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ABSTRACT

Mixed-frame formulations of radiation-hydrodynamics (RHD), where the radiation quantities are computed in an inertial frame
but matter quantities are in a comoving frame, are advantageous because they admit algorithms that conserve energy and
momentum to machine precision and combine more naturally with adaptive mesh techniques, since unlike pure comoving-frame
methods, they do not face the problem that radiation quantities must change frame every time a cell is refined or coarsened.
However, implementing multigroup RHD in a mixed-frame formulation presents challenges due to the complexity of handling
frequency-dependent interactions and the Doppler shift of radiation boundaries. In this paper, we introduce a novel method for
multigroup RHD that integrates a mixed-frame formulation with a piecewise power-law approximation for frequency dependence
within groups. This approach ensures the exact conservation of total energy and momentum while effectively managing the
Lorentz transformation of group boundaries and evaluation of group-averaged opacities. Our method takes advantage of the
locality of matter-radiation coupling, allowing the source term for N, frequency groups to be handled with simple equations with
asparse Jacobian matrix of size N, + 1, which can be inverted with O(N,) complexity. This results in a computational complexity
that scales linearly with N, and requires no more communication than a pure hydrodynamics update, making it highly efficient
for massively parallel and GPU-based systems. We implement our method in the GPU-accelerated RHD code QUOKKA and
demonstrate that it passes a wide range of numerical tests, including preserving the asymptotic diffusion limit. We demonstrate
that the piecewise power-law method shows significant advantages over traditional opacity averaging methods for handling
rapidly variable opacities with modest frequency resolution.

Key words: hydrodynamics —radiation: dynamics — methods: numerical.

grey methods (Vaytet et al. 2013) and to alter energy transport in

1 INTRODUCTION stellar atmospheres (Chiavassa et al. 2011).

Radiation-hydrodynamics (RHD) plays a crucial role in modeling
astrophysical phenomena where radiation is reponsible for transport-
ing energy or momentum. Accurate treatment of radiation transport
is essential for capturing these interactions accurately. While grey
approximations that integrate over radiation frequency and only
follow frequency-integrated quantities have been widely employed,
they often fail to capture the complex spectral features and frequency-
dependent radiative processes that can significantly influence the
system’s evolution. For instance, only frequency-dependent methods
can correctly model the absorption of ultraviolet radiation from stars
by surrounding dust and its subsequent re-emission in the infrared,
a phenomenon that is crucial to mediating how radiation pressure
regulates star formation (e.g. Rosen et al. 2016; Menon, Federrath &
Krumholz 2023). Moreover, multigroup formalisms have been shown
to significantly impact the structure of radiative shocks compared to
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In this context, multigroup RHD has emerged as a powerful
tool, offering a more comprehensive and accurate representation of
the radiation field by dividing the spectrum into multiple energy
groups. Several works have applied multigroup RHD in comoving
frame formulations (Vaytet et al. 2011; Zhang et al. 2013; Skinner
et al. 2019), meaning that radiation quantities are evaluated in
the frame comoving with the matter. In the comoving frame, the
matter—radiation interaction is simplified, with the Doppler effect
manifesting as an advection of radiation quantities between groups
related to the matter’s velocity gradient. However, the comoving
frame formulation does not conserve total energy or momentum
exactly, since the RHD equations in the comoving frame are not
manifestly conservative and do not allow for the construction of
conservative update schemes; instead, in such methods conservation
is generally achieved only to order v/c.

These conservation errors can be amplified in simulations using
adaptive mesh refinement (AMR), where volumes of the simulation
domain must be coarsened and refined. This creates a problem for
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comoving frame formulations of RHD: the children of a parent
cell that is being refined generally have different velocities than
the parent cell, which means that the radiation quantities associated
with the child and parent cells are not defined in the same reference
frame. One can ignore this difference — this is the most common
practice in comoving frame RHD-AMR codes — but this incurs an
error in conservation of order v/c at each refinement stage, and
in deeply nested calculations with many levels of refinement these
errors may well add constructively, leading to an overall violation
of conservation at unacceptable levels. In a single-group calculation
one could in principle address this problem by explicitly transforming
radiation quantities to the lab frame before coarsening and refinement
operations, then transforming back afterwards, but this option is not
available in a multigroup calculation: while the radiation energy
and flux integrated over all frequencies form a four-vector that can
be straightforwardly Lorentz-transformed, the radiation energy and
flux integrated over a finite range of frequencies do not. Instead,
the transformation of the flux between frames depends on the
third moment of the specific intensity, requiring the adoption of
an additional closure relation. Indeed, one is required to estimate
the third moment of the intensity in any comoving frame treatment
of RHD (Mihalas & Mihalas 1984; Lowrie, Morel & Hittinger
1999; Hubeny & Burrows 2007). In addition to adding an extra
physical assumption to the problem, this step comes at potentially
substantial computational cost (e.g. see the discussion of the steps
required to extend the M closure to the third moment in Vaytet et al.
2011).

We recently released the QUOKKA' code, a new GPU-accelerated
AMR RHD code (Wibking & Krumholz 2022, hereafter, Paper I)
featuring a novel asymptotic-preserving time integration scheme
(He, Wibking & Krumholz 2024, hereafter, Paper II) that conserves
energy and momentum to machine precision and correctly recovers
all limits of RHD. In QUOKKA, we solve the moment equations for
RHD in the mixed-frame formulation, where the radiative quantities
are defined in the lab frame (i.e. Eulerian simulation coordinates),
and the emissivity and absorption are described in the comoving
frame of the fluid, where they can be assumed to be isotropic.
This approach takes advantage of the simplicity of the hyperbolic
operators in the lab frame, allowing for the exact conservation of
total energy and momentum, while benefiting from the isotropic
nature of matter emissivities and opacities in the comoving frame
(see Castor et al. 2009). It also integrates natively with AMR, since
the lab frame radiation energy and flux are conserved quantities that
can be coarsened or refined exactly like the conserved hydrodynamic
quantities. In this formulation, relativistic corrections to the opacity
due to Doppler effects between the laboratory frame (where the
radiation variables are defined) and the comoving frame (where
microscopic interactions occur) appear as additional terms of first or
higher order in v/c in the rate of matter—radiation exchange (Mihalas
& Mihalas 1984). These terms must be retained for accuracy, but are
relatively straightforward to handle numerically.

However, extending mixed-frame formulations to multigroup
RHD remains a frontier problem. While at first it might seem
simple to extend the mixed-frame approach by evolving the radiation
moments for each frequency group in the lab frame while calculating
group opacities/emissivities in the comoving frame, thereby retaining
the advantages of the hyperbolic nature of the radiation transport
in the lab frame while accounting for the frequency dependence of

!Quadrilateral, Umbra-producing, Orthogonal, Kangaroo-conserving Kode
for Astrophysics! https://github.com/quokka-astro/quokka
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opacities in the comoving frame, a difficulty arises with the frequency
boundaries. In a mixed-frame formulation, these are defined in the
lab frame, but they are Doppler shifted in the comoving frame
where matter emissivities and opacities are defined. This necessitates
careful calculation of group-mean opacities since they are only well
defined in the comoving frame. As a result of this difficulty, the only
lab-frame multigroup RHD method currently in use in astrophysics is
based on direct discretization of the radiative transfer equation rather
than solution of the moment equations (Jiang 2022), an approach that
is considerably more expensive in terms of both computation and
memory. Moreover, while in principle this could be combined with
the reduced speed of light approximation to yield an explicit method
that would run efficiently on parallel GPUs, the only available current
implementation in astrophysics relies on a global implicit update that
does not.

In this paper, we tackle this problem and extend the QUOKKA algo-
rithm to include frequency dependence via the multigroup approach.
The extended algorithm maintains all the desirable properties of
the original scheme — machine-precision conservation both during
updates and when adaptively refining and coarsening, correct recov-
ery of all asymptotic RHD limits — while also allowing frequency-
dependent opacities with a flexible decomposition of the frequency
space in a conservative manner. This paper is organized as follows.
In Section 2, we examine the multigroup RHD equations in the
mixed frame formulation, and develop our strategy for frequency
discretization. In Section 3, we describe our numerical approach to
implementing the scheme. Section 4 presents tests of the scheme.
Finally, we summarize and discuss future prospects in Section 5.

2 FORMULATION OF THE MULTIGROUP RHD
SYSTEM

In this section, we present the multigroup RHD equations that
QUOKKA solves. We begin by deriving the multigroup RHD system
of equations in Section 2.1, and then introducing our strategy for
evaluating group-averaged exchange terms in Section 2.2. For the
convenience of the readers, we list the notations and symbols used
in this paper in Table 1.

