1 8± 1 –

M0.3Re24Pm125 24 3000 125 6.3× 10−3 5.0× 10−5 0.31± 0.02 0.83± 0.01 1.6± 0.3 4.2± 0.1 16± 1 7± 1 –
M0.3Re10Pm300 10 3000 300 1.5× 10−2 5.0× 10−5 0.30± 0.02 0.79± 0.01 2.4± 0.4 3.0± 0.1 14± 1 7± 1 –

M0.3Re2000Pm5 2000 10000 5 7.0× 10−5 1.0× 10−5 0.29± 0.01 1.34± 0.01 0.36± 0.04 70.6± 1.0 80± 1 26± 1 5763, 11523

M = 1

M1Re3000Pm1 3000 3000 1 1.7× 10−4 1.7× 10−4 0.97± 0.04 0.59± 0.01 0.18± 0.03 78.0± 1.3 38± 1 13± 1 5763

M1Re600Pm5 600 3000 5 8.5× 10−4 1.7× 10−4 1.02± 0.03 0.72± 0.01 0.40± 0.05 30.7± 0.9 27± 1 8± 1 5763

M1Re300Pm10 300 3000 10 1.7× 10−3 1.7× 10−4 1.04± 0.04 0.78± 0.01 0.45± 0.08 18.9± 0.8 22± 1 8± 1 –

M1Re24Pm125 24 3000 125 2.1× 10−2 1.7× 10−4 1.04± 0.06 0.83± 0.01 1.1± 0.2 4.4± 0.1 16± 1 8± 1 –

M = 5

M5Re10Pm25 10 250 25 2.5× 10−1 1.0× 10−2 5.1± 0.3 0.43± 0.01 0.14± 0.05 3.2± 0.1 7± 1 3± 1 5763

M5Re10Pm50 10 500 50 2.5× 10−1 5.0× 10−3 5.1± 0.3 0.64± 0.01 0.26± 0.06 3.2± 0.1 9± 1 4± 1 5763

M5Re10Pm125 10 1250 125 2.5× 10−1 2.0× 10−3 5.0± 0.3 0.77± 0.01 0.29± 0.04 3.2± 0.1 13± 1 6± 1 5763

M5Re10Pm250 10 2500 250 2.5× 10−1 1.0× 10−3 5.0± 0.3 0.81± 0.01 0.40± 0.07 3.2± 0.1 16± 1 9± 1 5763

M5Re500Pm1 500 500 1 5.0× 10−3 5.0× 10−3 5.1± 0.3 0.19± 0.01 0.01± 0.01 37.5± 0.7 16± 4 3± 1 –
M5Re500Pm2 500 1000 2 5.0× 10−3 2.5× 10−3 5.2± 0.3 0.34± 0.01 0.04± 0.01 37.8± 0.7 21± 3 4± 2 –

M5Re500Pm4 500 2000 4 5.0× 10−3 1.3× 10−3 5.1± 0.3 0.42± 0.01 0.06± 0.01 37.6± 0.7 25± 2 4± 2 –

M5Re3000Pm1 3000 3000 1 8.3× 10−4 8.3× 10−4 5.1± 0.2 0.35± 0.01 0.03± 0.01 101.5± 1.2 46± 5 5± 2 5763

M5Re1500Pm2 1500 3000 2 1.7× 10−3 8.3× 10−4 5.1± 0.3 0.37± 0.01 0.05± 0.01 80.8± 1.2 41± 3 4± 2 5763

M5Re600Pm5 600 3000 5 4.2× 10−3 8.3× 10−4 5.0± 0.2 0.44± 0.01 0.07± 0.01 43.9± 0.8 34± 3 4± 1 5763

M5Re300Pm10 300 3000 10 8.3× 10−3 8.3× 10−4 5.1± 0.3 0.50± 0.01 0.11± 0.04 27.0± 0.6 25± 2 5± 1 –
M5Re120Pm25 120 3000 25 2.1× 10−2 8.3× 10−4 5.0± 0.3 0.57± 0.01 0.13± 0.01 14.3± 0.4 25± 1 7± 1 5763

M5Re60Pm50 60 3000 50 4.2× 10−2 8.3× 10−4 4.9± 0.3 0.72± 0.01 0.25± 0.03 9.0± 0.3 23± 1 7± 1 5763

M5Re24Pm125 24 3000 125 1.0× 10−1 8.3× 10−4 4.9± 0.3 0.76± 0.01 0.38± 0.09 5.0± 0.2 19± 1 8± 1 5763

M5Re12Pm250 12 3000 250 2.1× 10−1 8.3× 10−4 4.8± 0.3 0.72± 0.01 0.42± 0.06 3.4± 0.1 17± 1 8± 1 5763

M5Re2000Pm5 2000 10000 5 1.3× 10−3 2.5× 10−4 4.9± 0.3 0.49± 0.01 0.09± 0.02 104.2± 1.5 71± 3 9± 2 5763, 11523

M = 10

M10Re3000Pm1 3000 3000 1 1.7× 10−3 1.7× 10−3 9.6± 0.5 0.44± 0.01 0.02± 0.01 98.5± 1.7 53± 4 5± 2 5763

M10Re600Pm5 600 3000 5 8.3× 10−3 1.7× 10−3 9.8± 0.5 0.55± 0.01 0.05± 0.01 45.5± 0.8 37± 2 6± 1 5763

M10Re300Pm10 300 3000 10 1.7× 10−2 1.7× 10−3 10.1± 0.5 0.65± 0.01 0.07± 0.02 28.5± 0.6 26± 2 6± 2 –

Column (1): unique simulation ID. Column (2): the hydrodynamic Reynolds number (Equation 8). Column (3): the magnetic Reynolds

number (Equation 9). Column (4): the magnetic Prandtl number (Equation 10). Columns (5) and (6): the kinematic viscosity (in
Equation 2) and magnetic resistivity (in Equation 3) expressed in units of the turbulent turnover-time, tturb, and the driving scale,

ℓturb. Column (7): the turbulent sonic Mach number, M = uturb/cs, where cs is the speed of sound. Column (8): the exponen-

tial growth rate of the volume-integrated magnetic energy during the exponential-growing (kinematic) phase of the small-scale dy-
namo (SSD), in units of tturb. Column (9): the ratio of the volume-integrated magnetic Emag to kinetic energy Ekin in the sat-
urated state of the SSD. Columns (10), (11), and (12): kν , the characteristic kinetic dissipation (viscous) wavenumber (see Sec-

tion 3.3.1), kη , magnetic dissipation(resistive) wavenumber (see Section 3.3.2), and kp, peak scale of the magnetic energy power spec-
trum (see Section 3.3.3) during the kinematic phase. Note, all scales are expressed in units of kbox = ℓbox/(2π). Column (13): ex-

tra grid resolutions that were explored in addition to the default N3
res ∈ {183, 363, 723, 1443, 2883}, (see Section 2.3 for details).

rates γ = (1.00±0.01)t−1
turb and γ = (0.44±0.01)t−1

turb, and re-
port the measured γ for all simulations in column 8 of Table 1.
Inspection of these values supports the idea that at fixed Re
and Pm, γ is generally lower in supersonic compared with
subsonic SSDs (Federrath et al. 2011; Schober et al. 2012;

Federrath et al. 2014; Chirakkara et al. 2021). During this
(kinematic) phase we also confirm that M remains statisti-
cally stationary, and within 5% of our desired value for all
our simulations; M = 0.31 ± 0.01 for M0.3Re600Pm5, and
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M = 5.0 ± 0.2 for M5Re600Pm5 (see column 7 of Table 1
for all other simulations).
Following the kinematic phase, the magnetic energy growth

transitions from an exponential-in-time process to a linear-
in-time process for both M < 1 and M ≥ 1 SSDs. To il-
lustrate this, we plot Eratio for our two representative sim-
ulations on a linear-linear scale in the inset axis of the bot-
tom panel in Figure 1. For our M ≥ 1 SSDs, we do not
find a transition into quadratic growth, as has been sug-
gested should be the case by Schleicher et al. (2013). More-
over, as was the case in the kinematic phase, we find that
the growth rate in the linear-growth regime is lower for the
supersonic, i.e.,M5Re600Pm5, compared with the subsonic,
i.e.,M0.3Re600Pm5, SSDs. Finally, once the magnetic en-
ergy approaches equipartition with the kinetic energy, the en-
ergy ratio saturates, and is maintained thereafter at a nearly
constant value by the forcing field; this defines the saturated
phase. We measure (Eratio)sat = 0.43±0.05 and 0.07±0.01 for
M0.3Re600Pm5 and M5Re600Pm5, respectively, and report
this ratio for all simulations in column 9 of Table 1. Again,
these values are generally smaller in the supersonic compared
with subsonic regimes.

3.2 Magnetic Structures

Now that we have confirmed we observe SSD growth in all of
our simulations, we turn our attention to field morphologies
during the kinematic phase. In Figure 2 we plot 2D field slices
for six simulations from Table 1 (with the two simulations
in Figure 1 plotted in the two middle column-panels). All
slices are taken from the middle of the simulation domain,
(x, y, z = ℓbox/2), at a time realisation midway through the
kinematic phase, viz. (5 + tend)/2, where tend is defined as in
the previous section. The top and bottom row panels show
slices for simulations in two different M regimes, where the
top row shows subsonic simulations with M = 0.3, and the
bottom row shows supersonic simulations with M = 5. For
all simulations in this figure, we keep Rm = 3000 fixed, and
vary Pm (and thereby Re, or more explicitly5 ν) between the
columns.
In the left column we show two simulations in the viscous-

flow regime, where Re = 24 < Recrit, in the middle column we
show mildly turbulent flows, Re = 600 ≳ Recrit, and the right
column we show highly turbulent flows, Re = 3000 ≫ Recrit.
In each panel we plot |u2/u2

rms| in blue, |b2/b2rms| in red, and
ρ/ρrms contours in black, where we have normalised both the
velocity and magnetic fields by their rms values to reveal
the underlying structure. We truncate the magnetic energy
colourbar to show only regions where |b2/b2rms| > 0.5, so that
the weak-field regions are not shown.
Qualitatively, the top row of Figure 2 illustrates how mag-

netic field energy shifts from being primarily present in large-
scale structures in viscous flows, to smaller scale structures in
turbulent flows. This systematic transition is expected during
the kinematic phase of a subsonic SSD, where magnetic fields
become stretched, folded, and ultimately organised with most
of their energy concentrated at the smallest available scales
allowed by Ohmic dissipation, ℓp ∼ ℓη ∼ Re−3/4Pm−1/2

(e.g., Schekochihin et al. 2004 and Fundamental Scales I).

