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A B S T R A C T 

Mixed-frame formulations of radiation-hydrodynamics (RHD), where the radiation quantities are computed in an inertial frame 
but matter quantities are in a comoving frame, are advantageous because they admit algorithms that conserve energy and 

momentum to machine precision and combine more naturally with adaptive mesh techniques, since unlike pure comoving-frame 
methods, they do not face the problem that radiation quantities must change frame every time a cell is refined or coarsened. 
Ho we ver, implementing multigroup RHD in a mixed-frame formulation presents challenges due to the complexity of handling 

frequency-dependent interactions and the Doppler shift of radiation boundaries. In this paper, we introduce a no v el method for 
multigroup RHD that integrates a mixed-frame formulation with a piecewise power-law approximation for frequency dependence 
within groups. This approach ensures the exact conservation of total energy and momentum while effectively managing the 
Lorentz transformation of group boundaries and e v aluation of group-averaged opacities. Our method takes advantage of the 
locality of matter-radiation coupling, allowing the source term for N g frequency groups to be handled with simple equations with 

a sparse Jacobian matrix of size N g + 1, which can be inverted with O( N g ) complexity. This results in a computational complexity 

that scales linearly with N g and requires no more communication than a pure hydrodynamics update, making it highly efficient 
for massively parallel and GPU-based systems. We implement our method in the GPU-accelerated RHD code QUOKKA and 

demonstrate that it passes a wide range of numerical tests, including preserving the asymptotic diffusion limit. We demonstrate 
that the piece wise po wer-law method shows significant advantages o v er traditional opacity averaging methods for handling 

rapidly variable opacities with modest frequency resolution. 
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 I N T RO D U C T I O N  

adiation-hydrodynamics (RHD) plays a crucial role in modeling 
strophysical phenomena where radiation is reponsible for transport- 
ng energy or momentum. Accurate treatment of radiation transport 
s essential for capturing these interactions accurately. While grey 
pproximations that integrate over radiation frequency and only 
ollow frequenc y-inte grated quantities hav e been widely employed, 
hey often fail to capture the complex spectral features and frequency- 
ependent radiative processes that can significantly influence the 
ystem’s evolution. For instance, only frequency-dependent methods 
an correctly model the absorption of ultraviolet radiation from stars 
y surrounding dust and its subsequent re-emission in the infrared, 
 phenomenon that is crucial to mediating how radiation pressure 
egulates star formation (e.g. Rosen et al. 2016 ; Menon, Federrath &
rumholz 2023 ). Moreo v er, multigroup formalisms hav e been shown 

o significantly impact the structure of radiative shocks compared to 
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rey methods (Vaytet et al. 2013 ) and to alter energy transport in
tellar atmospheres (Chiavassa et al. 2011 ). 

In this context, multigroup RHD has emerged as a powerful 
ool, offering a more comprehensive and accurate representation of 
he radiation field by dividing the spectrum into multiple energy 
roups. Sev eral works hav e applied multigroup RHD in como ving
rame formulations (Vaytet et al. 2011 ; Zhang et al. 2013 ; Skinner
t al. 2019 ), meaning that radiation quantities are e v aluated in
he frame comoving with the matter. In the comoving frame, the

atter–radiation interaction is simplified, with the Doppler effect 
anifesting as an advection of radiation quantities between groups 

elated to the matter’s velocity gradient. Ho we ver, the comoving
rame formulation does not conserve total energy or momentum 

xactly, since the RHD equations in the comoving frame are not
anifestly conserv ati ve and do not allo w for the construction of

onserv ati ve update schemes; instead, in such methods conservation 
s generally achieved only to order v/c. 