2.1 The multigroup RHD equations

The full set of frequency-integrated RHD equations we solve has
been introduced in Paper II. Here, we repeat these equations while
writing the radiation-related terms in frequency-dependent form.
These equations are

%—i—V-FU:SU, (1)
where
0
v

,(;Ov oV @f)v +p o~ Gudv
U= Egas , Fu= (Egas +po|, SU = Cfooo GSdU 2)

EU FU —CGO

=F, P, —G,

are vectors of the conserved quantities, the advection terms, and the
source terms, respectively. In the equations above, p is the matter
density, v is the matter velocity, p is the matter pressure, and Egy
is the gas total energy density; E,, F,, and P, are, respectively,
the specific radiation energy density, radiation flux, and radiation
pressure tensor, which are defined in terms of the zeroth, first, and
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Table 1. Symbols used in this paper.
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Symbol Meaning Units
P gas density gcm™3
v, v gas velocity ems~!
p gas pressure erg cm™3
Egas gas total energy erg cm™3
Exin gas kinetic energy erg cm™3
v lab-frame radiation frequency Hz
Vg, Vgt the lower and upper boundaries of Hz
the gth radiation group in lab frame
g = Vg4 /g Dimensionless
Vo comoving-frame radiation frequency Hz
E, specific radiation energy erg cm— Hz~!
E, = fv';gf E,dv erg cm™>
F,orF! specific radiation flux ergcm 2 s~ Hz™!
Fgor F} = fv‘;gf F,dv or fv';gf Fidvy ergem™2 57!
P, or P]fj specific radiation pressure tensor erg cm > Hz™!
Pe, Péj = fv”:j P,dv or fvzgf P dv erg cm™3
Gg time-like component of the specific erg cm—4 Hz ™!
radiation four-force
GY = fv‘:*’f Godv ergcm™
G,or Gl space-like components of the specific erg cm—* Hz™!
radiation four-force
G, or G, = V‘;g_* G,dv or fv‘;g_* Gidv erg cm™*
n,n' the unit vector (or its ith component) Dimensionless
in Cartesian coordinates
Ng number of photon groups
X0 Comoving-frame absorption cm™!
coefficient
X Lab-frame absorption coefficient cm™!
no Comoving-frame emissivity ergcm > s~ Hz™!
n Lab-frame emissivity ergcm > s~ Hz™!
B, Planck function erg em 2 s~ Hz ™!
B, :ful;g_+ B,dv ergcm 257!
Ry the gth-group source term erg cm ™3 Hz™!
c speed of light cms~!
é reduced speed of light cms~!
Ag(0) = Q(vgy) — Qvg)
X00.g Group-averaged absorption em™!
coefficient (equation 30)
Ayo.g Powerlaw index of the absorption Dimensionless
coefficient in group g
ag.g Powerlaw index of the radiation Dimensionless
quantity Q in group g
agr radiation constant erg cm 3 K4

second moments of the specific intensity /(n, v) in direction r at

frequency v as
E,=c¢"! 7{1(;1, V)R
Fl = j{nfl(n, )dQ

P =" ?{n"nfl(n, v)dS2.

the emitting matter is in local thermal equilibrium, so the source

function in the comoving frame is the Planck function, and we neglect
scattering. In the lab frame, we have (Mihalas & Mihalas 1984)

—cG) = f dQ [n(n, v) — x(n, v)I(n, v)]

i —
-G, =c

(3

! ?{dQ n'[n(n, v) = x(m, )1 (n, V)], @

Note that, all quantities in these expressions are in the lab frame. As
discussed in the introduction, the lab-frame equations are manifestly
conservative, a feature that makes it possible to build conservative
algorithms relatively straightforwardly.

Our next step is to write the frequency-dependent radiation four-
force, (GS, G,), in the mixed-frame formulation. We assume that

where n(n,v) and x(n,v) are the matter specific emissivity and
absorption coefficient in the lab frame; note that, in the lab frame,
these quantities depend on direction n due to relativistic boosting
effects, which cannot be neglected even in sub-relativistic flows in
a consistent theory of RHD. Following our mixed-frame approach,
we now seek to rewrite the equations in terms of the comoving-
frame emissivity 79(v) and absorption coefficient xo(v), which are
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simpler because they do not depend on direction.? Integrated over
all frequencies and for matter in local thermodynamic equilibrium,
this transformation to mixed-frame is relatively simple; to first order
v/c, it is (see Mihalas & Auer 2001, and also equation 3 and 4 of
Paper 1I):

oo
—¢G° z—/ cG%dv
0

=4 xopB — cxorE + ¢ ' 2xor — xor)V'F' ©)

-G z—/ G dv
0

= —c'xop F' + 4mc v xop B
+ ¢ xorv! P74 ¢ (xor — XoE)ViE, (6)

where B, E, F', P are frequency-integrated Planck function, radi-
ation energy density, radiation flux, and radiation pressure written in
the lab frame, but now xop, xor, and xor are the comoving-frame
Planck-mean, energy-mean, and flux-mean opacity.> However, for
the types of system where we might want to carry out a frequency-
resolved calculation — those far from thermodynamic equilibrium
over at least part of the spatial or frequency domain —these comoving-
frame mean opacities are unknown, because they depend on the
frequency distribution of the radiation quantities, which we know
only in the lab frame. While in principle one could solve for the
frequency distribution in the lab frame and then transform to the
comoving frame to evaluate the opacities, this would remove the
main advantage of the mixed-frame approach, which is avoiding
such cumbersome transformations.

We therefore proceed instead by following Mihalas & Mihalas
(1984): to handle the lab-frame angle-frequency dependence of the
absorption and emission terms, we expand the lab-frame frequency
v around the comoving-frame frequency vy to first order in v/c, as

v/vy=1+n-v/c. @)

We can similarly expand the absorption coefficient and emissivity
by writing down the Lorentz transformations for them and then
expanding to O(v/c), yielding

0
X, v) = o/ Wxo(v0) = x0() = (- ) (m(v) - vﬂ)
c ov

0
1, v) = (/50 10(v0) = 1o (v) + (- ~) (2no<v) - vﬂ) :
c ov
®)

Evaluating the integration over d<2 in equation 4 and applying
our assumption that the matter is in LTE so 19(v) = xo(v)B,, where
B, is the Planck function evaluated at the local matter temperature,
we obtain the time-like and space-like components of the radiation
four-force (Mihalas 1978, their eaquations 2.19 and 2.21, see also
Mihalas & Mihalas 1984, their equations 93.5 and 93.6)*

2Here and throughout, we shall follow a convention whereby terms with
a subscript O are evaluated in the comoving frame, while those without a
subscript 0 are evaluated in the lab frame.

3Note that, we have assumed that the flux spectrum is the same in all
directions, so that the direction-dependent X(()[F) can be replaced by a scalar
XOF -

4We point out that, although these equations appear slightly different in
form than the mixed-frame equations derived by Lowrie et al. (1999), the
apparent difference arises solely from the fact that we have expressed the
four-force purely in terms of lab frame radiation quantities, while they express
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ol Vi F!
— ¢GY = 47 xo(v)B, — cxo(W)E, + (;m(v) + v%) .

&)

-G, = _XO(V)Q + gnc‘zv" <2xo(v)Bv - vw)
C

ov
. 00\ ;i
+c Xo(v)—l—va— v/ P (10)
v

‘We now divide the frequency domain into a finite (V) number of
bins or groups. We define group-integrated radiation quantities as

Vot
0, = / 0,dv, (11)
Vg,

where Q = B, E, F,P,G° and G, which represent the Planck
function, the radiative energy, flux, and pressure, and the time-
like and space-like components of the radiation four-force; vg_
and v, are the frequency at the lower and upper boundaries,
respectively, of the gth group, and groups are contiguous in frequency
SO Vgt = Vgyi,—. If we now integrate the final two lines of equation 2
over each of the groups, and assuming that the groups cover a broad
enough frequency range that we can neglect contributions to the
frequency-integrated four-force (G°, G) from frequencies < v;_ and
> Vp,+, the vectors of conserved quantities, advection terms, and
source terms become

o oV 0
pv PRV +p 2, Gy
U= | Ewn |, Fu= (Egas +p|, Sy= ng Gg , (12)
E, F, —ch
LF, P, -G,

where the group-integrated time-like component of the radiation
four-force is

Ve+
-Gy = / (—cG))dv

8~

Vet Vet
=4 / xo(v)B,dv — c/ xo(v)E,dv

8- 8-

. [Vet 0 )
+ c—nvz/ [Xo(v) + v%] Fidv, (13)
Vg,

and the group-integrated space-like components are
. Vg+ . Ug+ X
-G, = / (—=Gdv = —c_l/ xo(W)F,dv
Vg_ \)g_
2.0

+ 4mc v

4

Ve+ 1
/ XoWBLdy — 5 Ay(vx0B.)

. [ Vet 0 .
+ c—‘vf/ [Xo(v) + v%] Plidv. (14)
v

The equations do require that one adopt a closure relation for the
radiation pressure tensor P,. QUOKKA uses the Levermore (1984)
closure for the RHD system by default — see Paper I for full details —
but the method we describe here is independent of this choice. In our

theirs in terms of comoving frame quantities. One can readily verify that our
expressions are identical to order v/c by substituting their equations (27a)
and (27b) for the comoving frame energy and flux into their equations (28a)
and (28b) for the time-like and space-like parts of the four-force, setting the
scattering opacity to zero (since we neglect scattering), and dropping terms
of order v?/c? and higher.
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multigroup implementation, we express the radiation pressure tensor
for a radiation group, P,, in terms of the radiation energy density
and flux from the same group, E, and F,, i.e. we apply this closure
group-by-group.

Before proceeding further, we pause to demonstrate that our
formulation of the radiation four-force to order v/c is consistent.
The reason we might worry that it is not is that, as Lowrie et al.
(1999) point out, there can be an inconsistency in keeping only
order v/c terms in the radiation four-force. To understand this issue,
consider equation 13, specializing to the case of a grey material, o
independent of v, for simplicity. In this case, and summing over all
groups (or equivalently taking v,+ — 400), we have

—¢G"=xo (4B —cE+c W' F'), (15)

where B, E, and F are the Planck function, radiation energy, and
radiation flux integrated over all frequencies. Now consider a moving
medium that is in thermal equilibrium in its rest frame. The issue that
Lowrie et al. point out is that, to order v/c, the Planck function and
radiation energy are the same in the lab and comoving frames, £ =
Ey=4mBy/c =4m B/c, but the lab- and comoving-frame fluxes
are not the same; the comoving-frame flux F} = 0, but the lab-frame
flux is F' = (4/3)v'E, and this means that cG° = (4/3)xov*E/c,
which is non-zero even though it should be zero for a medium in
equilibrium. To avoid this issue, Lowrie et al. advocate replacing
v’ F! with v’ F} in the expression for ¢G®. While doing so alleviates
the inconsistency, the price of this fix in a multigroup method is that
it requires constructing the third moment of the specific intensity,
thereby obviating one of the main advantages of our mixed-frame
formulation (see Section 1).