5 Because ℓturb and uturb is fixed in each row.

In the supersonic regime (bottom row), however, we ob-
serve a different transition in the magnetic field morphology.
In the viscous regime (left column), both the subsonic and
supersonic plasmas have similarly large-scale magnetic struc-
tures, but, then in the highly turbulent regime (right column),
these two flow regimes look distinctively different. The tur-
bulent, subsonic plasma (top-right panel of Figure 2) appears
to have significantly more small-scale magnetic energy struc-
tures compared with the turbulent, supersonic plasma, which
appears to have its magnetic energy primarily concentrated
in elongated, coherent, shocked regions of gas (e.g., illustrated
by the tightly-packed density contours that coincide with
the boundaries of regions of strong magnetic energy in the
bottom-right panel of Figure 2).

While systematic studies of the volume-averaged SSD prop-
erties (i.e., growth rate and saturated energy ratio) have ex-
plored this transition (Federrath et al. 2011; Chirakkara et al.
2021), no direct, systematic study of the underlying magnetic
field properties has been performed, and therefore we focus
the remainder of this study on it.

3.3 Measuring Characteristic Scales from Energy Spectra

In the previous section we highlighted the systematic shift
of magnetic energy structures from large scale for viscous
flows to smaller scale for turbulent flows, which we broadly
observed for both subsonic and supersonic plasmas in the
kinematic phase of the SSD. To quantify this transition in all
of simulations, we measure three characteristic wavenumbers,
namely kν , kη, and kp, which are directly related (k ≡ 2π/ℓ)
to ℓν , ℓη, and ℓp, respectively.

In Fundamental Scales I we measured these characteristic
wavenumbers by fitting semi-analytical models for the kinetic
and magnetic energy spectra, Ekin(k) and Emag(k), respec-
tively, to 1D shell-integrated power spectra calculated from
simulations in the usual way (by summing the total power in
discrete, radial shells in k-space). Namely, the energy spec-
trum of field ψ is computed as

Eψ(k, t) =
∑

k∗<|k|<k∗+∆k∗

4πk2ψ̃(k , t) ψ̃∗(k , t) (12)

where we choose to bin in integer k-bins (k∗ ∈ Z+ : k∗ ̸= 0)
separated by ∆k∗ = 1, and

ψ̃(k , t) =
1

(2πℓbox)3/2

ˆ
V
ψ(ℓ, t) exp (−ik · ℓ) d3ℓ (13)

is the Fourier transform of ψ(ℓ, t), with ψ̃∗(k , t) its complex
conjugate.

We also attempted this approach for the present study, but
found that the existing functional models for both energy
spectra failed to reliably measure characteristic scales for our
supersonic simulations, especially our lower-resolution runs,
which are required to perform our resolution study. More
specifically, due to the limited inertial range for our low-Re
simulations, we could not effectively constrain kν , and found
that Emag(k), for our supersonic simulations, had a wider en-
ergy spectrum than the subsonic simulations, which was not
well-fit by the functional form used in Fundamental Scales
I for the subsonic case. Prompted by these challenges, we
develop new and simpler, spectral model-free methods for
measuring kν , kη, and kp, based on the underlying turbu-
lence and fluid theory, which we apply to all our simulations,

MNRAS 000, 1–24 (2023)



8 Kriel, et al., 2023

Figure 2. Two-dimensional slices of u2/u2
rms (blue), b2/b2rms (red), and ρ/ρrms (black contours) fields for six different simulations at

N3
res = 5763, spanning a range of plasma regimes. Note that the colourbar for b2/b2rms is transparent for values b2/b2rms < 0.5, so regions

of low magnetic energy density are not visible. The six simulations shown are M0.3Re24Pm125, M0.3Re600Pm5, and M0.3Re3000Pm1

in the top row, and M5Re24Pm125, M5Re600Pm5, and M5Re3000Pm1 in the bottom row, respectively, where all simulations have

Rm = 3000, with Pm (and therefore also Re) changing, and velocity flows are subsonic (M = 0.3) in the top row and supersonic (M = 5)
in the bottom row. We see that in the viscous flow regime (Re < Recrit ≈ 100; left column), both the subsonic and supersonic simulations

produce similar, large-scale magnetic structures. Moving towards the turbulent regime (Re ≫ Recrit; middle and right columns), structures
that carry most of the magnetic field energy live on significantly smaller scales compared with the viscous regime. In the subsonic regime
(top row), magnetic fields are more uniformly distributed and space-filling, occupying even smaller scales than in the corresponding

supersonic simulations (bottom row). In the supersonic simulations, magnetic fields are concentrated in high-density shocked regions

bounded by sharp jumps in the velocity magnitude, with an almost constant characteristic length of approximately ℓturb, and shock width
ℓshock decreasing with increasing Re.

and demonstrate yield robust results through all of our flow
regimes.

3.3.1 Characteristic Viscous Dissipation Wavenumber

We define the turbulent viscous wavenumber, kν , di-
rectly from the definition in Kolmogorov turbulence, i.e.,

the wavenumber where the scale-dependent hydrodynamic
Reynolds number equals one, Re(kν) = 1. This scale marks
the transition from inertial forces dominating in the turbu-
lent cascade, kturb < k < kν , to dissipation dominating at
kν < k. Hence, to measure kν , we construct the wavenumber-
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Figure 3. Normalised and time-averaged (over the kinematic phase)

kinetic energy spectrum (Êkin(k); top panel) constructed with
ψ = u/

√
2 in Equation 13, for the M0.3Re600Pm5 (purple) and

M0.3Re600Pm5 (yellow) simulations run at N3
res = 5763. The

solid lines shows the 50th percentile of the Êkin(k) spectrum over
all snapshots during this phase, and the bands show the 16th to

84th percentile variance of Êkin(k). We also plot the wavenumber-

dependent hydrodynamic Reynolds number (Re(k); bottom panel),
Equation 14. From Re(k) we measure a characteristic kinetic en-

ergy dissipation (viscous) wavenumber, kν : Re(kν) = 1 (via Equa-

tion 16), which we annotate with vertical lines for both simula-
tions in the top and bottom panels. For reference, we also plot

Êkin(k) ∼ k−5/3 and Êkin(k) ∼ k−2 in the top panel, which cor-

responds with the expected inertial range scaling of Kolmogorov
(1941) and Burgers (1948) kinetic energy spectra, respectively.

dependent hydrodynamic Reynolds number,

Re(k, t) =
uturb(k, t)

νk
, (14)

which follows from the turbulent velocity as a function of k,

uturb(k, t) =

(
2

ρ0

ˆ ∞

k

Ekin(k
′, t) dk′

)1/2

. (15)

In practice we solve for kν from our simulations using a root
finding method,

kν(t) = argmink

[
I
{∣∣∣Re(k, t)− 1

∣∣∣}], (16)

where | . . . | is the absolute operator, I[. . . ] is a piecewise cu-
bic polynomial (spline) interpolation operator, as performed
in Beattie et al. (2023), and argmink[h(k)] returns the argu-
ment k which minimises the function h(k). For each of our
simulations, we evaluate Equation 16 at each time-snapshot
during the kinematic phase.
While Equation 16 provides a simple way of extracting the

viscous wavenumber from Ekin(k), there remains the ques-
tion of which field, ψ, to Fourier transform in the supersonic

Figure 4. As in Figure 3, but for the current density power spec-

tra (Êcur(k); top panel) and magnetic energy spectrum (Êmag(k);
bottom panel) for M0.3Re600Pm5 and M5Re600Pm5. We anno-

tate the measured characteristic magnetic dissipation (resistive)

wavenumber in the top panel, kη (Equation 17), and the magnetic
peak wavenumber, kp (Equation 18), in the bottom panel. We also

annotate Êmag(k) ∼ k3/2 for reference, which is the expected scal-

ing of Emag(k) in the subviscous range during the kinematic phase
of a subsonic SSD (Kazantsev 1968; Schekochihin et al. 2002a).

regime. When ψ = u/
√
2 in Equation 13, then Ekin(k) is

the velocity power spectrum – which in incompressible flows
is directly proportional to the kinetic energy spectrum be-
cause the density field is constant – and Equation 14 then
carries the same units as the usual definition of the hydrody-
namic Reynolds number, i.e., Equation 8 is computed from
the velocity on scale ℓ. However, this velocity power spec-
trum definition for Ekin(k) ignores the covariance between
the density field and the square velocity field, i.e.,

〈
ρu2
〉
V /2

(see footnote 3), as well as fluctuations in the density field,
which in isothermal plasmas are a factor of M2 larger than
velocity fluctuations (this factor follows from a unit analy-
sis of the ideal-hydrodynamic momentum equation in steady
state). Beattie & Federrath (2020) showed that the density
spectrum becomes dominated by high-k modes that can lead
to large pressure gradients, which mediate the exchange of
kinetic and internal energy (see for example Federrath et al.
2010; Federrath 2013; Schmidt & Grete 2019; Grete et al.
2021, 2023). Therefore we also check whether density fluctu-
ations affect our measurements of kν , by also considering the
definition for Ekin which carries the units of kinetic energy,
namely with ψ = u

√
ρ/2 (see, e.g., Federrath et al. 2010;

Grete et al. 2021, 2023).
Here in the main text we focus on kν derived from Equa-

tion 14 constructed with ψ = u/
√
2, which we demonstrate in

Figure 3 for the same two representative simulations shown in
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Figure 1, namely M0.3Re600Pm5 and M5Re600Pm5. Then
in Appendix A we demonstrate that regardless of the choice of
definition for Ekin(k), whether based on Re(k) having dimen-
sionless units (i.e., constructed with ψ = u/

√
2), or choosing

ψ = u
√
ρ/2 such that Ekin(k) carries units of kinetic energy,

we recover the same scaling behaviour for kν , and thus the
choice of definition for Ekin does not any of the conclusion
presented in our study.

3.3.2 Characteristic Resistive Dissipation Wavenumber

While our approach of defining kν in terms of the
wavenumber-dependent hydrodynamic Reynolds number
performs well, we find that an analogous approach to defin-
ing the resistive wavenumber in terms of the spectrum of
Rm yields results that are inconsistent with those derived
from early methods (Kulsrud & Anderson 1992; Kriel et al.
2022; Brandenburg et al. 2023); see Appendix B for details.
For this reason we adopt a different approach by recognis-
ing that, since we employ Ohmic dissipation in the induction
equation (Equation 3), the Ohmic dissipation rate at any
point in space is exactly equal to ηj2. On this basis we define
the resistive wavenumber as the wavenumber of maximum
j2(k), corresponding to the maximum magnetic dissipation
(since η is a constant). Explicitly, we define kη as the value of
k corresponding to the maximum of the 1D shell-integrated
current density spectrum (which has units of current den-
sity squared), Ecur(k), which is defined similarly to Ekin(k)
in Section 3.3.1, but for the field ψ = ∇× b/(4π).