These conservation errors can be amplified in simulations using 
daptive mesh refinement (AMR), where volumes of the simulation 
omain must be coarsened and refined. This creates a problem for
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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omoving frame formulations of RHD: the children of a parent
ell that is being refined generally have different velocities than
he parent cell, which means that the radiation quantities associated
ith the child and parent cells are not defined in the same reference

rame. One can ignore this difference – this is the most common
ractice in comoving frame RHD–AMR codes – but this incurs an
rror in conservation of order v/c at each refinement stage, and
n deeply nested calculations with many levels of refinement these
rrors may well add constructively, leading to an overall violation
f conservation at unacceptable levels. In a single-group calculation
ne could in principle address this problem by explicitly transforming
adiation quantities to the lab frame before coarsening and refinement
perations, then transforming back afterwards, but this option is not
vailable in a multigroup calculation: while the radiation energy
nd flux inte grated o v er all frequencies form a four-vector that can
e straightforwardly Lorentz-transformed, the radiation energy and
ux integrated over a finite range of frequencies do not. Instead,

he transformation of the flux between frames depends on the
hird moment of the specific intensity, requiring the adoption of
n additional closure relation. Indeed, one is required to estimate
he third moment of the intensity in any comoving frame treatment
f RHD (Mihalas & Mihalas 1984 ; Lowrie, Morel & Hittinger
999 ; Hubeny & Burrows 2007 ). In addition to adding an extra
hysical assumption to the problem, this step comes at potentially
ubstantial computational cost (e.g. see the discussion of the steps
equired to extend the M 1 closure to the third moment in Vaytet et al.
011 ). 
We recently released the QUOKKA 

1 code, a new GPU-accelerated
MR RHD code (Wibking & Krumholz 2022 , hereafter, Paper I )

eaturing a no v el asymptotic-preserving time integration scheme
He, Wibking & Krumholz 2024 , hereafter, Paper II ) that conserves
nergy and momentum to machine precision and correctly reco v ers
ll limits of RHD. In QUOKKA , we solve the moment equations for
HD in the mixed-frame formulation, where the radiative quantities
re defined in the lab frame (i.e. Eulerian simulation coordinates),
nd the emissivity and absorption are described in the comoving
rame of the fluid, where they can be assumed to be isotropic.
his approach takes advantage of the simplicity of the hyperbolic
perators in the lab frame, allowing for the exact conservation of
otal energy and momentum, while benefiting from the isotropic
ature of matter emissivities and opacities in the comoving frame
see Castor et al. 2009 ). It also integrates natively with AMR, since
he lab frame radiation energy and flux are conserved quantities that
an be coarsened or refined exactly like the conserved hydrodynamic
uantities. In this formulation, relativistic corrections to the opacity
ue to Doppler effects between the laboratory frame (where the
adiation variables are defined) and the comoving frame (where
icroscopic interactions occur) appear as additional terms of first or

igher order in v/c in the rate of matter–radiation exchange (Mihalas
 Mihalas 1984 ). These terms must be retained for accuracy, but are

elatively straightforward to handle numerically. 
Ho we v er, e xtending mix ed-frame formulations to multigroup

HD remains a frontier problem. While at first it might seem
imple to extend the mixed-frame approach by evolving the radiation
oments for each frequency group in the lab frame while calculating

roup opacities/emissivities in the comoving frame, thereby retaining
he advantages of the hyperbolic nature of the radiation transport
n the lab frame while accounting for the frequency dependence of
NRAS 535, 3059–3076 (2024) 
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pacities in the comoving frame, a difficulty arises with the frequency
oundaries. In a mixed-frame formulation, these are defined in the
ab frame, but they are Doppler shifted in the comoving frame
here matter emissivities and opacities are defined. This necessitates

areful calculation of group-mean opacities since they are only well
efined in the comoving frame. As a result of this difficulty, the only
ab-frame multigroup RHD method currently in use in astrophysics is
ased on direct discretization of the radiative transfer equation rather
han solution of the moment equations (Jiang 2022 ), an approach that
s considerably more e xpensiv e in terms of both computation and
emory. Moreo v er, while in principle this could be combined with

he reduced speed of light approximation to yield an explicit method
hat would run efficiently on parallel GPUs, the only available current
mplementation in astrophysics relies on a global implicit update that
oes not. 
In this paper, we tackle this problem and extend the QUOKKA algo-

ithm to include frequency dependence via the multigroup approach.
he extended algorithm maintains all the desirable properties of

he original scheme – machine-precision conservation both during
pdates and when adaptively refining and coarsening, correct recov-
ry of all asymptotic RHD limits – while also allowing frequency-
ependent opacities with a flexible decomposition of the frequency
pace in a conserv ati ve manner. This paper is organized as follows.
n Section 2 , we examine the multigroup RHD equations in the
ixed frame formulation, and develop our strategy for frequency

iscretization. In Section 3 , we describe our numerical approach to
mplementing the scheme. Section 4 presents tests of the scheme.
inally, we summarize and discuss future prospects in Section 5 . 