Fortunately, such a fix is also unnecessary, as we now show. It
is unnecessary because all that is required for a formulation to be
consistent is that in the equilibrium state where ¢G° and G' vanish
that £ and F take on the correct values, and our formulation does
satisty this condition. To see this, note that, one can verify by direct
substitution into equations (13) and (14) in the case of constant g
that the equilibrium solution that gives cG® = G' = 0 is

4w B 4 ? 4 (4nB
E="2 (1422 F=-v , (16)
c 3 2 3 c

which is in fact the correct expression for the lab-frame energy
density and radiation flux (cf. equation 9.13 of Mihalas & Mihalas
1984) to order v?/c?. The extra v?/c? term in E comes from the
v F' and not from the a higher order expansion in v/c and therefore
does not make the formulation more relativistically correct than order
v/c. None the less, this means that, even though we only have formal
accuracy to order v/c, our formulation ensures that we recover the
correct equilibrium state.

2.2 Evaluation of group-averaged emissivities and opacities

equations (13) and (14) involve a series of integrals over quantities
that take the form of an opacity multiplied by a radiation quantity. We
must therefore now adopt a strategy for evaluating these integrals.
Most previous studies have taken the approach of using either
constant opacity within each radiation bin (Zhang et al. 2013; Skinner
et al. 2019), or some form of weighted opacities, such as the Planck
and Rosseland means (e.g. Jiang 2022). The former approach over-
simplifies the problem, failing to account for potentially significant
variations in opacity within each frequency bin. While the latter is
accurate in the diffusion limit, it becomes highly inaccurate outside
this regime, where there is no reason to assume that the frequency
distribution within a frequency bin resembles a Planck function.

QUOKKA: Multigroup RHD 3063

To address this, we first implement a simple model with piecewise
constant (PC) opacities, assuming the opacity is a constant function
of frequency within each radiation group, similar to the approach
used in earlier codes. We then introduce a piecewise power-law
(PPL) approximation, which we will show below offers signifi-
cantly better accuracy for a very modest increase in computational
cost in the common situation where the frequency resolution is
low.

2.2.1 Piecewise constant opacity

In the piecewise constant (PC) model, we assume the absorption
coefficient is a constant function of v within each frequency bin, i.e.

Xo00) = Xoge for veo <v <., (17)

Ignoring the discontinuity at group boundaries, this assumption
implies that the dyo/0v terms in equations (13) and (14) vanish,
and by replacing xo(v) with xo , we obtain

— ch =41 x0,4By — cX0,0Eg —I—c’lv"XOAVgF;,'
G = —c o F! + dmc v/ B, — 1a,B
Vg — —C " Xo.g g +4dmc v X0.g g g g(v u)

+ '/ 0, PL' (18)

where we have introduced the shorthand notation that for any
frequency-dependent quantity Q(v), we define A,(Q) = Q(vy+) —
O(vg-),1.e. Ag(Q) is simply the difference between Q(v) evaluated
at the upper and lower frequency limits for a given group.

Compared to the frequency-integrated formulation equations (5)
and (6), we notice an extra term that is proportional to A,(v B, ). This
term can be calculated analytically at a given gas temperature for
each group, and the terms have the property that they vanish when
summed over all groups to produce the frequency-integrated four-
force (G°, G) (as long as our frequency grid is broad enough that v B,
is negligible at both the low- and high-frequency edges of the grid).
To understand the physical meaning of these extra terms, recall that
G is the total rate of momentum transfer from matter to radiation,
and the term —4mwc2v/ xop B appearing in equation 6 represents
the momentum transferred from gas to radiation because moving
matter produces Doppler-shifted emission that, as a result of the shift,
carries a non-zero net momentum. This Doppler shift, however, also
changes the distribution of this momentum over frequency, so that
the distribution of momentum in frequency is not identical to the
distribution of energy. It is this additional difference between the
energy and momentum distributions of the thermal emission that is
captured by the terms proportional to Ag(vB,).

2.2.2 Piecewise power-law opacity

While the piecewise constant approach has the advantage of simplic-
ity, and has been the most common approximation used in previous
multigroup RHD methods (e.g. Vaytet et al. 2011; Zhang et al. 2013;
Skinner et al. 2019), it ignores the potentially large variations of the
opacity within an energy group that can occur when the frequency
resolution is limited, as is often the case in real applications. To
better capture this situation, we introduce the piecewise power-
law (PPL) approximation; this approach is somewhat similar to the
one proposed by Hopkins (2023), but here, we extend this method
to the mixed-frame formulation of RHD, including the Doppler
effect terms responsible for energy exchange between energy
groups.

MNRAS 535, 3059-3076 (2024)
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Our fundamental ansatz is to assume the absorption coefficients
can be expressed as power-law functions of frequency over each bin:

v Yx0-8
Xog(V) = Xo,¢— (7) , Vgo SV < vy 19)
o

We note that part of our motivation for this ansatz is that power-
law functional forms are often expected on physical grounds; for
example, both infrared dust opacities and free-free opacities are close
to power laws in frequency. Thus, in many cases, we know the bin
edges opacities yo - and power-law indices o, , simply from the
physical nature of the opacity. In cases where this is not the case and
the opacity yo is tabulated, we can adopt the approximation

In [Xo(Vng)/XO(Vg*)}
ln(Vg+/vX*)

(20)

Xx0.8 =

Our implementation in QUOKKA allows users to either use this
approach or specify a,, , for each group directly, covering either
case.

Inserting this functional form into equations (13) and (14), we
obtain for the time-like component of the radiation four-force

— CGS, = 4JTXOB~E’BS — CXOE.gEg
+e '+ aXU,g)vixé’F)‘g 8 21
and for the space-like component
i -1,@) i
=Gy = —¢ Xor.eFy

. 1
+ 4716‘721)! XOB,ng — gAg(VXOBv)

+ T (o Dxsh PL (22)
where
Lo X0 Qy()dv
Xoog= —4F— (23)
Q,

is the mean opacity at group g averaged over a spectrum Q,(v),
where Q can be B, E, F', or P/i. The opacity with a superscript
i or ji represent the opacity weighted by the i or ji components
of the corresponding radiation quantity. For reasons of speed and
code simplicity, we further assume that xé'}f?g A Xok,g» Which is
equivalent to neglecting the frequency-dependence of the Eddington
tensor when evaluating mean opacities.

2.2.2.1 Relations between the mean opacities We next note that the
mean opacities o, g, XoB,g» ad Xor,, appearing in equation (22) are
required to obey certain relations in the limit of high optical depth
if we are to ensure that our method limits to the correct diffusion
solution, one of the important design goals of our algorithm. The
obvious requirement for this to be the case is that at high optical depth
the radiation energy spectrum E, approaches the Planck function
B, and thus to ensure that Gg vanishes in this limit, we require that
Xoe,g and xop,, approach the same value at high optical depth. We
can guarantee that this is the case simply by using the same method
to estimate both quantities.

The more subtle requirement involves xor, . For an optically thick
uniform medium at rest, we should have F, — 0, in which case
our choice of xor, does not matter. But now consider a moving
homogeneous medium, for which F, is non-zero. Indeed, examining
the spacelike component of the radiation four-force, we see that the
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condition for radiation—matter equilibrium (i.e. Gf) — 0) reduces to

alnXOB 0B,
dlnv " Qlnv

a1 o
+ (1 + ﬂ) vl Pl 24)

i 4 _
F, —>37rc v' | 2B,

Olnv

In the optically thick limit, the radiation pressure tensor (to order
v/c)is P, = %4”8” |, and we obtain

1 9B,
) ) (25)

v

Fio=4mc W' (B, — =
it = R ( "7 30mv

Then, we integrate ijdiff within a energy bin and get the group-
integrated flux in the diffusion limit

i -1 4 1

Fy gir = 4mc™ v ng — gAg(VBU) . (26)
If we insert this result into equation (22), we see that in order
to guarantee that our numerical approximation to G properly

approaches zero at high optical depth in a moving medium, our
expression for the group-averaged flux-mean opacity must approach

(XOB,g + %XOE,g)Bg + % I:a)(g.gXOE,ng - Ag(vXOBU)}
B, — 10,05

XOF g, diff =

@n

Note that, as we might expect, equation (27) reduces to Xor, g dift =
Xo,¢ in the PC opacity case where xop ¢ = Xo£,s = Xo.,- In prin-
ciple, any method of approximating X(()ll-)‘ ¢ With the property that
it approaches xor g aiff at high optical depth would satisfy this
requirement. However, for simplicity, we choose to enforce this
requirement in all cases and in all directions, so that we have
completely specified Xé’}g in terms of xog g, XoB,¢» and the matter
properties. '

2.2.2.2 PPL approximations to radiation quantites We have now
reduced our problem to the selection of an algorithm to estimate
Xoe,e and xop,,. For the latter, since B, is a function only of
the matter temperature, we could of course evaluate the average
directly. However, adopting this method would carry a significant
disadvantage: since we have just shown that we must use the same
algorithm to evaluate xog,, and xop,¢, €valuating xop,, directly from
the matter temperature would force us do the same for xo g,, which
would amount to assuming that the radiation spectrum within each
bin looks like a blackbody spectrum. While this is a less restrictive
assumption than it would be a grey method, since we would be
assuming a thermal spectrum only within each frequency bin rather
than across all frequencies, we none the less wish to avoid making it
because it is highly inaccurate at low optical depth.

Instead, we consider an alternative approach whereby we assume
that both E, and B, can be expressed approximately as power-law
functions of frequency within each bin,

v %02
0,(v) = ng7 (T) s Vg =V = Vgy, (28)

g—

where 0Oy, is chosen such that

/ " 0.y = Q.. 29)

As with our PPL limit for the opacities, this choice is motivated
by the fact that for many physical situations radiation frequency
distributions are in fact well described by power law over large
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ranges in frequency; an obvious example of this is the Rayleigh—
Jeans tail of the Planck function. For this choice, one can show that
equation (23) evaluates to

ap. o+1 Uy g tag g+1
rg(.x —1 rgxog QgTh

1
Oypg T gg+1

(30)

X00.g = X0,g— |: woe + 1
.8

where for convenience, we have defined r, = v, /v,_; note that, the
first and second terms in square brackets are replaced by In r, for the
special cases ag , = —1 and o, , + @ , = —1, respectively. Also
note that, as one might expect, the expressions above reduce to the
PC case for o, , = 0, and that ap , matters only when a,, , # 0,
i.e. we care about the frequency-dependence of radiation quantities
only if the material opacity varies across a frequency bin.