In practice we implement this as

kη(t) = argmaxk

[
I
{
Ecur(k, t)

}]
, (17)

where I{. . . } is defined as in Equation 16, and argmaxk[h(k)]
returns the argument k which maximises h(k). As with kν ,
we compute this quantity for every snapshot during the kine-
matic phase. We illustrate this procedure in the top panel of
Figure 4, where in analogy with the top panel of Figure 3, we
plot the normalised and time-averaged (over the kinematic
phase) Ecur for our two representative simulations, with the
corresponding resistive wavenumbers kη indicated by vertical
bands.

3.3.3 Peak Magnetic Wavenumber

Finally, we define the magnetic peak wavenumber as the max-
imum of Emag(k), defined similarly to the current density
power spectra but with ψ = b/8π. Explicitly,

kp(t) = argmaxk

[
I
{
Emag(k, t)

}]
. (18)

We illustrate Emag(k) and kp for our two representative sim-
ulations in the bottom panel of Figure 4. In Appendix C we
point out that, while the magnetic correlation wavenumber
is directly proportional to peak wavenumber during the kine-
matic phase of a subsonic (both viscous and turbulent) SSD
(Schekochihin et al. 2004; Galishnikova et al. 2022; Beattie
et al. 2023), this scaling breaks down for supersonic, turbu-
lent SSDs.

Figure 5. Measured viscous (kν ; top panel), resistive (kη ; middle
panel), and magnetic peak (kp; bottom panel) wavenumbers plot-

ted against linear grid resolution for M0.3Re600Pm5 (magenta)

and M5Re600Pm5 (yellow). We overlay a best-fit of our conver-
gence model, Equation 19, to each set of wavenumbers to measure

characteristic wavenumbers that have converged with resolution.

We report the converged kν , kη , and kp for each of our simulations
in columns (10), (11), and (12) of Table 1, respectively.

3.4 Convergence of Measured Wavenumbers

As previously discussed in Section 2.3, we ensure that all
the characteristic wavenumbers we measure from our differ-
ent simulation setups are converged with respect to the grid
resolution Nres. We do this by running each simulation setup
in Table 1 across a wide range of Nres, measuring our three
wavenumbers of interest, kscale ∈ {kν , kη, kp} in the kine-
matic phase, and then fitting a generalised logistic model of
the functional form

kscale(Nres) = kscale(∞)

(
1− exp

{
−
(

Nres

Nres,crit

)R})
, (19)
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Supersonic small-scale dynamos 11

Figure 6. For each of our simulation setups in Table 1, we compare the converged viscous wavenumber, kν , with the hydrodynamic Reynolds

number of the plasma flow (left panel). We also plot the scale separation between the magnetic and kinetic dissipation wavenumbers,

kη/kν , with the magnetic Prandtl number (right panel). We colour points based on their M, where M = 0.3 is coloured magenta, M = 1
is coloured white, M = 5 is coloured yellow, and M = 10 is coloured black. To guide the eye in the left panel, we show theoretical

scalings of kν for Burgers (1948): kν ∼ Re2/3 (solid black line; Schober et al. 2012), Kolmogorov (1941): kν ∼ Re3/4 (dashed black line),

and for a viscous, subsonic velocity field (see Fundamental Scales I): kν ∼ Re3/8 (dotted black line). In the right panel we annotate a
kη/kν ∼ Pm1/2 scaling, and plot viscous simulations (Re < Recrit ≈ 100) as circles, and turbulent simulations (Re > Recrit) as diamonds.

to the resolution-dependent wavenumbers. The parameters
in our fits are kscale(∞), which represents the converged
(Nres → ∞) value of each wavenumber {kν , kη, kp}, the rate
of convergence R, and the critical resolution Nres,crit at which
characterises the resolution where convergence begins.

As discussed in Section 2.3, we start by running each sim-
ulation configuration across Nres = 18 − 288, separated by
factors of 2, and then we fit those data for Nres,crit. If we
find that our best-fit value of Nres,crit is larger than 288, or
that our data does not yield a fit for Nres,crit with reason-
able uncertainty, we rerun that setup at the higher resolu-
tion Nres = 576. We then repeat the convergence test, dou-
bling the resolution until we obtain a well-constrained value
ofNres,crit, such that our highest-resolution run for each setup
satisfies max[{Nres}] > Nres,crit.

In Figure 5 we plot the resolution (Nres) dependent kν , kη,
and kp, and our best fits to these wavenumbers, for our two
representative simulations. Broadly, for both simulations, we
find evidence of convergence at Nres ≈ 576, but since kν , kη,
and kp may all exist on different scales, one would expect
the convergence properties of each wavenumber to be dif-
ferent, since small-scale (high-k) structures are expected to
require higher resolution to converge than larger-scale (low-
k) structures. This is what we find. For M0.3Re600Pm5
we find kν begins to converge at Nres,crit = 43.0 ± 2.2,
while kη and kp begin converging at Nres,crit = 190.4 ± 20.2
and Nres,crit = 117.2 ± 40.0, respectively. This is expected,
since we are operating in the Pm ≥ 1 regime where mag-
netic structures are smaller-scale than velocity structures,
viz. kν < kη ∼ kp, and therefore require a higher grid resolu-
tion to resolve. By contrast, for M5Re600Pm5, we find that
kν shows convergence at Nres,crit = 79.4 ± 4.6, whereas kη
requires Nres,crit = 173.5 ± 40.7 and kp requires Nres,crit =
20.6± 18.3. Comparing the subsonic and supersonic cases, it

is noteworthy that kη shows similar convergence behaviour,
but that kp converges at significantly lower grid resolution,
consistent with the visual differences in size scale visible in
Figure 2.

We report the converged values kscale(∞) (extrapolated to
infinite resolution) for all our simulations in columns 10–12
of Table 1, and use this in all of our analysis that follows, but
for compactness from this point on (and in the header of Ta-
ble 1) we drop the notation (∞). We also report the measured
Nres,crit and R for all our simulations in Table D1. These fits
are based on using all data up to the highest resolution we
have run for each simulation configuration.

3.5 Where Do Kinetic and Magnetic Fields Dissipate?

Now that we have obtained converged dissipation wavenum-
bers, we are prepared to explore how these scales depend
on the dimensionless plasma parameters M, Re and Pm. In
the kinematic phase of the dynamo, where magnetic fields
are subdominant on all scales, we expect kν to depend only
on the kinetic field properties (i.e., kturb and Re), and the
separation between kν and kη to be a function of only Pm.
The exact relationship between these dissipation scales and
principal parameters should change between the subsonic and
supersonic regimes, an effect we explore in Figure 6, where we
plot kν/kturb against Re in the left panel and kη/kν against
Pm in the right panel, in both cases colour-coding the simu-
lations by M.

3.5.1 Viscous Scaling

We first consider the scaling behaviour of kν , and its de-
pendence on Re, in the left hand panel of Figure 6. Here,
for our turbulent (Re ≳ Recrit), subsonic (M = 0.3; plotted
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in yellow) and transsonic (M = 1; plotted in white) sim-
ulations, we recover kν/kturb ∼ Re3/4 as expected for Kol-
mogorov (1941) turbulence with Ekin(k) ∼ k−5/3. This is the
same scaling behaviour we had previously demonstrated in
Fundamental Scales I using our previous methods, and now,
here we confirm that our new method (Equation 16) recovers
the same scaling in the same flow regime. This scaling has
also been extensively demonstrated in both numerical simu-
lations (Yeung & Zhou 1997; Schumacher 2007; Schumacher
et al. 2014) and laboratory experiments (Barenblatt et al.
1997).
For our viscous (Re < Recrit), trans- and subsonic (M ≤ 1)

simulations, we recover kν/kturb ∼ Re3/8 = (Re3/4)1/2. This
result again agrees broadly with our previous findings in Fun-
damental Scales I, where we had found that viscous, subsonic
flows have sub-Gaussian velocity gradients (viscous dissipa-
tion lacked intense, local events), which led to a scaling of
kν with Re that was shallower than expected for Kolmogorov
(1941) turbulence.
Finally, for our supersonic (M = 5 and 10) simulations we

measure kν/kturb ∼ Re2/3, which corresponds with Burgers
(1948) turbulence where Ekin(k) ∼ k−2 (Schober et al. 2012;
Federrath et al. 2021), which is a shallower scaling in Re com-
pared with Kolmogorov (1941) turbulence, but steeper than
the scaling for a viscous, subsonic velocity field (Fundamental
Scales I).
To summarise the three regimes concisely,

kν/kturb ∼


Re3/8, M ≤ 1, Re < Recrit,

Re3/4, M ≤ 1, Re ≥ Recrit,

Re2/3, M > 1.

(20)

The fact that during the kinematic phase of our SSD sim-
ulations we have in all cases recovered well-known results for
purely hydrodynamic turbulence is not surprising, since dur-
ing the kinematic phase Emag(k) ≪ Ekin(k) for all k (see
Beattie et al. 2023 for the sub-sonic Emag(k)/Ekin(k) func-
tions showing this), and therefore the magnetic field exerts
a negligible Lorentz force. Thus Equation 2 becomes inde-
pendent of b, and approximately hydrodynamical. Once b is
strong enough (as the dynamo process transitions into the
linear growth and saturated regimes), we do not expect these
dissipation scalings to persist, but measuring these scalings
is beyond the scope of the current study.

3.5.2 Resistive Scaling

Next, in the right hand panel of Figure 6, we consider the
scale-separation between kν and kη, and how this scale sep-
aration depends upon Pm. This is the most direct way to
test whether, even in supersonic flows, the smallest scale ki-
netic eddies are responsible for amplifying (shearing) mag-
netic fields (see Section 2.2.3 for details). And in fact, we find
evidence that regardless of the flow regime, kη/kν scales like
Pm1/2, which implies that this is the case.