 F O R M U L AT I O N  O F  T H E  M U LT I G RO U P  R H D  

YSTEM  

n this section, we present the multigroup RHD equations that
UOKKA solves. We begin by deriving the multigroup RHD system
f equations in Section 2.1 , and then introducing our strategy for
 v aluating group-averaged exchange terms in Section 2.2 . For the
onvenience of the readers, we list the notations and symbols used
n this paper in Table 1 . 

.1 The multigroup RHD equations 

he full set of frequenc y-inte grated RHD equations we solve has
een introduced in Paper II . Here, we repeat these equations while
riting the radiation-related terms in frequency-dependent form.
hese equations are 

∂ U 

∂ t 
+ ∇ · F U = S U , (1) 

here 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ

ρv 

E gas 

E ν
1 
c 2 

F ν

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, F U = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρv 

ρv ⊗ v + p 

( E gas + p) v 
F ν

P ν

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, S U = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 ∫ ∞ 

0 G νdν

c 
∫ ∞ 

0 G 

0 
νdν

−cG 

0 
ν

−G ν

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(2) 

re vectors of the conserved quantities, the advection terms, and the
ource terms, respectively. In the equations above, ρ is the matter
ensity, v is the matter velocity, p is the matter pressure, and E gas 

s the gas total energy density; E ν , F ν , and P ν are, respectively,
he specific radiation energy density, radiation flux, and radiation
ressure tensor, which are defined in terms of the zeroth, first, and

https://github.com/quokka-astro/quokka
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Table 1. Symbols used in this paper. 

Symbol Meaning Units 

ρ gas density g cm 

−3 

v , v i gas velocity cm s −1 

p gas pressure erg cm 

−3 

E gas gas total energy erg cm 

−3 

E kin gas kinetic energy erg cm 

−3 

ν lab-frame radiation frequency Hz 
νg−, νg+ the lower and upper boundaries of 

the gth radiation group in lab frame 
Hz 

r g = νg+ /νg− Dimensionless 
ν0 comoving-frame radiation frequency Hz 
E ν specific radiation energy erg cm 

−3 Hz −1 

E g = 

∫ νg+ 
νg− E νd ν erg cm 

−3 

F ν or F 

i 
ν specific radiation flux erg cm 

−2 s −1 Hz −1 

F g or F 

i 
g = 

∫ νg+ 
νg− F νd ν or 

∫ νg+ 
νg− F 

i 
νd ν erg cm 

−2 s −1 

P ν or P 

ij 
ν specific radiation pressure tensor erg cm 

−3 Hz −1 

P g , P 

ij 
g = 

∫ νg+ 
νg− P νd ν or 

∫ νg+ 
νg− P 

ij 
ν d ν erg cm 

−3 

G 

0 
ν time-like component of the specific 

radiation four-force 
erg cm 

−4 Hz −1 

G 

0 
g = 

∫ νg+ 
νg− G 

0 
νd ν erg cm 

−4 

G ν or G 

i 
ν space-like components of the specific 

radiation four-force 
erg cm 

−4 Hz −1 

G g or G 

i 
g = 

∫ νg+ 
νg− G νd ν or 

∫ νg+ 
νg− G 

i 
νd ν erg cm 

−4 

n , n i the unit vector (or its ith component) 
in Cartesian coordinates 

Dimensionless 

N g number of photon groups 
χ0 Comoving-frame absorption 

coefficient 
cm 

−1 

χ Lab-frame absorption coefficient cm 

−1 

η0 Comoving-frame emissivity erg cm 

−3 s −1 Hz −1 

η Lab-frame emissivity erg cm 

−3 s −1 Hz −1 

B ν Planck function erg cm 

−2 s −1 Hz −1 

B g = 

∫ νg+ 
νg− B νd ν erg cm 

−2 s −1 

R g the gth-group source term erg cm 

−3 Hz −1 

c speed of light cm s −1 

ˆ c reduced speed of light cm s −1 

� g ( Q ) = Q ( νg+ ) − Q ( νg−) 
χ0 Q,g Group-averaged absorption 

coefficient (equation 30 ) 
cm 

−1 

αχ0 ,g Powerla w inde x of the absorption 
coefficient in group g 

Dimensionless 

αQ,g Powerla w inde x of the radiation 
quantity Q in group g 

Dimensionless 

a R radiation constant erg cm 

−3 K 

−4 
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econd moments of the specific intensity I ( n , ν) in direction n at
requency ν as 