The remaining question is how to choose the indices ag ,. For
this purpose, we consider two possible methods. One is to determine
aop,g and agg , directly by fitting E, and B, to a PPL functional
form, and we describe a method to do so in Appendix A. However,
we show below that this approach does not perform any better than
the favoured one we describe next, and has a significantly higher
computational cost. Thus, while we include it for testing purposes,
in practice we do not recommend using it.

After testing several approaches, our favoured one is to make the
simple assumption that vQ, is constant across a bin, or equivalently
that oy , = —1; we refer to this as the PPL fixed-slope method.
In addition to having the advantage of simplicity and therefore very
low computational cost, this approximation gives the correct average
value of «g ,, which we can see by noting that this average for any
quantity Q(v) is given by

Jo @omQdv i G 0(v)dv
IS ow)dv Jooow)dv
sy vdO)

fooo OW)dv
vOWZY — [~ Qw)dv
[ 0w dv
=1, 31

where in the final step we note that vB, — 0 at v = 0 and oo for any
finite matter temperature, and that v £, must similarly approach zero
at v = 0 and oo in order to ensure that the total frequency-integrated
radiation energy is finite. Thus, the mean power-law index of both E,,
and B,, when weighted by the spectrum itself, is —1. Our numerical
tests have demonstrated that this PPL fixed-slope method performs
effectively in handling problems with rapidly varying opacity across
frequencies, even when using a small number of energy bins (see
Sections 4.1.2 and 4.2.3).

3 NUMERICAL METHOD

The overall structure of a time-step for our multigroup method
follows the same asymptotic-preserving structure that we introduced
for grey radiation in Paper II, which we only briefly summarize
here. We solve the system formed by equation (1) with state vector,
transport terms, and source terms given by equation (12) using an
operator split approach. In the first step, we solve the hydrodynamic
transport subsystem

d 4 pv
3 pv | +V-[pv@v+p| =0 (32)
Egas (Egas + P)U

QUOKKA: Multigroup RHD 3065

using a method of our choice; for all the tests presented below the
method we use is as described in Paper I. In the second step, we update
the radiation transport and matter—radiation exchange subsystems,
using time steps that are sub-cycled with respect to the hydrodynamic
update. Following Paper II, we handle these subsystems using a
method of lines formulation where we define E;j; as the volume-

averaged radiation energy density in cell ijk, and similarly for all
other variables, and express the radiation subsystem for each cell as

d
anjk = TWij, 1) + S(Ujj, 1), (33)

where, dropping the ijk subscript from this point forward for con-
venience and introducing the reduced-speed-of-light approximation,
we define

oV 0 ZgGg
. GO
u=| B T—_v.|[,0| s= °Zfog . G4
lEg ;Fg —CGg
wFe Py -G,

as the vectors of conserved quantities, the transport terms, and the
source terms for the radiation subsystem update. In these equations ¢
is the reduced speed of light, which we can set to value value <
¢ to reduce time-step constraints. We provide this formulation for
completeness, but unless otherwise noted below, we always set ¢ = c,
thereby recovering the exact equations. We solve this system using
the IMEX method introduced in Paper II to integrate equation 33
over a time At in a two-stage process:

UT+1/2 = U™ + Ar T(U®) + Ar S(UOH1/2) (35)
U(n+1) — U(n) + At |:% T(U(n))+ % T(U(n+1/2)):|

1 1
+ At {E S(UT+/2y 4 3 S(U("“))} , (36)

where the superscript (r) indicates the state at the start of the radiation
update (but after the operator-split hydrodynamic update), (n + 1)
indicates the state at the end of the radiation update, and (n + 1/2)
indicates an intermediate stage. As discussed in Paper II, this
scheme has the advantage of asymptotically preserving the diffusion
limit and requiring no more communication than hydrodynamics,
which is a huge advantage on modern GPU-based structures where
communication is expensive. We refer the reader to Paper II for
details of the time-integration scheme.

Evaluating each stage of this two-stage integration requires first
evaluating the explicit terms — those that depend only on (n) quantities
at the first stage, and those that depend on (n) or (n + 1/2) quantities
at the second stage — and then solving the remaining implicit
equation for the next stage terms — (n + 1/2) at the first stage and
(n + 1) at the second stage. The extension of the explicit terms to the
multigroup case is trivial, since one can simply evaluate them group-
by-group. We therefore focus on the implicit stage, which requires
modification for the multigroup case. To start with, for both stages
of the IMEX integrator, we can express the implicit equation to be
solved in the generic form
ELD — EQ = oAty Gyoth 37)

gas
4

E{*D —EY = —0A1GYy ) forg=1,2,---, N (38)

for the energies, and

(pv)(tH) _ (pv)(r) — OAL Z Gngl) (39)
8
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F{™D — F) = —ecfAtG{™) forg=1,2,---, N, (40)

for the momenta. Here, terms with superscript (#) denote the state
after applying the explicit terms — for example during the first stage
(equation 35) we have EY) = E{" — A1(¢/c)V - Fi,") — and terms
with superscript (r + 1) denote the final state for which we are
attempting to solve; the factor 6 is unity during the first stage and
1/2 during the second stage.

In each cell, this is a system of 4 4+ 4N, equations in 4 + 4N,
unknowns — gas energy and N, radiation energies, three components
of gas velocity, and three components of N, radiation fluxes —
that must be solved simultaneously. As discussed in Paper II, it
is numerically convenient to divide this problem into an inner and an
outer stage; in the inner stage, we solve the energy equations while
freezing v and F,, and in the outer stage, we update the fluxes and
gas velocity and then if necessary, go back to the inner stage and
recompute E, and E,, using the updated values of v and F,. The
reason this is more efficient is that it allows the inner iteration stage
to consider only 1+ N, variables rather than 4 + 4N,, making it
faster, and in most cases the work terms proportional to v and F, are
small in the energy equations, so E, and Eg, change little to none as
aresult of the update to v and F, and the whole procedure converges
in a single or at most a few outer iterations.

The inner stage consists of solving equations (37) and (38) for the
new energies, which we do via Newton—Raphson iteration following
Howell & Greenough (2003), Paper I, and Paper II. For the multi-
group case, we can write out the system to be solved as

0= F(;(E(’H), EYH)? E;Hl), S

gas

— p+D ) ¢ (t+1)

- e () Y
8

0= Fr (ESHD BTV ESTD

gas

= EYH) _ Eit) _ (REH-I) + Sgl-%—l)), (41)

0= Fro (EG" EYTV EY™D, )

gas

_ p+D (1) (t+1) (1+1)
= £y — EY) — (R + 5370,

where
RUTD = —2GY" o AL

= [4”)(03@38 —cxoe.g Eg (42)
e (1 a0 SE FL 0

and S, is an optional term to include, for example, the addition of
radiation by stellar sources. We remind readers here that, although we
have omitted them to avoid clutter, E, and all the variables that can
depend on Egy — X0B.g> X0E,¢» X0F,g» and B, — carry the superscripts
(t + 1) to indicate that they are evaluated at the new time, while v
and F, are fixed to their values at the start of the inner stage as noted
above, and thus do not carry subscripts (# + 1) and do not evolve
during the inner Newton—Raphson stage.

A single Newton—Raphson iteration for this system consists of
solving the linearized equations

J-Ax = —F(x), (43)

where x is the set of variables to be updated, Ax is the change
in these variables during this iteration, F(x) is the vector whose
zero we wish to find, and J is the Jacobian matrix of F(x). As
discussed in Paper II, we use the gas energy and the source terms as
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the base variables over which to iterate and compute the Jacobian:
X = (Egs, Ri, Ry, -+, Ry,). The Jacobian in this basis is

0F¢

0B (44)
OF

% 43)
2;71;:’ = aaEiis |Rg:consl, = é% (% 4”%) (46)
ZLS = %lT:const. 1= —m -1 (47)

In practice, we assume 0(xog,¢/ X0£,g)/0T = 0 in the calculation of
the Jacobian for simplicity, but this simplification only changes the
rate of convergence; it does not affect the converged solution.

The Jacobian matrix is sparse:

B aFG aFG Fg . aFG T
0Ew OR, °% T Ry,
O0FRr1 org,
7

y=| R OFra 48)

0E R,
aFRyNg 0 0 aFR,Ng'

L aEgas aRNg J

Physically, this sparse structure is a manifestation of the fact that
the different energy groups are coupled only via the gas, not directly
with each other. This allows inversion of the matrix via Gauss—
Jordan elimination rather than via more general, and much more
expensive, matrix inversion methods. First, we cancel the 2nd, 3rd,
4th,..., elements of the first row with the 2nd, 3rd, 4th,..., rows,
respectively, which eliminates all variables except Ax; and allows
us to solve for it. Then, we substitute Ax; into the 2nd row and solve
for Ax,, and substitute Ax; into the 3rd row and solve for Axs,
and so forth. These steps take only O(N,) floating-point operations,
compared to O(N 3) operations from a general Gaussian elimination
algorithm.

After solving equation (43) for Ax, we update x < x + Ax; we
then repeat the procedure of solving for Ax and updating x until the
system converges, as determined by the condition

F F

Lid <e€ and 272g| Rl <e€ (49)
tot c E

where

¢
Euow = Egl + - (Z EP+)° s;,”) . (50)
8 8

is the total radiation and material energy at the beginning of the time-
step accounting for the reduced speed of light. We set the relative
tolerance € = 10~ by default. Once this Newton-Raphson system
converges, we have solved for E é’;;l), R(()’H), RY*D ... We update
the radiation energy with E{*V = E{ + RU+D + §U*1 and update
the material energy with E4FD = EJ) — (/&) 3", RUTY. Note that,
for ¢ = c and S, = 0, this guarantees conservation of total energy to
machine precision regardless of the level of accuracy with which we
have iterated the equations to convergence.