Now, perhaps this is not completely unexpected. At no
stage during the derivation for the theoretical kη ∼ kνPm

1/2

expectation does one make any assumption about the under-
lying properties of the velocity field (i.e., if the flow is turbu-
lent or viscous, subsonic or supersonic), as long as the flow
is isotropic. Namely, Schekochihin et al. (2002b) put forward
ℓη ∼ ℓν Pm

−1/2 by assuming that Emag is primarily grown
by viscous eddies, with characteristic shearing (or stretching)

rate uν/ℓν (where uν is the velocity on scale ℓν). Balancing
this rate of energy injection into the magnetic field with the
rate of Ohmic dissipation, η/ℓ2η, rearranges to give

ℓη ∼
(
η ℓν
uν

)1/2

=

(
η

ν

ν

uν
ℓν

)1/2

∼ ℓν Pm
−1/2, (21)

where ℓν ∼ ν/uν follows from a straightforward unit analysis.
From this we conclude that kη ∼ kν Pm

1/2 is a universal
scaling in the Pm ≥ 1 regime, a result that favours a picture
in which the smallest scale (viscous) eddies are responsible for
converting Ekin into Emag, completely invariant to whether
the kinetic energy cascade is Burgers (1948)-like or Kol-
mogorov (1941)-like, and moreover, turbulent (Re > Recrit)
or viscous (Re < Recrit).

3.6 What Sets the Peak Magnetic Energy Scale?

In Figure 7 we plot the wavenumber where the magnetic en-
ergy spectrum peaks, kp, and compare it with the character-
istic resistive wavenumber, kη, for all of our simulations. We
notice an interesting dichotomy in the scaling of kp derived
from the M ≤ 1 (sub- and transsonic) and M > 1 (super-
sonic) simulations, and introduce a new colouring criteria for
all our simulations to highlight the differences between the
different flow regimes. We colour all the M ≤ 1 simulations
white, and colour the M > 1 simulations based on a colour
map that we will discuss and motivate below.

Before we move to the supersonic simulations, we again ver-
ify that our new methods for measuring kp and kη are robust
and reliable. To demonstrate this, we highlight that we find
kp = (0.40± 0.06) kη, determined from averaging our M ≤ 1
SSD simulations (white points), which recovers kp ∼ kη. This
is a well known theoretical result (e.g., Schekochihin et al.
2002b), which was confirmed in previous numerical simula-
tions (Fundamental Scales I; Brandenburg et al. 2023), and
tells us that in the kinematic phase of (even approximately)
incompressible SSDs, magnetic energy becomes concentrated
at the smallest scales allowed by magnetic dissipation (e.g.,
Schekochihin et al. 2002b; Xu & Lazarian 2016; Kriel et al.
2022; Brandenburg et al. 2023). Notice, however, that the
0.40± 0.06 constant of proportionality in this relation is de-
pendent upon the models used to measure kp and kη, and
therefore expectantly different from the 1.2 ± 0.2 found in
Fundamental Scales I (see Section 3.3 for a discussion on our
new methods).

The behaviour of kp for supersonic SSDs during the kine-
matic phase is dramatically different from the subsonic scal-
ing, though. While a portion of our M > 1 simulations
follow the same kp ∼ kη scaling as the subsonic cases, the
rest deviate significantly to wavenumbers such that kp < kη.
To develop an intuition for why this happens, we briefly
turn our attention back to the bottom row panels in Fig-
ure 2, which show runs M5Re24Pm125, M5Re600Pm5, and
M5Re3000Pm1, respectively. For M5Re3000Pm1, for exam-
ple, magnetic energy (red) seems to be preferentially con-
centrated inside of shocked regions of gas, where there are
large jumps in the density field (black contours), which have
previously been shown to be coherent up to kturb (and even
beyond, depending upon how strong the magnetisation is;
Beattie & Federrath 2020; Beattie et al. 2021), even though
they fill very little of the volume (e.g., Hopkins 2013; Robert-
son & Goldreich 2018; Mocz & Burkhart 2019; Beattie et al.
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Figure 7. Converged magnetic peak wavenumber, kp, plotted against the converged characteristic magnetic dissipation (resistive) wavenum-

ber, kη , for each simulation setup in Table 1. In the main panel, we plot sub- and transsonic simulations with white circles, and in both
(main as well as inset) panels, we plot supersonic simulations with diamonds that are coloured based on the reciprocal of our characteristic

shock width model, kshock (see Equation 26). To provide further insights into the supersonic dynamics, we add an inset panel where we
focus on a subset of the supersonic simulations. In this inset, we plot the set of M = 5 simulations where Rm = 3000 is fixed, and Re is
changed via ν. In both panels, we also annotate the same reference kp ∼ kη line in black.

2022b). Based on kp, the shocks do not seem to be present in
M5Re24Pm125, where even though the velocity dispersion
is large (uturb ≳ 5cs), the kinetic energy diffusion coefficient,
ν, is large enough to dissipate the supersonic velocities be-
fore they are able to form shocks. A likely criteria for this
effect is that the shock lifetime, tshock (which is a fraction of
the sound crossing time across the shocked region; Robert-
son & Goldreich 2018), is shorter than the diffusion timescale,
tν ∼ ℓ2ν/ν.

Our supersonic simulations appear to support a hypothesis
that, when shocks are present, ℓp approaches a value much
larger than ℓη, that depends somehow on the typical width of
shocks, ℓshock. To test this conjecture, we estimate ℓshock from
the quasi-equilibrium state of the momentum equation, omit-
ting the magnetic terms because the Lorentz force is unimpor-
tant in the kinematic dynamo phase, even in shocked regions
(Emag(k)/Ekin(k) ≪ 1, for all k; Beattie et al. 2023), and

excluding external forcing, but not setting viscosity or the
sound speed to zero (e.g., the pressureless, Burgers’ equation
limit, ∇P/M2 → 0 as M → ∞), namely,

∇ ·
(
ρu ⊗ u + c2sρI− 2νρS

)
= 0. (22)

Since shocks are generated isotropically in our supersonic tur-
bulent simulations, we simplify Equation 22 by considering
a single characteristic shock travelling in 1D (adopting the
usual convention that x < 0 and x > 0 are the up and down
stream directions, respectively; see Figure 8 for a schematic
of this setup). It follows that

d

dx

[
ρu2 + c2sρ−

4νρ

3

du

dx

]
= 0. (23)

The quantity in square brackets is the momentum flux,
which is conserved across the shock, and since du/dx→ 0 as
x→ −∞ (i.e., the velocity gradient vanishes far up stream of
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Figure 8. Schematic of a 1D velocity shock, in the reference frame
of the shock: the up stream material (x < 0) with up stream sonic

Mach number M0 approaches the shock located at x = 0 with

velocity u.

the shock), this momentum flux must be ρ0u
2
0 + c2sρ0, where

subscript 0 indicates quantities in the far up stream region.
Conservation of mass flux further implies that ρu = ρ0u0 =
const, and making use of this result allows us to rewrite Equa-
tion 23 in the form

dM
dx

=
3cs
4ν

(
M2 −

(
M2

0 + 1

M0

)
M+ 1

)
, (24)

where M = u/cs is the position-dependent sonic Mach num-
ber.
Equation 24 has the form of a Riccati equation (nonlinear,

quadratic differential equation of first-order) with constant
coefficients, and has the solution that dM/dx = 0 whenM =
M0 or 1/M0; the former possibility represents the up stream
region, and the latter the down stream region. Since x does
not explicitly appear on the right-hand side of Equation 24,
we are free to choose our coordinate system such that M = 1
at x = 0 (as we have done in Figure 8). From this, we estimate
the characteristic shock width as

ℓshock
ℓturb

∼ 1

ℓturb

[
M

dM/dx

]
x=0

∼ M2
0

Re (M0 − 1)2
. (25)

In supersonic turbulence one expects to see a population of
shocks that take on a wide distribution of ℓshock (e.g., Smith
et al. 2000; Brunt & Heyer 2002; Donzis 2012; Lesaffre et al.
2013; Squire & Hopkins 2017; Park & Ryu 2019; Beattie et al.
2020, 2022b), where each of the different ℓshock are determined
by the M0 that is up stream from it. That being said, the
distribution of shock widths is controlled by the turbulent
properties on ℓturb, where on average, M0 ≈ M. Therefore,
we model the characteristic width of a shock in our isotropic
turbulent simulations as

kturb
kshock

=
ℓshock
ℓturb

∼ M2

Re (M− 1)2
. (26)

In the inset axis of Figure 7 we test whether this shock
width model can explain the difference between kp and kη
that we see (note that we colour points by the inverse shock
width, so to emphasise that the numerator, kshock, is chang-
ing, and kturb = 2 in the denominator is fixed). Here we plot
the full set of M = 5 and Rm = 3000 simulations; within this
collection of runs, Re is varied via changing ν (i.e.,uturb and
kturb are fixed), and we find that the most turbulent simula-
tion in this set,M5Re3000Pm1, lies farthest from the kp ∼ kη
relation, while the most viscous simulation, M5Re24Pm125,
lies on the relation. Between these two limits, the inverse

Figure 9. For each of our simulations we compare kp/kη with the

reciprocal of our shock width model (Equation 26; note, formally,

this is only valid for M > 1), where M ≤ 1 points are plotted as
white circles, and M > 1 as green diamonds. We annotate the scal-

ing relation kp/kη = (kshock/kturb)
−1/3 (relevant for compressible

simulations) with a solid line, the average of the M ≤ 1 simula-
tions kp/kη = 0.40±0.06 (relevant for incompressible simulations)

with a dashed line, and kshock/kturb = 102 with a vertical dotted
line, about which we see the supersonic points transition from the

compressible to incompressible scaling.

shock width (Equation 26) scales directly proportional to the
deviation of each point from the kp ∼ kη relation.

We demonstrate this more explicitly in Figure 9, which
shows kp/kη as a function of kshock/kturb. It is clear that the
majority of the M > 1 simulations (green diamond points)
are well-fit by the empirical relationship

kp
kη

=

(
kshock
kturb

)−1/3

, (27)

which we interpret to mean that shocks bring kp from kη to-
wards kshock, and the amount by which kp shifts to larger
scales is determined by the aspect ratio of typical shocks,
i.e., ratio of the typical length compared with width of shocks
in the medium. Since the forcing modes in all of our simula-
tions are kturb = 2, only kshock changes with the properties
of the medium (i.e., ν) and flow (Re and M), which is ex-
cellently captured by Equation 26. We hypothesise that the
exponent 1/3 in Equation 27 is likely associated with mag-
netic energy becoming concentrated into filamentary, shocked
regions, which are inherently 1D structures embedded in 3D
space.