E ν = c −1 
∮ 

I ( n , ν)d 	

F 

i 
ν = 

∮ 
n i I ( n , ν)d 	

P 

ij 
ν = c −1 

∮ 
n i n j I ( n , ν)d 	. (3) 

ote that, all quantities in these expressions are in the lab frame. As
iscussed in the introduction, the lab-frame equations are manifestly 
onserv ati ve, a feature that makes it possible to build conserv ati ve
lgorithms relatively straightforwardly. 

Our next step is to write the frequency-dependent radiation four- 
orce, ( G 

0 
ν, G ν), in the mixed-frame formulation. We assume that
he emitting matter is in local thermal equilibrium, so the source
unction in the comoving frame is the Planck function, and we neglect
cattering. In the lab frame, we have (Mihalas & Mihalas 1984 ) 

−c G 

0 
ν ≡

∮ 
d 	 [ η( n , ν) − χ ( n , ν) I ( n , ν)] 

−G 

i 
ν ≡ c −1 

∮ 
d 	 n i [ η( n , ν) − χ ( n , ν) I ( n , ν)] , (4) 

here η( n , ν) and χ ( n , ν) are the matter specific emissivity and
bsorption coefficient in the lab frame; note that, in the lab frame,
hese quantities depend on direction n due to relativistic boosting 
ffects, which cannot be ne glected ev en in sub-relativistic flows in
 consistent theory of RHD. Following our mixed-frame approach, 
e now seek to rewrite the equations in terms of the comoving-

rame emissivity η0 ( ν) and absorption coefficient χ0 ( ν), which are
MNRAS 535, 3059–3076 (2024) 
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impler because they do not depend on direction. 2 Integrated over
ll frequencies and for matter in local thermodynamic equilibrium,
his transformation to mixed-frame is relatively simple; to first order
/c, it is (see Mihalas & Auer 2001 , and also equation 3 and 4 of
aper II ): 

− cG 

0 ≡ −
∫ ∞ 

0 
cG 

0 
ν d ν

= 4 πχ0 P B − cχ0 E E + c −1 (2 χ0 E − χ0 F ) v 
i F 

i (5) 

− G 

i ≡ −
∫ ∞ 

0 
G 

i 
ν dν

= −c −1 χ0 F F 

i + 4 πc −2 v i χ0 P B 

+ c −1 χ0 F v 
j P 

ji + c −1 ( χ0 F − χ0 E ) v i E, (6) 

here B, E, F 

i , P 

ij are frequenc y-inte grated Planck function, radi-
tion energy density, radiation flux, and radiation pressure written in
he lab frame, but now χ0 P , χ0 E , and χ0 F are the comoving-frame
lanck-mean, energy-mean, and flux-mean opacity. 3 Ho we ver, for

he types of system where we might want to carry out a frequency-
esolved calculation – those far from thermodynamic equilibrium
 v er at least part of the spatial or frequency domain – these comoving-
rame mean opacities are unknown, because they depend on the
requency distribution of the radiation quantities, which we know
nly in the lab frame. While in principle one could solve for the
requency distribution in the lab frame and then transform to the
omoving frame to e v aluate the opacities, this would remo v e the
ain advantage of the mixed-frame approach, which is a v oiding

uch cumbersome transformations. 
We therefore proceed instead by following Mihalas & Mihalas

 1984 ): to handle the lab-frame angle-frequency dependence of the
bsorption and emission terms, we expand the lab-frame frequency
around the comoving-frame frequency ν0 to first order in v/c, as 

/ν0 = 1 + n · v /c. (7) 

e can similarly expand the absorption coefficient and emissivity
y writing down the Lorentz transformations for them and then
xpanding to O( v/c), yielding 

χ ( n , ν) = ( ν0 /ν) χ0 ( ν0 ) = χ0 ( ν) −
(

n · v 

c 

)(
χ0 ( ν) + ν

∂ χ0 

∂ ν

)

η( n , ν) = ( ν/ν0 ) 
2 η0 ( ν0 ) = η0 ( ν) + 

(
n · v 

c 

)(
2 η0 ( ν) − ν

∂ η0 

∂ ν

)
. 