We then proceed to the outer stage of the iteration where we solve
the flux and momentum update equations, equations (39) and (40),
with the updated gas temperature, opacity, and radiation energy. For

G20z Arenuer 2z uo1sanb Aq 201€06./650€/7/SEG/AI0IME/SEIUW/WOod"dNo"d1WapEo.//:Sd)Y WOy PapEojumod



simplicity, we use the outdated velocity while updating radiation
flux. The solution to equation (40) is straightforward:

_ o ny 1
FLOHD = {F;“) + e0 At [4710 vl (XOB_ng - gAg(vxoBv))

+ V(I +ayxoes P}/ (14 &xor0 Ar).  (51)

Lastly, we update the gas momentum via

(pv)* = (pu')® — (c&)~! Z (Fé,<t+1> _ F;L’(”) . (52)

g

This update also ensures momentum conservation to machine pre-
cision. After we update the gas momentum, we also recalculate the
gas’s internal energy (which in QUOKKA, we track separately because
we implement a dual energy formalism) by subtracting the updated
kinetic energy from the updated total energy.

As previously indicated, the gas velocity v and radiation flux F
we use in the inner stage of the iteration are lagged. This can cause
significant inaccuracies at high optical depths when the velocity-
dependent terms are non-negligible. To eliminate errors like this
and render this scheme fully implicit, we now repeat the inner
iteration using the updated values of v and F, and compute new
estimates for v and F, repeating this procedure until the sum of
the absolute change in the value of the terms proportional to v and
F in R (equation 42) from one outer iteration to the next is below
1013 > < R, and 107 B Er. Except in the dynamic diffusion limit,
where the velocity-dependent terms are at the same order as all
other terms, this iterative process typically terminates after just one
iteration, and in all the tests we present below, and for all the test
problems presented in Paper I and Paper II, we never require more
than a handful of outer iterations. Thus, the cost is modest. This
completes accounting for all terms in the radiation four-force, thus
completing radiation-matter coupling.

4 NUMERICAL TESTS

We next carry out a series of tests of our numerical method to verify
its accuracy. Our tests can be divided into those that purely test the
radiative transfer part of the code (Section 4.1) and those that test the
full radiation-hydrodynamics functionality (Section 4.2).

4.1 Radiation transport tests

We begin with tests in which we disable the hydrodynamic update
parts of the code, and we test the radiation transport parts in isolation.

4.1.1 Multigroup Marshak Waves

Our first test, taken from Vaytet et al. (2011), consists of simulations
of Marshak waves. We consider three different models for opacity: (a)
constant opacity, (b) frequency-dependent opacity, and (c) frequency-
and temperature-dependent opacity. The goal is to evaluate the
accuracy of the multigroup method in handling variable opacities
and to study how these opacities affect wave propagation.

In all three simulations, the gas is at rest with a uniform density
o =103 g cm™? and a temperature T = 300 K, in equilibrium with
the radiation. The simulations use six frequency groups, with the first
five groups evenly spaced between v =0 and v = 1.5 x 10'* Hz,
the last group covering the range from 1.5 x 10'* Hz to co. The heat
capacity of the gas is set to pCy = 1073 ergecm™> K~!. The 1D
spatial grid extends from 0 to 20 cm, resolved using 500 cells. The

QUOKKA: Multigroup RHD 3067

boundary conditions on the radiation are set to zero flux initially, with
an energy density in each group corresponding to blackbody radiation
at temperatures of 1000 and 300 K on the left and right sides of the
domain, respectively. We run the simulations to r = 1.36 x 1077 s.
In simulation (a), the gas has a constant specific opacity ko =
1000 cm? g~! independent of frequency. The total opacity is xo =
pkog =1 cm™', so in this simulation the optical depth across the
simulation domain is 20. For the frequency-independent material
opacity the PC and PPL methods are identical, so we need not
distinguish them. We show the results from this simulation in the
first panel of Fig. 1, where the curves represent the gas temperature,
labelled as Ty, the radiation temperature, labelled as Tr,q, and the
radiation temperature inside each individual energy group T,
labelled as an integer g. We define Ti,q o by the following relation:

E, = aRT;;d,g, (53)

and we define the total radiative temperature 7,4 by
> E, =apTy, (54)
8

The numerical calculation is performed on the domain [0, 20] cm,
but we limit the x-axis to [0, 12]cm, which is the most relevant
portion of the data. We compare Ty, Trag, and Ty, from our
numerical calculation (solid lines) with the exact ray-tracing solution
(dashed lines) from Vaytet et al. (2011), finding excellent agreement.
In particular, we see that we reproduce an important feature in
the solution: although the opacity is the same in all groups, and
thus all groups have the same diffusion speed, variation in the
overall radiation temperature across the domain leads to a shift in
which frequency groups dominate, with group 1 dominating in the
upstream, cool gas and groups 2, 3, and 4 becoming dominant in
the heated regions. In addition to demonstrating the overall accuracy
of our method, this test demonstrates the validity of the M closure
approximation in our code, at least for this problem.

We also carry out one additional comparison here, by running the
problem using the grey method described in Paper II — for frequency-
independent opacity, this method is highly accurate. We compare
Tyas and Trq computed the multigroup model presented in this paper
(solid lines) to those computed using the grey method (dotted line),
and find excellent agreement — the lines for multigroup and single-
group models are indistinguishable to the eye. This demonstrates
that the multigroup scheme consistently reduces to a grey model for
frequency-independent opacities.

Simulation (b) employs group-specific opacities: xo, =
[1,0.75,0.5,0.25,0.01,0.01] cm~! for groups 1-6, respectively;
following Vaytet et al. (2011), the opacities are assumed to be
constants across groups, and thus we use the PC opacity model,
or equivalently the PPL. model with o, , = O for all groups. For
these opacities the optical depth of the domain varies from 20
in group 1 to 0.2 in groups 5 and 6. The results are shown in
the second panel of Fig. 1. Unlike in Vaytet et al. (2011), we do
not extend the grid to the right with extra cells. Compared to the
solution in panel (a), we see that radiation in groups with lower
opacities (notably groups 5 and 6) rapidly traverses the entire grid
and heats the gas at the right edge, raising the gas temperature to
330K from its initial value of 300 K. This pre-heating by the more-
rapidly propagating radiation in the low-opacity groups in turn causes
the the radiation in groups 1 and 2 to advance slightly further than
in the constant opacity case. Comparison between the numerical
solution and exact ray-tracing solutions is again excellent for the gas
temperature. The total radiative temperatures are slightly larger than
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Figure 1. Multigroup Marshak wave tests calculated using three different opacity models: constant opacity (panel a), frequency-dependent opacity (panel b),
and frequency- and temperature-dependent opacity (panel c¢). We plot the gas temperature, marked with Tg,s, the radiation temperature, marked with 71,4, and
the temperature of 6 radiation groups, marked with the group index; see the main text for our definitions of Ti,q and the group radiation temperatures. We
compare the numerical solutions (solid lines) computed using QUOKKA with exact ray-tracing solutions (dashed lines, data adapted from Vaytet et al. 2011) and

find good agreement.

in simulation (a), particularly in the low-opacity groups 5 and 6. As
Vaytet et al. (2011) point out, this is primarily a boundary condition
effect: when the difference between the left and right fluxes is large
(which is the case for groups 5 and 6 at the left boundary since the
flux in the ghost cells is set to zero), the M; model becomes less
accurate.

Simulation (c) features both frequency- and temperature-
dependent opacities: xq, = xo.s(T/To)**, where T = 300K and
Xo,¢ in the groups 1-6 are the same as in simulation (b), and we
again use PC opacities to be consistent with the assumptions used
to derive the reference solution. The results are shown in the third
panel of the figure. As the gas temperature T, increases, so does
the opacity, leading to more rapid radiation absorption. Group 1 is
less affected by this effect due to re-radiation from the hot gas. We
once again see good agreement between the multigroup M; model
and the exact ray-tracing model, especially for the gas temperature.

Overall, these Marshak wave simulations demonstrate the capabil-
ity of the multigroup method to handle variable opacities accurately
and highlight the effects of different opacity models on Marshak
wave propagation.
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4.1.2 Marshak waves with continuously frequency-dependent
opacity: convergence rates for different opacity models

Our next test is intended to measure the accuracy and convergence
rates of the three different methods we have described for computing
group-mean opacities: PC, PPL with fixed slopes for the radiation
quantities, and PPL will full-spectrum fitting for the radiation
quantities using the algorithm outlined in Appendix A. In order to
test these approaches, we repeat the Marshak wave test, but instead
of the piecewise constant opacities adopted in Vaytet et al. (2011),
we use a more realistic opacity that varies continuously as function of
frequency, xo(v) = 3.2 x 10*(v/10'3 Hz)~2 cm™!. For each opacity
method, we run the same simulation with 4, 8, 16 energy bins, and
compare their results with the converged result, which we obtain
by using 128 bins with the PC method — though at this frequency
resolution all three methods converge to nearly identical results. For
these tests frequency bins are evenly distributed in logarithmic space
between 6 x 10'" and 6 x 10'* Hz.

We show the results in Fig. 2. Panels (a) and (b) show Ti,q,
and T4, respectively, while the remaining panels (c)—(f) show
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Figure 2. Results for the Marshak wave tests with a continuously variable opacity xo o v~2 obtained from calculations with 4, 8, and 16 energy bins using
various opacity models — PC (blue), PPL with fixed slopes (green), and PPL with free slopes (orange). Solid, dashed, and dotted lines show results for 4, 8, and 16
radiation groups, respectively. The top row shows the gas temperature and the total radiation temperature, while the bottom row shows the radiation temperature
of the four radiation groups, [6 x 10196 x 101, 6 x 10'2, 6 x 103, 6 x 10'4]Hz. In each panel the error shown is relative to the converged results we obtain

at very high spectral resolution.

effective radiation temperature, T, (defined per equation 53), in-
tegrated over four energy ranges: [6 x 10'9,6 x 10", 6 x 102, 6 x
10'3, 6 x 10'] Hz. These bins correspond to the ones used in the
four-group simulation, and in simulations with more than four bins
we simply sum over the finer bins to allow direct comparison.