In Figure 9 we see more evidence for a critical Reynolds
number Recrit ≈ 100 that separates M > 1 flows that sup-
port shocks (Re > Recrit) from those where strong viscosity
prevents shocks from forming (Re < Recrit). In the high M
limit kshock/kturb = Re, and thus Re = Recrit ∼ 100 corre-
sponds to kshock/kturb ∼ 100; we highlight this value by the
dotted vertical line in Figure 9. It is clear from the figure
that this line roughly identifies where the M > 1 simulations
transition from kp/kη ∼ const to kp/kη ∼ (kshock/kturb)

−1/3.
Indeed, one should notice that the seven red points that lie
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to the left of the vertical line in Figure 9 correspond with the
seven that lie along the kp ∝ kη relation in Figure 7, where
in all seven cases Re < 100.

We conclude that Figure 7 and Figure 9 can be explained
simply by two distinct regimes. In the first, incompressible
regime, the development of shocks is not supported by the
properties of the plasma, whether it is because the velocity
dispersion is too small (M ≤ 1) or because the viscosity
is large enough to dissipate the supersonic velocities before
shocks can form (i.e.,M > 1 and Re < Recrit). This results in
the well-known hierarchy of characteristic MHD scales where

ℓturb > ℓν > ℓη ∼ ℓp. (28)

In the compressible (shock-dominated; M > 1 and Re >
Recrit) flow regime, however, shocks concentrate magnetic
energy in large-scale, filamentary structures, which bring
the peak magnetic field scale from the resistive scale to
ℓp ∼ (ℓturb/ℓshock)

1/3ℓη ≫ ℓη (approaching ℓp ∼ Re1/3ℓη
for M ≫ 1), so the hierarchy of scales becomes

ℓturb > ℓp > ℓshock > ℓν > ℓη. (29)

Our characteristic shock width model, Equation 26, ex-
plains the growing proportion of large-scale magnetic en-
ergy in the magnetic energy distribution, and captures the
transition between the compressible and incompressible flow
regimes during the kinematic phase of a supersonic SSD.
Moreover, we find that the scaling in both flow regimes re-
mains consistent with our simulations, even in the asymp-
totic, high-Rm plasma regime, as evidenced by our two
highest, Rm = 104 simulations in both the incompressible
and compressible regimes (namely M0.3Re2000Pm5 and
M5Re2000Pm5) agreeing with the Equation 28 and 29 scal-
ings, respectively.
In the next section, we show that shocks not only concen-

trate magnetic energy into larger-scale coherent structures
(as demonstrated here), but they also change the underlying
magnetic field geometry.

3.7 Magnetic Field Curvature

While we have shown that shocks are responsible for reor-
ganising magnetic energy into large-scale, filamentary struc-
tures, here we will show that in doing so, they also completely
change the underlying magnetic field geometry. To quantify
field geometry we compute the curvature of magnetic field
lines

κ =
∥∥∥(b̂ · ∇

)
b̂
∥∥∥ , (30)

at every point in a simulation domain, where b̂ = b/|b| is
the tangent vector to the field6, and curvature points in the
κ̂ = (b̂ ·∇)b̂/κ direction. The radius of curvature of the field
in units of box length is then ℓbox/κ.

6 Note that in regions where the field changes substantially over
the scale of a single cell, as it does in shocked regions, numeri-

cal evaluation of κ requires some care in choosing a stencil that

maintains exact orthogonality of the tangent-normal-binormal ba-
sis vectors. See Appendix E for a discussion of our method, and

Schekochihin et al. (2004) for a brief acknowledgement of this issue.

In Figure 10 we plot the time-averaged, joint distribu-
tions of the relative magnetic field strength, b/brms (normal-
ising out the dynamo growth in b), and field-line curvature,
κℓbox, for the same six simulations as in Figure 2, namely
M0.3Re24Pm125, M0.3Re600Pm5, and M0.3Re3000Pm1
in the top row, and M5Re24Pm125, M5Re600Pm5, and
M5Re3000Pm1 in the bottom row, respectively. Focusing
first only on the three subsonic simulations (top row of Fig-
ure 10), we find that the (κ, b) distributions in both the vis-
cous (left panel) and turbulent SSDs (middle and right pan-
els) appear to have the same overall shape, where the weak-
est magnetic fields have the largest curvature, e.g., have the
most field reversals, and conversely the strongest fields are the
straightest. Here we find evidence of a scaling consistent with
b ∼ κ−1/2, which was first demonstrated by Schekochihin
et al. (2004) (as opposed to b ∼ κ−1 as previously suggested
by Schekochihin et al. 2002c and Brandenburg et al. 1995)
for incompressible SSDs and more recently by Kempski et al.
(2023) using M < 1 SSD and weak mean-field simulations
to study cosmic ray propagation. Schekochihin et al. (2004)
associates the b ∼ κ−1/2 anti-correlation with a “folded field”
geometry, where the shearing (tearing) velocity gradient ten-
sor and the magnetic tension are balanced7.

In contrast, the supersonic SSDs (bottom row of Figure 10),
show a significantly weaker relationship between the field
strength and field-line curvature, with the relative statisti-
cal independence of b and κ increasing as we move from the
most viscous flow (bottom left) to the most turbulent (bot-
tom right). In the turbulent, supersonic regime, it is clear that
both strong (b > brms) and weak (b < brms) field lines can
maintain a straight configuration (κℓbox < 2), although we
still see a dearth of high curvature (κℓbox > 2) for strong mag-
netic fields (b > brms; i.e., the upper right quadrant of the plot
is empty). We quantify this growing independence between b
and κ for each of our simulations in Figure 10 by computing
the Pearson correlation coefficient between log10(b/brms) and
log10(κ),

ϕ =
cov
[
log10(b/brms) log10(κℓbox)

]√
var
[
log10(b/brms)

]
var
[
log10(κℓbox)

] , (31)

where cov[. . .] and var[. . .] are the covariance and variance op-
erators, respectively. We annotate these values in each panel
of Figure 10.

The numerical results confirm our qualitative, visual im-
pression: b and κ are strongly anti-correlated (and in the log-
log domain, this translates to being linearly anti-correlated,
as one expects for the Schekochihin et al. 2004-type models)
in both the subsonic, viscous flow regime (upper left panel,
ϕ = −0.60) and subsonic, turbulent flow regimes (upper mid-
dle and right panels; ϕ = −0.55 and ϕ = −0.53, respectively).
The anti-correlation remains, but becomes weaker for super-
sonic flows that are too viscous to support shocks (lower left
panel, ϕ = −0.40), and then the anti-correlation almost com-
pletely disappears once strong shocks enter the picture (lower
middle and right panels; ϕ = −0.21 and ϕ = −0.10, respec-
tively).

7 The 1/2 exponent is a unique exponent that produces a steady-

state (κ, b) configuration in the comoving frame of the fluid, based
on cancelling the b̂⊗b̂ : ∇⊗v term in the incompressible curvature

evolution equation; equation (25) in Schekochihin et al. 2004.

MNRAS 000, 1–24 (2023)



16 Kriel, et al., 2023

Figure 10. Joint distributions of the relative magnetic field strength, b/brms, and the magnetic field-line curvature, κ (measured in units of

inverse ℓbox), for the same six simulations as in Figure 2. In all panels we report the Pearson correlation coefficient ϕ (given by Equation 31)
between log10(b/brms) and log10(κ/κrms). We also annotate a b ∼ κ−1/2 scaling, which is associated with a curvature relation where the

magnetic tension is exactly balanced by the turbulent stretching (the symmetric rate of shear component in ∇ ⊗ v ; Schekochihin et al.
2001, 2004); see Section 3.7 for a discussion. We also show b ∼ κ−1/4 and b ∼ κ−1 to guide the eye. The red, horizontal, dashed lines

indicates b = brms, while the red, vertical, dashed lines indicate κℓbox = 2, which marks the transition between fields that can (κℓbox ≥ 2)
and cannot (κℓbox < 2) reverse within the box-domain. The b ∼ κ−1/2 scaling holds well (on average) for the subsonic cases (top row),
but breaks down for the supersonic cases (bottom two right panels), which is most likely due to the presence of shocks being able to

compress and grow the field without necessarily modifying the curvature.

However, we find that what drives the anti-correlation in
Figure 10 is not the distribution of log10(κ), but the distri-
bution of log10(b). We demonstrate this in Figure 11, where
we plot the time-averaged (over the kinematic phase) PDF
of log10(κ) (left panel) and log10(b) (right panel) for our
two representative simulations (again, M0.3Re600Pm5 and
M0.3Re600Pm5). Notice that while the log10(κ) distribu-
tions look very similar8, the log10(b) distribution changes sig-
nificantly between the two flow regimes, with the magnetic
amplitude distribution becoming much broader (a greater

8 We annotate Schekochihin et al. (2002c)’s ∼ κ−13/7 power-law
model for the log10(κ) PDF, and find that while it shows some

agreement with the high-curvature side of the distribution, an ex-

ponential truncation might be a better description.

proportion of the fields are weaker or stronger than brms)
in the supersonic compared with the subsonic SSD. This is
likely due to shocks growing magnetic energy via compres-
sion and flux-freezing, which do not change the structure of
the magnetic field significantly. There is a marginal increase
in straighter fields, in the compressible regime, however for
M < 10 this effect is largely negligible.

This picture is supported by Figure 12, where we plot
100 magnetic field streamlines for our two representative
simulations at a time realisation midway through the kine-
matic phase. M0.3Re600Pm5 is plotted on the left half of
the cube, and M5Re600Pm5 is plotted on the right half.
The key takeaway is, in line with our findings above, that
while magnetic field lines in both regimes thread the simu-
lation domain with an equally “chaotic structure” (the field-
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Figure 11. Probability density functions (PDFs) of the magnetic field-line curvature, κ (measured in units of box-length; left panel), and

the normalised magnetic field amplitude (right panel), b/brms, for M0.3Re600Pm5 and M5Re600Pm5. We annotate κ2 and κ−13/7 in

the left panel, and b5/2 in the right panel, where κ−13/7 is a theoretical prediction for the κ distribution for magnetic fields in the
kinematic phase of a subsonic turbulent dynamo (Schekochihin et al. 2002c). We find only a negligible difference between p(κℓbox) for the

M < 1 (purple) and M > 1 (yellow) simulations, but there is significantly more low and high b/brms probability densities in the M > 1

simulation. Hence we conclude that the weakening correlation between κ and b (shown in Figure 10) is caused from shock compressions
that grow and shrink b without influencing κ.

Figure 12. Magnetic field streamlines for M0.3Re600Pm5 and

M5Re600Pm5 plotted on the left- and right-side half of the cube,

respectively, for a time realisation midway through each simula-
tion’s kinematic phase. The streamlines are coloured based on the
normalised magnetic field magnitude, b/brms, using a colour-range

that spans across the same range of b/brms as plotted in the right
panel of Figure 11.

line curvature distribution remains largely unchanged), the
magnitude of the field corresponding with different field-line
structures is different in the incompressible and compressible
regimes. In M0.3Re600Pm5, all straight field lines are strong
(b > brms; red), and all field lines with intense curvature are
weak (b < brms; blue). In contrast, for M5Re600Pm5 some
curved fields are strong and others are weak, and likewise,
straight fields can also be strong or weak, although there are
slightly more straight fields that are strong (compare the two

right hand quadrants in the middle panel on the bottom row
of Figure 10).

Overall, our quantitative analysis of the field geometry
supports our interpretation and Schekochihin et al. (2004,
2002b)’s models of the relationship between the magnetic
peak energy scale and resistive dissipation scale in the previ-
ous section: in the incompressible flow regime (where shocks
are absent), the SSD in the kinematic phase produces a
“folded-field”geometry9 where magnetic energy becomes con-
centrated at kη – the smallest scales possible (a state that
Schekochihin et al. (2004) shows persists into the saturated
phase), and b ∼ κ−1/2, but in the compressible flow regime
(where shocks are ubiquitous), this organisation of the field
geometry disappears. Again, we emphasise that the distri-
bution of magnetic field-line curvature remains essentially
the same, regardless of the flow regime, but curvature in the
compressible regime no longer correlates with magnetic-field
strength.

4 DISCUSSION

Our findings in this study are relevant to a wide range of as-
trophysical systems, but here we highlight galaxy mergers and
cosmic ray (CR) propagation as two particularly interesting
cases, since the former case creates an environment that stim-
ulates a kinematic phase SSD, while the latter has recently
been explored in terms of underlying curvature statistics of
the magnetic field. We highlight how it is of key importance
to differentiate between the incompressible and compressible
SSD regimes (see the end of Section 3.6 for our distinction
between these two regimes) for these astrophysical processes.

9 A term coined by Schekochihin et al. (2004) to describe the

configuration of magnetic fields in the incompressible flow regime.
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4.1 Galaxy Mergers

Recent studies (e.g., Pakmor et al. 2014, 2017; Brzycki &
ZuHone 2019; Whittingham et al. 2021, 2023; Pfrommer et al.
2022) have highlighted the important role that turbulent SSD
amplified magnetic fields play in shaping the overall size and
shape of galaxy merger remnants, particularly those involv-
ing gas-rich disc galaxies. These merger events are transfor-
mative for the galactic gas dynamics, with strong magnetic
fields modifying the transport of angular momentum, and aid-
ing in pressure support against collapse (Whittingham et al.
2021). Collectively, these factors contribute to the formation
of remnant galaxies with prominent spiral arms, which are
notably missing in the smaller scale, compact remnants pro-
duced by merger simulations that do not include the effects
of magnetic fields (e.g., Whittingham et al. 2021, 2023).

An important and as-yet unexplained property of the am-
plified magnetic fields is that the magnetic energy peaks on
ℓp ≳ kpc scales during the kinematic phase of the SSD pro-
duced by the merger (e.g., Rodenbeck & Schleicher 2016;
Basu et al. 2017; Brzycki & ZuHone 2019; Whittingham
et al. 2021), in stark contrast to the significantly smaller-
scale fields predicted by incompressible SSD theory. For ex-
ample, Whittingham et al. (2021) simulate a galaxy merger
using ideal MHD (i.e., no explicit viscosity or resistivity), so
their simulations have ℓη ∼ ℓν ∼ ℓres, where ℓres is the nu-
merical resolution. This is non-uniform in their moving-mesh
arepo simulations, but as a rough estimate we note that
in the ∼ 5 kpc region where they observe most of the dy-
namo amplification, they report a mean density ∼ 107 M⊙
kpc−3, which given their baryonic resolution mb ∼ 104M⊙
and characteristic Mach number M ∼ 3, corresponds with
ℓres ∼ 100 pc, and Re ∼ 1000, though the latter may be
a slight underestimate since presumably their resolution is
finest in regions of strong dissipation. Regardless, if an in-
compressible SSD were responsible for setting ℓp, then one
would expect ℓp ∼ ℓη ∼ 100 pc, which is significantly smaller
than the ℓp ≳ 1 kpc they find.
This discrepancy is resolved if we notice that mergers not

only induce compressions, but also drive supersonic turbu-
lent velocity fields (Geng et al. 2012; Sparre et al. 2022). For
example, Sparre et al. (2022) find that the gas bridge con-
necting merging galaxies is dominated by 1.6 ≤ M ≤ 3.3
turbulence on ℓturb ≲ 10 kpc scales. Magnetic amplification
in these galaxy mergers should therefore be attributed to a
compressible rather than an incompressible SSD, which we
showed in Section 3.6 brings magnetic energy to larger scales
by a factor ∼ (ℓturb/ℓshock)

1/3 ≳ 10. This would naturally
explain why they see magnetic fields structured on ∼ kpc
scales, much larger than the magnetic dissipation scales in
their simulations.
It is important to note that, while the discrepancy between

the value of ℓp produced during galaxy mergers and that pre-
dicted by subsonic SSD models is only a factor of ∼ 10− 100
in the context of simulations, the discrepancy is much larger
in reality, where dissipation scales are much smaller than
can be achieved in simulations. Incompressible SSDs pre-
dict10 (e.g., Schekochihin et al. 2004; Fundamental Scales I;

10 Note that in deriving this result we used ℓν ∼ ℓturb Re−3/4,
which corresponds with the viscous scale for a subsonic velocity
field, whereas ℓν ∼ ℓturb Re−2/3 for a supersonic velocity field.

Brandenburg et al. 2023; see also Section 3.6) ℓp ∼ ℓη ∼
ℓνPm

−1/2 ∼ ℓturbRe−3/4Pm−1/2 ∼ ℓturbRe−1/4Rm−1/2. As-
suming typical plasma parameters for the warm ionised phase
of the ISM (Rincon 2019; Ferrière 2019; Shukurov & Subra-
manian 2021; Brandenburg & Ntormousi 2023), Re ∼ 107

and Rm ∼ 1018, an incompressible SSD is therefore expected
to produce magnetic fields that are peaked ∼ 10 orders of
magnitude smaller than the turbulent scale; for a ∼ 10 kpc-
scale galaxy merger, this would correspond to ∼ 10−2 AU!
There is clearly a huge discrepancy between this prediction
and ℓp ≳ kpc observed magnetic fields, which are structured
on much larger scales. This highlights that compressible SSD
amplification, which organises magnetic fields on much larger
scales than incompressible SSDs, is a much more plausible ex-
planation for the magnetic structure produced during galaxy
mergers.

4.2 Cosmic ray Propagation

Butsky et al. (2023) has recently suggested that intermit-
tent magnetic field fluctuations are necessary for regulating
low-energy (∼ MeV – TeV) cosmic ray (CR) scattering in
the Milky Way. Kempski et al. (2023) and Lemoine (2023)
provide a potential source of magnetic field intermittency:
intense regions of curved magnetic fields that reverse upon
themselves, i.e.,magnetic field reversals. They argue that
if magnetic fields are dominated by their fluctuating field
(δb/b0 ≫ 1; as is the case for our simulations because there
is no b0) then there is an energy dependent diffusion process
associated with CR particles scattering off of magnetic fields
due to the field’s reversal being on scales that are resonant
with the gyroradius of the CR.

The Kempski et al. (2023) model contains a resonance cri-
terion derived from the assumption that b ∼ κ1/2, which
we have shown holds in incompressible plasma regimes, but
breaks down in supersonic turbulence. Instead, Section 3.7
shows that magnetic field strength and curvature tend to-
wards independence in the supersonic turbulent regime. That
is not to say that the magnetic field does not also support re-
versals in the supersonic regime; in probability density, it has
just as many as the subsonic regime (see Figure 11). How-
ever the magnetic field amplitude is no longer constrained to
a curvature relation, and hence the gyroradii of the CRs are
free to vary independently of the curvature. Therefore these
models will need to be modified for the M > 1 turbulent
regime, where parts of the volume will have no resonances.

The turbulent, M > 1 regime is important because (1)
most of the gas volume of the Milky Way is filled by hot
and warm ionized phases, where flows are sub- to transsonic,
M ≲ 2 (e.g., Gaensler et al. 2011; Draine 2011; Shukurov &
Subramanian 2021; Beattie et al. 2022a), hence shocks may
form even in the volume-filling phases of the ISM, and (2)
by mass – and thus if one is interested in the majority of
the targets for γ-ray production, for example – the Milky
Way is dominated by cold and warm neutral phases within
which flows are supersonic, M ≳ 4 − 10 (e.g., Federrath
et al. 2016; Beattie et al. 2019; Nguyen et al. 2019). Hence,
one cannot ignore the difference between incompressible and
compressible curvature statistics for CR propagation models.
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5 SUMMARY & CONCLUSIONS

In this study we explore how both the energy spectrum (see
Section 3.6) and field-line curvature (see Section 3.7) of mag-
netic fields produced during the exponential-growing (kine-
matic) phase of small-scale dynamos (SSDs) depend upon
the plasma flow regime (from subsonic M < 1 to super-
sonic M > 1, and viscous Re < Recrit ≈ 100 to turbulent
Re > Recrit flows). To do so, we have used direct numerical
simulations where we explicitly control the velocity field mag-
nitude, as well as the dissipation rates of kinetic and magnetic
energy to explore a wide range ofM, hydrodynamic Reynolds
number Re, and magnetic Prandtl number Pm. This has al-
lowed us to extend our understanding of SSD-amplified mag-
netic fields into the previously poorly-understood regime of
supersonic SSDs. In particular, we have identified new rela-
tionships between the important characteristic length scales
in a SSD – the outer scale of turbulence ℓturb, the kinetic
energy dissipation scale ℓν , the magnetic energy dissipation
scale ℓη, and the peak magnetic energy scale ℓp – as a func-
tion of the fundamental plasma numbers: M, Re, and Pm.
We complement this with a study of the statistics of magnetic
field-line curvature, which support our findings.
We list our key results below:

• During the kinematic phase of SSDs the kinetic energy
dissipation scale ℓν varies with Re and M as expected for
hydrodynamic flows (see the left panel in Figure 6). That
is, we find three regimes: ℓν ∼ ℓturb Re3/4 for M ≤ 1 flows
where Re > Recrit (turbulent subsonic flows), which corre-
sponds to Kolmogorov (1941)-like scaling, ℓν ∼ ℓturb Re2/3

for M > 1 (supersonic) flows, which corresponds to Burgers
(1948)-like scaling, and finally ℓν ∼ ℓturb Re3/8 for M ≤ 1
and Re < Recrit (subsonic viscous) flows (first shown in
Fundamental Scales I), which has a scaling intermediate
between the Kolmogorov (1941) and Burgers (1948) cases.