From panel (a), we immediately notice a few trends on the
convergence rate of these three methods. First, with 4 bins, the PPL-
fixed and PPL-free methods work similarly and significantly better
than the PC method. With 8 bins, all three methods give results with
similar accuracy. With 16 bins, the results from the PPL-fixed and
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Figure 3. Linear multigroup diffusion test discussed in Section 4.1.3. We show dimensionless temperature (left) and total radiation energy density (right) at the
dimensionless time t = 1. The optical depth per cell is 7. ~ 6 x 107 for the lowest frequency group. The numerical results (solid lines) are in good agreement
with the exact diffusion solutions (circles). We observe a slight mismatch in the radiation energy density between our numerical solution and the exact diffusion
solution because the problem is not in the diffusion limit for highest frequency groups — see the main text for details.

PPL-free methods are similar and slightly worse than that of the PC
method. These trends are understandable. With a small number of
bins, the resolution of the spectrum is poor, so the PPL-fixed method,
which uses the average slopes for the spectrum, works as well as or
better than the PPL-free method, and both of them are better than
the PC method. However, when the spectrum is well resolved with a
large number of bins, while the PPL-free methods provides a good
approximation to xop,, and Xo,g, the diffusion flux-mean opacity
(equation 27) introduces inaccuracies into the calculation. Our tests
show that this inaccuracy is diminished when using PPL models for
evaluating xor .. Conversely, because the bin width is so small, the
piecewise-constant opacity model is a good approximation so the PC
method work the best. Finally, we note that the overall accuracy is
extremely good for even a small number of bins: for example four
bins using the PPL-fixed method is sufficient to achieve accuracy
better than 10 per cent in all quantities.

Based on this test, we recommend the following strategy for
choosing the opacity method based on the problem and the number
of energy groups. For N, < 10, we recommend using PPL with
fixed-slope spectrum as it has the best accuracy. For N, 2 10, we
recommend PC, provided that the bin widths are small enough, on
the basis that it is nearly as accurate as PPL-free, but is noticeably
faster since there is no need to evaluate the slopes. More precisely,
we recommend PC whenever the bin widths in logarithmic space are
smaller than ~ W /10, where W is the width of the full frequency
range in logarithmic space, and PPL with fixed-slope otherwise.

4.1.3 Linear diffusion with multigroup radiation

Our third pure radiation test is a linear diffusion problem introduced
by Shestakov & Bolstad (2005, their problem 1). This test is unique in
that it includes non-trivial frequency dependence in the opacity and
radiation field structure, but also admits an exact analytic solution. An
additional benefit specific to our code is that this test is derived in the
diffusion limit, and therefore allows us to verify that our multigroup
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method shares the asymptotic-preserving property demonstrated for
the single-group formulation in Paper II, meaning that, although we
are using a two-moment method that can properly capture both the
streaming and diffusion limits, our scheme properly approaches the
diffusion limit when the optical depth is high.

For this test, we use non-dimensional units where ¢ = /3,
8mh/c® =1,kg = h,andag = 1. The computational domain is x =
[0, 4], with areflecting boundary condition at the lower boundary and
an outflow boundary condition at the upper boundary; we discretize
this domain into 256 equal-sized cells. This domain is filled with
a motionless gas with density p = 1, heat capacity Cy =1, and
temperature 7 = 1 for x < 0.5 and 7 = 0 for x > 0.5; the initial
radiation energy density is zero everywhere.

We use the same group structure as Shestakov & Bolstad (2005):
64 groups with v)- = Oand v;+ = 5 x 107#, and the frequency width
of all other groups set by ve+ — vo- = 1.1[Vg—1y+ — V—1)-1,1.€. the
width of group g is set to be 1.1 times the width of group g — 1.
The absorption coefficient is taken to be constant within each group,
and is setto a value xo , = vg3/ﬁ where v, =, /U _1/2Vg11,2 forall
groups except g = 1, for which we adopt v; = 0.5v;+. For our chosen
resolution, this means that the optical depth per cell is T = 6 x 107
at xo = xo0.1, and T =2 x 107 at xo = Xo.64. Therefore, at most
frequencies, the problem is strongly in the asymptotic diffusion limit
where the photon mean free path is unresolved; however, at the
highest frequencies the optical depth per cell becomes small, and in
fact, the optical depth across the entire domain falls to & 0.25. In
order to obtain a closed-form solution, Shestakov & Bolstad (2005)
assume purely diffusive radiation transport, and consider a medium
for which radiation emission follows a modified Wien’s law rather
than Planck’s law. For group g, the emissivity is

27{]{3 3 hl)g—]/z hUngl/z
B, = 3 2 — 2T (55
¢ = a2 % [eXp< keT, P\ T T, (55)

where T; = 0.1, and for the purposes of this test we modify QUOKKA
to use this emission function.
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We simulate the system using a CFL number of 0.8 and run to time
t = 1. We show the numerical results in Fig. 3 and compare them
with the tabular data of Shestakov & Offner (2008). We plot the
domain between 0 and 1 to centre the location of discontinuity. The
results for gas temperature are in excellent agreement with the exact
diffusion solution, confirming that our multigroup method retains the
asymptotic-preserving property demonstrated for our the frequency
integrated method in Paper 1I, i.e. we recover the diffusion limit
even when we do not resolve the photon mean free path. We see a
slight mismatch in the radiation energy density at x < 0.2 between
our result and the reference solution, but this is to be expected.
Since the optical depth across the domain is < 1 in the highest
frequency bins, this is not a pure diffusion problem, contrary to the
assumption used to obtain the closed-form solution. Our two-moment
code does not assume pure diffusion, unlike previous authors who
have used this test (e.g. Shestakov & Offner 2008; Zhang et al.
2013), so the difference is very likely due to the more accurate
treatment of radiation transport that we perform. This hypothesis is
consistent with where the mismatch between the analytic diffusion
and numerical solutions occurs: the diffusion approximation is best
in the low-temperature region, where most radiation energy is at
lower frequencies where the opacity is highest, and worst in the
high-temperature region, which is precisely where our numerical
solution differs from the exact diffusion one. It is also consistent with
the results of the Su—Olson test presented in Paper I (their fig. 10),
where the M, solution obtained by QUOKKA yields a slightly higher
radiation energy density than a diffusion approximation solution,
while more closely matching the transport solution in the high-
temperature region.

4.2 Radiation-hydrodynamic tests

Our tests thus far have been problems of pure radiative transfer with
a time-independent gas background. We now expand our testing
regime to full RHD.

4.2.1 Frequency-dependence of the Doppler effect

Variations in the spectrum of radiation produced by moving matter
due to the Doppler effect are handled by the 0/0v terms in
equations (9) and (10), and these terms are at the heart of our mixed-
frame formulation, since they avoid the need to carry out explicit
frame transformations of the radiation quantities. In this test, we
check that the Lorentz transformation of emissivities and opacities
is correctly implemented in our numerical scheme by considering a
moving medium in thermal equilibrium and verifying that we recover
the correct, Doppler-shifted spectrum.

For this test we adopt a dimensionless unit system for which
agr = kg = h = ¢ = 1. Our initial condition consists of a uniform
medium with density p = 1, temperature Ty, 0 = I, specific heat
at constant volume Cy = 3/2, velocity v = 0.001, and frequency-
independent opacity xo = 10°. The initial radiation energy density
is zero everywhere. The gas occupies a 1D periodic domain covering
the region [0, 64], which we cover with 64 grid cells. We use
either 8, 16, or 64 frequency groups evenly covering v = [1073, 10?]
logarithmically; for a frequency-independent opacity, the PC and
PPL methods are identical, so it does not matter which of the
approaches outlined above we choose. We advance the system to
time ¢ = 1000, long enough to reach steady-state given the very
high opacity, using a hydro CFL number of 0.8 and a radiation
CFL number of 8.0; the latter is permissible because our code is
asymptotic-preserving (Paper II).

QUOKKA: Multigroup RHD 3071

We can compute the expected equilibrium solution as follows. First
note that, in the frame comoving with the gas, the gas and radiation
should reach equal temperatures, and the equilibrium temperature
can be calculated directly from energy conservation once we recall
that gas temperature is a Lorentz scalar, and thus is the same in all
frames:

agT* + CypT = Cy pTyso. (56)

where Ty, 0 = 1 is the initial gas temperature. The resulting equilib-
rium temperature is 7 = 0.768032502191. The difference between
radiation energy density in the lab and comoving frames is second-
order in v/c, so for our first-order treatment the equilibrium radiation
spectrum E, in both the lab and comoving frames should simply be
a Planck function B,(T") evaluated at the equilibrium temperature.
We verify that our code reproduces this solution in the left panel
of Fig. 4, which shows near-perfect agreement independent of the
number of frequency bins. The equilibrium gas temperature we
obtain is 0.768 032709 7575, which differs by 3 x 107 from the
exact expectation.

While this result is encouraging, the spectrum of the radiation
flux is a far more stringent test. In the frame comoving with the
matter, the radiation is isotropic and the flux is zero. In the lab
frame, the intensities are Doppler-shifted depending on the angle,
causing a combination of Doppler and aberration effects that skew
specific intensities in the direction of gas motion, resulting in non-
zero radiation flux. We can calculate the expected flux spectrum by
integrating the Doppler-shifted specific intensity over angle. To order
B = v/c, the transformation of frequency from the lab frame to the
fluid frame is given by (Mihalas & Auer 2001)

Vg =V (1 — ﬁini) (57)
and the specific intensity transformation from the fluid frame to the

lab frame is given by

3
v
I(n,v) = ?10 (no, vo). (58)
0

The radiation flux is therefore

Fl = /dQ n'I(n,v)

3
=/ﬁ9#2hmmm)
Yo

= /dQniv—}B(v)
_ B
Yo

; 213
= dQ i’ll AN
eV/D(1=pin') _
213

b4 2
— 2
_/0 de/o dg sin 9cos<pe(v/T)(17ﬁsmacow)_1 (59)

where we have used 8/ = (8, 0, 0). The integral equation (59) can be
evaluated numerically.’ We show this comparison in the right panel of
Fig. 4, which again shows excellent agreement between the analytical
calculation and the numerical results. The maximum relative error
between the numerical solution and the exact solution is below 0.1
per cent, regardless of the number of energy bins. The excellent

3One can alternatively derive the group-averaged fluxes directly from equa-
tion (26); we choose to evaluate it as shown above to better illustrate the
physical origin of the effect. However, one can readily verify that the result
obtained from numerical evaluation of this integral is identcal that derived
from equation (26) to at least order v/c, as expected.
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Figure 4. Solutions for the monochromatic radiation energy density (left) and flux (right) in the lab frame from the problem described in Section 4.2.1. Lines
show the exact monochromatic solution, while filled points show the mean energy (left) and flux (right) in each group computed by integrating the exact solution
over the same frequency bins used in the simulation. Open squares show the corresponding group-mean energy and flux computed by the simulation, defined as
E, ¢ = Eg/(vg1 — vg_) and similarly for the flux. Blue points show results for 8 frequency bins, green for 16 frequency bins, and orange for 64. We see that
the group-averaged numerical solutions (open squares) show excellent agreement with the group-averaged exact solutions (points) regardless of the number of
energy bins; note that, we refrain from plotting the exact frequency-integrated solutions (filled points) for N, = 64 because they are visually indistinguishable
from the monochromatic exact solution line, and it is therefore simpler to compare out N, = 64 solution directly to the exact monochromatic one.

agreement between our numerical simulation and the analytical re-
sults on the spectra demonstrates that our multigroup implementation
accurately accounts for frequency-dependent Doppler shifts to order
v/c.

4.2.2 Multigroup non-equilibrium radiation shock

Our next RHD test is the classical non-equilibrium radiative shock
test, following the set-up used by Skinner et al. (2019) for the Mach
M = 3 test given by Lowrie & Edwards (2008). In Paper II, we
showed results computed with the grey RHD solver. Here, we present
results from a simulation with the multigroup RHD solver along
with the resolved radiation spectrum, demonstrating both that our
method properly reproduces the frequency-integrated result when
the opacity is frequency-independent, and that it returns a realistic
radiation spectrum while doing so.

The set-up of this test is exactly the same as that in Paper I except
that we now add a new run with 32 radiation groups. The lowest
and uppermost boundaries of the groups are at 10'5 and 10% Hz,
respectively, and the groups are evenly spaced in logarithm. We use
an adiabatic equation of state with an adiabatic index to y = 5/3.
The shock is simulated in a 1D region with x € [0, xz], where
xg = 0.01575 cm, resolved with 512 cells, with the discontinuity
placed at xo = 0.0130 cm. The gas conditions on the left and right
sides of the shock are uniform, with densities, temperatures, and
velocities given by p; =5.69gcm™3, T, =2.18 x 10°K, v, =
5.19 x 107cms™!,and pg = 17.1gem™3, T = 7.98 x 10°K, vz =
1.73 x 10" cms™!, respectively. We initialize the radiation energy
densities in each group to the values appropriate for blackbody
radiation at a temperature equal to the gas temperature, and the
radiation fluxes to zero. The states at spatial boundaries are held
at fixed values. Following Skinner et al. (2019), we use a reduced
speed of light ¢ = 10(v, + ¢,.1.), where ¢, ;. is the adiabatic sound
speed of the left-side state. The opacity of the gas is yo = 577 cm™!
independent of frequency (so that the choice of opacity model does
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not matter) and local gas properties, and the mean molecular weight
is u = my. To match the assumptions used in the semi-analytic
solution, we use the Eddington approximation, P = (1/3)EI, to
calculate the radiation pressure tensor. We use a CFL number of
0.4 and evolve until t = 1077 s.

In the left panel of Fig. 5, we show the temperature profile at
the end of simulation, with an inset zooming in on the Zel’Dovich
spike near the shock interface. We compare our numerical solution
with the semi-analytic, exact solutions of Lowrie & Edwards (2008),
finding excellent agreement in both the non-equilibrium spike region
and in the radiatively heated shock precursor in the upstream area.
The L, norm of the relative error of the gas temperature is 0.38
percent, which is as good as the multigroup solution of Skinner
et al. (2019). This demonstrates that we successfully reproduce the
frequency-integrated result.

With our multigroup method, however, we can go further by
resolving the spectrum of the radiation energy density and flux. We
plot spectra at two positions marked as A and B in Fig. 5. Location A
is far upstream of the shock at x /xg = 0.1, and location B is just right
of the shock front. We see that the radiation deviates from a blackbody
spectrum at both locations. At location A, the energy spectrum is
close to a blackbody at the local gas temperature for frequencies at
and below the peak, but there is an excess at high frequency. This
excess is due to radiation emitted by the hot material downstream
of the shock, which propagates upstream to location A, as indicated
by the negative value of the radiation flux at all frequencies. The
optical depth from the shock to location A is moderate, T & 7, so
enough of the flux reaches A to be noticeable in the energy spectrum
at frequencies above the local blackbody peak, where emission from
local material is exponentially suppressed. By contrast, location B
is near the temperature maximum across the entire domain, so there
is no significant source of radiation from other locations, and the
radiation energy density is close to an unperturbed blackbody curve.
By contrast there is a very large negative (left-propagating) radiation
flux due to the difference in radiation temperatures in the upstream
and downstream regions.
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Figure 5. Multigroup non-equilibrium radiation shock with M = 3. Left: Temperature profile at 1 = 10~° s. We compare radiation and gas temperature from
the numerical calculation (dots) with the exact steady-state solution (solid lines), finding excellent agreement. Right: Spectra of the radiation energy density and
radiation flux at the two marked locations in the profile. Dots show the numerical solution, and for comparison dashed lines in the top and bottom panels show
B(Tgas) and (4/3)v B, (Tgas), respecitvely, where v and Ty are the gas velocity and temperature at the indicated location.

Overall, the multigroup non-equilibrium radiation shock test
validates the robustness and accuracy of our multigroup RHD solver,
demonstrating excellent agreement with semi-analytic solutions and
effective resolution of the radiation spectrum across different regions
of the shock profile.

4.2.3 Advecting radiation pulse with variable opacity

In Paper II, we performed a test of advecting a radiation pulse by the
motion of matter (following the original test problem introduced
by Krumholz et al. 2007) with the grey RHD solver. Here, we
repeat the test with frequency- and temperature-dependent opacities
following the extension to the test introduced by Zhang et al. (2013).
This test has two main purposes: first, it allows us to verify that
our method correctly reduces to the diffusion limit, and that our
approximate opacities correctly approach the Planck- and Rosseland-
means, when the optical depth is large. Secondly, it allows us to
compare the performance of our piecewise power-law approximation
to the traditional piecewise constant approximation in a case where
the true functional form of the frequency dependence is not a pure
power law, but instead has significant curvature in log-log space.

As in Paper II, we consider a 1D medium with initial temperature
and density profiles

x2
T:To+(T1—To)eXp - | (60)
2w?
T() ari T(;1 3
=pp—+ (L -7, 6l
P=rr 3, (T b

with Ty=10"K, T) =2 x 10K, py = 1.2 gcm™3, w = 24 cm,
and p = 2.33m, = 3.9 x 107>* g. For this choice of parameters,
the system is initially in pressure balance, with radiation pressure
dominating in the high-temperature region near x =0 and gas
pressure dominating elsewhere. Thus, without radiation transport
the system should remain static. However, due to radiation diffusion,
pressure balance is lost and the gas moves. We run two versions of
the simulation: a non-advecting case where the initial velocity is
vy = 0 everywhere, and an advecting case where vy = 10 cm s~!

everywhere. Following Zhang et al. (2013), who developed a
multigroup version of this test, the matter opacity is a continuous
function of temperature and frequency, given by

T -03 v -3 hv
=180 1—- - -
X0 (107 K) (1018 Hz) { eXp( kBTﬂ cm

(62)

The reason for adopting this particular functional form will become
apparent below. The optical depth across the pulse at 7' = Ty for
frequences near the peak of the Planck function is 7 ~ 10°, and since
B = vy/c =3.3 x 1075, we have Bt ~ 0.1, placing this problem in
the static diffusion limit for both the advecting and non-avecting
cases.

In the initial condition for the non-advecting case, radiation and
matter are in thermal equilibrium and radiation flux is zero; we
therefore set our initial values of E, by numerically integrating the
Planck function at the local matter temperature in each cell over
the frequency range of each group, and set our initial values of F, to
zero. In the advecting case, as discussed in Section 4.2.1, the radiation
energy density remains equal to the Planck function (to order v/c),
but due to the Doppler effect the radiation flux is non-zero and can
be computed using equation (26). We therefore initialize E, as in the
non-advecting case, and F, from equation (26).

The computational domain for this test is a 1D region spanning
(—=512,512)cm with periodic boundaries, and the grid consists
of 256 cells. The optical depth per cell for frequencies near the
peak of the Planck function is t. & 200, placing this problem in
the asymptotic diffusion limit. For both the advecting and non-
advecting case, we perform two sets of multigroup simulations
using the PC and PPL-fixed models; we omit PPL-free based on our
recommendations from Section 4.1.2. Each set consists of three runs
with 4, 8, and 16 radiation groups. The radiation bins are distributed
evenly in logarithmic space between 10'° and 10'° Hz. We do not
use the Eddington approximation, and instead compute the radiation
pressure for each group using the M1 closure.