• The magnetic dissipation scale ℓη is related to the
kinetic dissipation scale as ℓη ∼ ℓν Pm

1/2, regardless of the
plasma flow regime. Since this scaling relation, first proposed
by Schekochihin et al. (2002b), follows from assuming that
ℓη is located on the scale where the viscous eddy shearing
rate is balanced by Ohmic dissipation, we conclude that the
viscous (smallest-scale) kinetic eddies are always the most
efficient at amplifying magnetic energy during the kinematic
phase of Pm ≥ 1 SSDs, invariant to the underlying proper-
ties of the kinetic motion, as long as the motions are isotropic.

• The magnetic peak scale ℓp and the associated statistics
of the magnetic field-line curvature κ produced by SSDs
are very different for incompressible (i.e., either M ≤ 1, or
M > 1 and Re < Recrit) and compressible (i.e.,M > 1
and Re > Recrit) flows. The incompressible case behaves as
predicted by the “folded field” model of Schekochihin et al.
(2002b, 2004), where the field-line curvature κ and the field
magnitude b are strongly anti-correlated (see Figure 10) as
b ∼ κ−1/2, and the magnetic energy becomes concentrated
on the smallest scales allowed by magnetic dissipation,
which results in the hierarchy of characteristic length scales
ℓturb > ℓν > ℓη ∼ ℓp. By contrast in the compressible regime
supersonic turbulence naturally gives rise to shocks with
characteristic shock width ℓshock ∼ M2ℓturb/[Re (M − 1)2],
which we derive in Section 3.6. These shocks grow magnetic

energy via flux-freezing and compression, which changes
the distribution of b amplitudes, essentially destroying the
anti-correlation between b and κ, but notably, does not
change the distribution of field-line curvature. As M → ∞,
the two magnetic field-line quantities tend towards inde-
pendence, b ∼ κ0. Moreover, these shocks also concentrate
magnetic fields on a scale ℓp ∼ (ℓturb/ℓshock)

1/3ℓη ≫ ℓη; in
the high M limit, this produces ℓp ∼ Re1/3ℓη, giving rise to
a hierarchy ℓturb > ℓp > ℓshock > ℓν > ℓη, where magnetic
energy becomes concentrated on scales much larger than the
magnetic dissipation scale.

• We discuss a longstanding problem about the generation
of large-scale magnetic fields in the context of galaxy mergers
(but potentially can be more broadly applied to other young
galaxies, such as the recent observation of a young starburst
galaxy with a large-scale field in Geach et al. 2023). We
argue that through supersonic turbulence – a natural state
for these galaxies, since both early galaxies and galaxy
mergers feature dense gas that cools quickly, rendering their
flows supersonic – the compressible SSD can construct fields
whose size scale can, for sufficiently large Re, approach the
outer scale of the turbulence, in complete contrast with fields
produced by the incompressible SSD, which are concentrated
at much smaller resistive scales ℓp ∼ ℓη.

• We also discuss the implications our results have on mod-
els of cosmic ray scattering based on resonances between the
size-scale of magnetic field reversals and the gyro-radius of
the cosmic ray, (e.g., Kempski et al. 2023). We suggest that
for supersonic plasmas, which may be a significant portion of
the interstellar medium of the Milky Way, these resonances
may not work, since the magnetic field amplitude (∼ gyro-
radius) and underlying field curvature become independent
from one another.
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APPENDIX A: DENSITY-WEIGHTED
HYDRODYNAMIC REYNOLDS NUMBER

In the main text (see Section 3.3.1) we measured charac-
teristic viscous wavenumbers, kν , from kinetic energy spec-
tra, Ekin(k), constructed only from the velocity field (that
is, ψ = u/

√
2 in Equation 13). An alternative, popular

definition for compressible flows (see for example Federrath
et al. 2010; Federrath 2013; Schmidt & Grete 2019; Grete
et al. 2021, 2023), which accounts for density fluctuations,
is Ekin(k) constructed from Equation 13 with ψ = u

√
ρ/2.

This definition is based on the idea that Ekin should have

Figure A1. For each simulation setup in Table 1, we compare

the converged (see Section 3.4 for details) characteristic viscous

wavenumber, kν , measured from Equation 16 constructed with
ψ = u/

√
2 (y-axis; studied in the main text), and kν constructed

with ψ = u
√

ρ/2 (x-axis).

units of kinetic energy, and such that ψ2 needs to be a posi-
tive definite quantity (Kida & Orszag 1990).

In Figure A1 we compare converged (with numerical res-
olution; see Section 3.4) kν measured from both definitions
for Ekin(k), for all our simulations, plotting kν derived from
the ψ = u

√
ρ/2 spectrum on the x-axis, and ψ = u/

√
2

on the y-axis. We show that kν measured from the different
definitions for Ekin(k) scales 1:1, and therefore our measure-
ments for kν in the kinematic phase of the SSD are robust
and insensitive to density fluctuations.

APPENDIX B: RESISTIVE SCALES MEASURED FROM
MAGNETIC REYNOLDS SPECTRA

Given the success of our definition for the viscous scale (Equa-
tion 16), one may be tempted to define the resistive scale
analogously. That is

kRm(t) = argmink

[
I
{∣∣∣Rm(k, t)− 1

∣∣∣}], (B1)

where Rm(k, t) ≡ uturb(k, t)/ηk. However, in Figure B1 we
show that this wavenumber, kRm, does not correspond with
kη derived from Equation 17. In this figure we plot the sepa-
ration between the converged (with numerical resolution; see
Section 3.4), time averaged (over the kinematic phase) kRm

and kν , for each of our simulations in Table 1, and show that
this separation does not scale like Pm1/2, which we showed
in Figure 6 is the case irrespective of the flow regime.

We interpret this to mean that, whilst a unit analysis of the
magnetic Reynolds number gives Rm ∼ uturbℓturb/η, more di-
rectly, Rm (Equation 9) controls the relative importance of
the induction term, ∇ × (u × b), compared with magnetic
dissipation, η∇ × j . However, each of these terms operate
on different characteristic scales, (scales associated with ℓν
for the induction, as we showed in Figure 6, and scales as-
sociated with ℓη for the dissipation). These details are not
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Figure B1. For each simulation in Table 1, we plot the separation

between the wavenumber where magnetic Reynolds number is one,

kRm : Rm(k) = 1, and the viscous wavenumber, kν (using the
definition in the main text, see Section 3.3.1), via kRm/kν and

compare this separation with the magnetic Prandtl number. We

plot simulations with Re < Recrit ≈ 100 as circles, and Re >
Recrit as diamonds, and colour points by the sonic Mach number.

We also annotate two power laws Pm1/3 (solid line) and Pm1/7

(dashed line) to highlight the different empirical scaling of kRm/kν
for subsonic and supersonic SSDs.

captured by only considering the influence of uturbℓturb/η,
i.e., only considering the velocity structures for building the
scale dependence (as we did with Equation 14). In fact, we
know from Section 3.5 that kη should be largely independent
of the kinetic cascade statistics, which Equation B1 is com-
pletely dependent upon (along with the material properties
of the magnetic field).

APPENDIX C: MAGNETIC CORRELATION SCALE

Schekochihin et al. (2004) and Galishnikova et al. (2022) as-
sume that the magnetic correlation (coherence) wavenumber,

kcor(t) =

ˆ ∞

0

Emag(k, t) dk
/ ˆ ∞

0

k−1Emag(k, t) dk, (C1)

is proportional to the magnetic peak wavenumber, kp, which
Beattie et al. (2023) showed seemed to be qualitatively true
not only in the kinematic phase, but also in the saturated
phase. It is not clear whether this assumption would be valid
for supersonic SSD amplified fields, where the magnetic en-
ergy spectrum is broadened by shocks when M > 1 (see the
bottom panel in Figure 4). To test this, we compute kcor and
kp for our two representative simulations, M0.3Re600Pm5
and M5Re600Pm5 at N3

res = 5763. In Figure C1 we compare
the time evolution of these two scales by plotting kcor/kp com-
puted throughout the simulation for both setups. We colour
individual hexagon-bins based on the number of occurrences,
and shade the time range corresponding with the transient,
exponential growth (kinematic), linear growth, and saturated
phases grey, green, blue, and red, respectively.
As expected for M0.3Re600Pm5, we find evidence that

Figure C1. Time evolution of the magnetic correlation scale, kcor
(from Equation C1), compared with the magnetic peak scale, kp
(from Equation 18), for M0.3Re600Pm5 and M5Re600Pm5 in

the top and bottom panels, respectively. We highlight the transient

phase of the simulation in grey, followed by the exponential growth
(kinematic), linear growth, and saturated SSD phases in green,

blue, and red, respectively.

during the kinematic phase kcor ∼ kp, but this rela-
tionship appears to weaken into the saturated state. For
M5Re600Pm5 we find that kcor > kp at all times. Ini-
tially kcor ≫ kp, but gradually as the magnetic field be-
comes strong enough to suppress deformation on the small-
est scales, kcor/kp tends toward ≳ 1. Here kcor > kp arises
due to the magnetic energy distribution becoming broader
due to shocks compressing magnetic energy into long, thin
(i.e., filamentary) structures, with the typical length of these
shocked regions adding energy on low-k modes, and the typ-
ical width (see our model Equation 26) adding energy to the
spectrum on high-k modes.

APPENDIX D: FIT PARAMETERS DERIVED FROM
MEASURING SCALE CONVERGENCE

In Section 3.4 we highlighted numerical convergence for two
of our representative simulations, namely M0.3Re600Pm5
and M5Re600Pm5. We also performed the same convergence
study for all of our other simulation setups in Table 1, so here,
for each of our simulation setups, we list the two fitted param-
eters: (1) critical numerical resolution, Nres,crit, required for
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wavenumber convergence, and (2) the rate of convergence, R,
for the viscous (column 2), resistive (column 3), and magnetic
peak wavenumbers (column 4).
For all of our viscous flow simulations, where Re ≤ Recrit ≈

100, we find that our measurement for kν (and kp in the case
of M5Re10Pm25) converged at even our lowest resolution
runs (i.e., as expected, we do not need much resolution to
resolve low-Re dynamics). In these cases, we report the lowest
resolution run we performed as Nres,crit, and report no value
for R, in Table D1.

APPENDIX E: COMPUTING FIELD CURVATURE

As mentioned in the main text (and very briefly discussed in
Schekochihin et al. (2004)), when computing the curvature
κ of the magnetic field b in the presence of grid-scale struc-
tures, it is necessary to take some care to preserve the exact
orthogonality of the tangent and normal basis-vectors,

b̂ =
b

|b| , (E1)

κ̂ =
(b̂ · ∇)b̂

κ
≡ κ

κ
. (E2)

Here we have defined the non-normalised normal vector κ,
which points in the direction of maximum curvature, and
has magnitude equal to the radius of curvature, 1/κ. In Sec-
tion E1 we highlight why numerical errors arise when directly
computing κ from b̂, then in Section E2 we derive an im-
proved stencil for κ which preserves orthogonality by con-
struction. In Section E3 we outline the algorithm we adopt
for this improved procedure. Note that in discussing these al-
gorithms (Section E1 and Section E3), we use bijkx to denote
the x-component of b in cell (i, j, k), which should not to be
confused with the index notation used in Section E2.

E1 Flawed Algorithm

The following is a straightforward, but flawed algorithm for
computing κ:

(i) Define the tangent field in every cell:

b̂
ijk

= bijk/|bijk|. (E3)

(ii) Compute the tensor field (∇ ⊗ b̂)ijk in every cell via
second-order centred differences:

(∇⊗ b̂)ijkx = (b̂
i+1,j,k

− b̂
i−1,j,k

)/(2∆x), (E4)

and similarly for the y- and z-components.
(iii) Compute κijk in every cell as:

κijk = b̂
ijk

· (∇⊗ b̂)ijk. (E5)

(iv) Compute the curvature-magnitude as:

κijk = |κijk|. (E6)

The difficulty in this algorithm is that there is no guarantee
that the vector κijk produced by Equation E5 will be exactly

orthogonal to b̂
ijk

; instead, the degree to which orthogonality
is maintained depends on the accuracy of the finite difference
approximation. Based on numerical experiments with this al-
gorithm, we find that in regions where b is smooth, b̂ and κ̂

are very close to orthogonal, but in regions where b changes
directions over length scales of order ∆x (i.e., in shocked re-
gions), they deviate away from orthogonality. In practice we
find that this algorithm produces κ polluted with large nu-
merical errors.

E2 Improved Stencil

As an alternative, we write κ as a function of b directly.
If we substitute b̂ with b/|b|, then following some algebra-
gymnastics, it is straightforward to show that the i-th com-
ponent of κ is given by

κi =
bj
bkbk

∂bi
∂xj

− bibmbj
(bkbk)2

∂bm
∂xj

, (E7)

or equivalently in vector notation

κ =
1

|b|2 (b · ∇) b − b

|b|4
((

b · ∇
)
b
)
· b (E8)

=
1

|b|2

(
I− b ⊗ b

|b|2

)
·
(
b · ∇

)
b. (E9)

If we now compute the inner product of κi with b, we have

bi κi =
bibj
bkbk

∂bi
∂xj

− bjbm
bkbk

∂bm
∂xj

= 0. (E10)

The critical point to notice here is not that b ·κ = 0. This is to
be expected from the orthogonality of the tangent and normal
vectors. Instead, notice that the inner product between b
and the expression given by Equation E7 for κ vanishes by
construction, regardless of the finite difference approximation
used to compute the ∂bi/∂xj tensor field. This approximation
need not be accurate, it merely needs to be the same for both
terms on the right hand side of Equation E10.

E3 Improved Algorithm

In practice, the algorithm we adopt is:

(i) Compute the tensor field (∇ ⊗ b)ijk in every cell via
second-order centred differences, as:

(∇⊗ b)ijkx = (bi+1,j,k − bi−1,j,k)/(2∆x), (E11)

and similarly for the y- and z-components.
(ii) Compute κijk as:

κijk =
∣∣∣bijk∣∣∣−2 (

bijk · (∇⊗ b)ijk
)

−
∣∣∣bijk∣∣∣−4 (

(bijk ⊗ bijk) : (∇⊗ b)ijk
)
, (E12)

where the colon-operator represents the double contraction
(double inner product) of tensors, e.g.,M : N ≡MijNij .

(iii) Compute the curvature as:

κijk = |κijk|. (E13)

As expected, we find that this algorithm maintains the or-
thogonality of b̂ and κ̂ to machine precision in all cells.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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Table D1. Convergence properties of characteristic MHD wavenumbers.

Sim. ID kν kη kp

Nres,crit R Nres,crit R Nres,crit R

(1) (2) (3) (4)

M = 0.3

M0.3Re500Pm1 34.7± 1.9 0.8± 0.1 67.8± 8.7 1.0± 0.2 31.6± 13.4 0.9± 0.8

M0.3Re100Pm5 18.0 – 54.4± 10.4 1.0± 0.2 31.4± 14.7 0.9± 1.0
M0.3Re50Pm10 18.0 – 49.9± 7.5 1.1± 0.3 32.5± 12.0 1.2± 1.0

M0.3Re10Pm50 18.0 – 54.5± 12.6 0.8± 0.2 25.8± 15.3 0.8± 0.8

M0.3Re3000Pm1 116.8± 5.0 1.0± 0.1 229.2± 19.0 1.1± 0.1 169.7± 32.4 1.0± 0.1
M0.3Re600Pm5 43.0± 2.2 0.8± 0.1 190.4± 20.2 1.0± 0.1 117.2± 40.1 0.8± 0.2

M0.3Re300Pm10 23.9± 0.9 0.9± 0.1 120.3± 15.0 1.1± 0.1 84.8± 26.6 1.0± 0.3

M0.3Re100Pm30 18.0 – 124.3± 21.0 1.0± 0.1 89.2± 35.2 0.9± 0.3
M0.3Re24Pm125 18.0 – 102.4± 12.9 1.0± 0.1 77.3± 37.5 0.8± 0.3

M0.3Re10Pm300 18.0 – 102.4± 21.6 0.9± 0.1 82.2± 27.1 0.9± 0.2
M0.3Re2000Pm5 130.3± 4.3 0.8± 0.1 534.9± 33.1 1.0± 0.1 317.4± 51.9 0.9± 0.1

M = 1

M1Re3000Pm1 116.4± 4.5 1.1± 0.1 205.2± 19.8 1.0± 0.1 148.7± 36.5 0.9± 0.2

M1Re600Pm5 48.5± 3.5 0.7± 0.1 159.8± 19.0 0.9± 0.1 90.8± 36.2 0.7± 0.2
M1Re300Pm10 18.0 – 117.4± 17.0 1.0± 0.1 103.2± 81.7 0.7± 0.3

M1Re24Pm125 18.0 – 96.7± 16.1 0.9± 0.1 95.4± 111.2 0.6± 0.3

M = 5

M5Re10Pm25 18.0 – 35.2± 7.8 0.8± 0.4 18.0 –
M5Re10Pm50 18.0 – 56.5± 12.1 0.8± 0.2 26.1± 9.8 0.8± 0.5

M5Re10Pm125 18.0 – 101.5± 24.1 0.8± 0.1 63.9± 38.9 0.6± 0.2

M5Re10Pm250 18.0 – 144.2± 36.8 0.8± 0.1 151.9± 124.8 0.6± 0.2
M5Re500Pm1 61.9± 4.0 0.8± 0.1 64.6± 35.3 1.0± 0.4 14.1± 27.5 1.0± 6.9

M5Re500Pm2 62.7± 4.2 0.8± 0.1 84.1± 32.8 1.0± 0.3 11.2± 20.5 0.6± 1.8

M5Re500Pm4 62.1± 3.8 0.8± 0.1 100.3± 28.7 1.0± 0.2 22.0± 14.8 0.7± 1.2
M5Re3000Pm1 146.7± 3.9 1.2± 0.1 200.1± 60.5 1.0± 0.1 20.1± 18.1 0.7± 1.6

M5Re1500Pm2 143.6± 8.0 0.9± 0.1 199.8± 45.1 1.0± 0.1 21.6± 13.1 0.8± 1.6

M5Re600Pm5 79.4± 4.6 0.8± 0.1 173.5± 40.7 0.9± 0.1 20.6± 18.3 0.6± 0.8
M5Re300Pm10 43.1± 3.5 0.7± 0.1 120.1± 26.5 0.9± 0.1 31.1± 35.0 0.5± 0.5

M5Re120Pm25 20.3± 1.2 0.7± 0.1 157.0± 29.2 0.8± 0.1 84.3± 112.4 0.5± 0.3

M5Re60Pm50 18.0 – 159.8± 36.9 0.8± 0.1 75.7± 99.4 0.5± 0.3
M5Re24Pm125 18.0 – 143.7± 33.1 0.8± 0.1 134.4± 169.0 0.5± 0.3

M5Re12Pm250 18.0 – 137.4± 30.7 0.8± 0.1 112.5± 54.6 0.6± 0.2
M5Re2000Pm5 208.5± 10.1 0.8± 0.1 457.0± 68.8 0.9± 0.1 146.1± 161.6 0.5± 0.2

M = 10

M10Re3000Pm1 137.8± 4.0 1.2± 0.1 228.8± 55.0 1.0± 0.1 26.2± 12.2 0.8± 0.6

M10Re600Pm5 83.7± 5.0 0.8± 0.1 198.1± 32.0 0.9± 0.1 35.1± 34.6 0.5± 0.4
M10Re300Pm10 45.7± 3.6 0.7± 0.1 125.9± 32.3 0.9± 0.1 60.7± 98.6 0.5± 0.4

Note: All parameters are derived from fits of Equation 19 to the time averaged (over the kinematic phase of the SSD) charac-
teristic wavenumbers derived for each simulation. Column (1): unique simulation ID. Column (2): the characteristic grid resolution,

Nres,crit (scale-height parameter in Equation 19), where the viscous wavenumber, kν (derived from Equation 16 with ψ = u/
√
2),

shows evidence of convergence, and the rate of convergence, R. Column (3) and (4): the same as column (2) but for the resistive
wavenumber, kη (derived from Equation 17), and the magnetic peak wavenumber, kp (derived from Equation 18), respectively.
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