We can obtain a reference solution to which to compare the
simulation results as follows. First note that, for the functional form
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Figure 6. Results from the multigroup diffusing, advecting radiation pulse problem with frequency- and temperature-dependent opacity using two opacity
models: piecewise constant (PC, blue), and PPL with fix-slope spectrum (PPL-fixed, green). This problem is in the asymptotic diffusion limit — the optical depth
per cell is 7. & 200. In the left column, green solid lines show the reference solution computed using the analytically evaluated frequency-averaged opacities,
while the three blue and orange lines in each panel show results computed using the PC and PPL-fixed methods with 4, 8, or 16 energy groups; results with more
groups are lighter and lie closer to the reference solution. The black dashed vertical line shows x = 0, and is provided as a visual aide to help judge the degree
of symmetry between the leading and trailing edges of the pulse in the advecting case. In the right column, blue and green lines show errors in the multigroup
results relative to the reference solution, with the black dashed horizontal line at zero indicating perfect agreement. We see that for N, = 4 the results of the
PPL-fixed method are noticeably better than those from the PC method, but this advantage disappears when a large number (= 8) of radiation groups are used.
We also test both models with 64 energy groups, and find that both perfectly match the reference solution; we omit this curve from the plot, since it is visually
identical to the reference solution. This verifies that our method correctly approaches the exact Planck- and Rosseland-mean opacities at high optical depth.

of the opacity yo that we have chosen, we can evaluate the frequency-
integrated Planck- and Rosseland-mean opacities analytically:

T —-3.5
Xop.or) = (3063.96, 101 248)( 071() em™. (63)

Because these mean opacities are exact, we can use the grey RHD
method described in Paper II to compute a reference solution
representing the results toward which our finite frequency-resolution
calculations should converge as N, — oo. We therefore compute a
reference solution using the grey method described in Paper Il and the
exact analytic expressions for xop and yog; for consistency with our
order v/c method here, we use the order v/c-accurate grey method
as well (see Paper II for details). We compute reference solutions
for both the advecting and non-advecting cases, though as shown in
Paper II the results for these are nearly identical once we remove
the overall translation. Our reference solution agrees well with the
diffusion solution obtained by Zhang et al. (2013).
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We show the density, temperature, and velocity profiles from the
advecting runs att = 2w /vy = 4.8 X 1073 sin Fig. 6; the results are
shifted in space by vot to centre them. We refrain from plotting
the corresponding results from the non-advecting runs because
the differences are so small as to be indistinguishable to the eye,
demonstrating the accuracy of our multigroup scheme in capturing
radiation advection. Note that, our advecting solutions are also almost
perfectly symmetric about the x = 0 line, demonstrating that, as with
the grey method from Paper II, our method here captures advection
effects without introducing any artificial asymmetry between the
leading and trailing edges of the pulse.

Comparing our multigroup solutions to the reference solution, we
see that our results are overall very accurate when the frequency
resolution is good, regardless of whether we use PC or PPL,
demonstrating that our multigroup scheme accurately preserves the
asymptotic diffusion limit, similar to the single-group scheme in
Paper II. For N, = 16, we match the reference solution to typical
accuracies of a few percent for p and T, and within 1kms~' for v
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Figure 7. Magnitude of velocity at 7 = 4.8 x 10~ in the multigroup static
equilibrium test after subtracting off the initial background advection velocity.
The exact solution should have v = 0 everywhere. The sound speed in this
problem is 267 kms~! and the advection speed is 10 km s~!. The maximum
velocity we find is about lpercnt of the sound speed, indicating good
preservation of the static equilibrium in multiple dimensions.

(where percentage errors are not easily defined, since the reference
solution has v = 0 at several points). However, for N, = 4 the results
of the PPL-fixed model are noticeably better than those obtained
using the PC method, with errors 2-3 times smaller; errors for PPL
with N, =4 are comparable to errors for PC with N, = 8. This
demonstrates that with PPL we have achieved our goal of substan-
tially improving accuracy for simulations with modest frequency
resolution without increasing the computational cost significantly.
When we use more frequency bins, the accuracy of both methods
are similar. This reinforces our recommendation from Section 4.1.2
that one should use PC for N, 2 10, since in this case PPL offers
no accuracy gain and thus one might as well use the (slightly)
computationally cheaper PC method, but that for fewer bins PPL-
fixed is preferable due to its higher accuracy.

4.2.4 Radiation sphere in static equilibrium

In our final test, we demonstrate that the multigroup RHD solver
can maintain a stable static equilibrium in multiple dimensions and
in a situation where both radiation pressure and gas pressure are
dominant over differnent parts of the domain. The set-up is the same
as the static equilibrium simulation of Zhang et al. (2013). The
initial conditions for radiation and matter are the same as those in the
test of the advecting radiation pulse test (Section 4.2.3) except that
the coordinate x in equation (60) is replaced by r = 1/x? 4+ y2, so
that the region dominated by radiation pressure becomes circular,
and the opacity increased to xy = 10 cm? g~!. We use a 2D
grid of —512 cm < x <512 cm and —512 cm <y < 512 cm
with 512 uniform cells in each direction. The initial velocity is
v, = 10® cms™! and v, = 0 everywhere. The very large specific
opacity ensures that negligible radiation diffusion occurs over the
course of the simulation, so the radiation and matter should remain
in pressure balance and the only velocity should be due to the initial
advection.

We use 4 radiation groups evenly spaced in logarithmic space
from 10'¢ to 10%° Hz. Fig. 7 shows the magnitudes of velocity at
t =4.8 x 107 s, enough time for the pulse to have been advected
twice across its initial width. The maximum velocity at this time, after
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subtracting off the initial advection velocity v,, is about 1 per cent
of the typical sound speed, or 3 x 10° cms~!. Such a relatively
small gas velocity indicates that the multigroup solver in QUOKKA
can maintain a good static equilibrium in multiple dimensions, even
though the radiation pressure and the gas pressure are operator-split
in the Riemann solver.

5 CONCLUSION

‘We have presented an extension of the QUOKKA code to incorporate
multigroup RHD in a mixed-frame formulation. Our approach suc-
cessfully integrates the advantages of lab-frame radiation transport
with comoving-frame emissivities and opacities, ensuring exact
conservation of energy and momentum and addressing the com-
plexities of frequency-dependent radiation-matter interactions. To
our knowledge this work represents the first mixed-frame, moment-
based, multigroup method presented in the astrophysical literature.

The equations we derive to describe the radiation four-force in the
multigroup method, equations (21) and (22), are relatively simple and
can be expressed in terms of group-integrated radiation quantities,
group-mean opacities, and the opacity at group boundaries. This
offers the significant advantage that in our method we can treat
matter-radiation coupling purely locally, in a way that requires no
non-local implicit steps. As a result, the entire code maintains the
same communication requirements as a pure hydrodynamics update,
making it highly efficient for parallel computations on GPU archi-
tectures. The source term is handled with a set of equations where
the Jacobian matrix is of size N, + 1, where N, is the number of
radiation groups. The inversion of this matrix requires only O(N,)
complexity, ensuring that the overall computational complexity of the
radiation solver scales linearly with the number of radiation groups.

A second key innovation of our method is the novel piecewise
power-law approximation, which we introduce for the purpose of
calculating the various group-averaged opacities that appear in
the radiation-matter exchange terms. Construction of this scheme
requires some care to ensure that it retains the correct limiting
behaviour at high optical depths, but once we satisfy this constraint,
we find that the new scheme offers significantly better accuracy
at only marginally greater cost than the traditional approach of
approximating the opacity as constant within a frequency bin when
the number of frequency groups is < 10. Such coarse frequency
resolution is often unavoidable due to computational constraints,
and thus the new scheme is often preferable in practice.

Through a series of rigorous tests, we demonstrate that our
multigroup method maintains the asymptotic-perserving properties
of the original single-group scheme in the diffusion limit, accurately
recovers all relevant limits of RHD, effectively handles variable
opacity using our novel piecewise power-law approximation, and en-
ables spectrum-resolving capability. We also highlight the superiority
of the piecewise power-law method over the traditional piecewise-
constant approach.

Future work will focus on extending the capabilities of QUOKKA to
include additional physical processes, such as photoionization, and
further optimizing the algorithm for large-scale parallel computations
on GPU architectures. The development of new methods for handling
scattering and non-local thermodynamic equilibrium conditions will
also be explored.
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APPENDIX A: ON THE EVALUATION OF
POWER-LAW INDICES OF RADIATION
QUANTITIES

In our PPL with full-spectrum reconstruction method, we must with
the power-law slopes of ag, of all radiation quantities on fly from the
time-evolving and position-dependent solution. We do so as follows.
We first calculate the slopes at the bin edges,

In (Qg+1/Qg)
In (Bg41/7;)
where U, = ,/V,{V,_ is the bin centre in logarithmic space and

Q, = Q,4/(vg+ — v,_) is the average specific radiation quantity in a
bin. Then, we define

Sgt1/2 = (AD)

g=1lorN,

-1,
%05 = {minmod(sg,l/g, Sg+1/2) g = 2, 3, ce ,Ng —1 (AZ)

Note here the special treatment of the two edge groups, g = 1 and
N,. We cannot treat these as we treat all other groups since we cannot
compute edge slopes for them, and must instead pick specific values.
We choose ap , = —1 for the edge groups because, as demonstrated
in the main text, the quantity-weighted average of .y , over all groups
must be —1. We provide a visual demonstration of this method and
compare it with the PPL-fixed reconstruction method in Fig. Al.

BN
T
0r \/

T

~ _ />41 - -\
N -5r = ]
= — ~—
%0
S —10¢f ]

—1T pprfived T—03 T =10|

—20 : :

—2 0
IOglo(V)

Figure A1. Demonstration of reconstructing power-law indices of radiation
quantities. The black solid curves are Planck functions at the indicated
temperatures, representing the real spectra. The dots are the group-integrated
quantities E, using 5 radiation groups, which are the state variables used
in the simulation. All quantities are dimensionless. The green and orange
lines represent the reconstructed spectra from the state variables using the
PPL method with fixed slope and with full-spectrum fitting, respectively. The
green and orange lines overlap in the first and last group.
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