(8) 

Evaluating the integration over d	 in equation 4 and applying
ur assumption that the matter is in LTE so η0 ( ν) = χ0 ( ν) B ν , where
 ν is the Planck function e v aluated at the local matter temperature,
e obtain the time-like and space-like components of the radiation

our-force (Mihalas 1978 , their eaquations 2.19 and 2.21, see also
ihalas & Mihalas 1984 , their equations 93.5 and 93.6) 4 
NRAS 535, 3059–3076 (2024) 

 Here and throughout, we shall follow a convention whereby terms with 
 subscript 0 are e v aluated in the comoving frame, while those without a 
ubscript 0 are e v aluated in the lab frame. 
 Note that, we have assumed that the flux spectrum is the same in all 
irections, so that the direction-dependent χ ( i) 

0 F can be replaced by a scalar 

0 F . 
 We point out that, although these equations appear slightly different in 
orm than the mixed-frame equations derived by Lowrie et al. ( 1999 ), the 
pparent difference arises solely from the fact that we have expressed the 
our-force purely in terms of lab frame radiation quantities, while they express 

 

r  

c
b  

t
e
a
a
s
o

− cG 

0 
ν = 4 πχ0 ( ν) B ν − cχ0 ( ν) E ν + 

(
χ0 ( ν) + ν

∂ χ0 

∂ ν

)
v i F 

i 
ν

c 
, 

(9) 

− G 

i 
ν = −χ0 ( ν) 

F 

i 
ν

c 
+ 

4 

3 
πc −2 v i 

(
2 χ0 ( ν) B ν − ν

∂ ( χ0 ( ν) B ν) 

∂ ν

)

+ c −1 

(
χ0 ( ν) + ν

∂ χ0 

∂ ν

)
v j P 

ji 
ν . (10) 

We now divide the frequency domain into a finite ( N g ) number of
ins or groups. We define group-integrated radiation quantities as 

 g ≡
∫ νg+ 

νg−
Q νd ν, (11) 

here Q = B, E, F , P , G 

0 , and G , which represent the Planck
unction, the radiative energy, flux, and pressure, and the time-
ik e and space-lik e components of the radiation four-force; νg−
nd νg+ 

are the frequency at the lower and upper boundaries,
espectively, of the gth group, and groups are contiguous in frequency
o νg+ 

= νg+ 1 , −. If we now integrate the final two lines of equation 2
 v er each of the groups, and assuming that the groups co v er a broad
nough frequency range that we can neglect contributions to the
requenc y-inte grated four-force ( G 

0 , G ) from frequencies < ν1 − and
 νN g + 

, the vectors of conserved quantities, advection terms, and
ource terms become 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ

ρv 

E gas 

E g 
1 
c 2 

F g 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, F U = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρv 

ρv ⊗ v + p 

( E gas + p) v 
F g 

P g 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, S U = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 ∑ 

g G g 

c 
∑ 

g G 

0 
g 

−cG 

0 
g 

−G g 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (12) 

here the group-integrated time-like component of the radiation
our-force is 

− cG 

0 
g = 

∫ νg+ 

νg−
( −cG 

0 
ν) dν

= 4 π
∫ νg+ 

νg−
χ0 ( ν) B νdν − c 

∫ νg+ 

νg−
χ0 ( ν) E νdν

+ c −1 v i 
∫ νg+ 

νg−

[
χ0 ( ν) + ν

∂ χ0 

∂ ν

]
F 

i 
ν dν, (13) 

nd the group-integrated space-like components are 

− G 

i 
g = 

∫ νg+ 

νg−
( −G 

i 
ν) d ν = −c −1 

∫ νg+ 

νg−
χ0 ( ν) F 

i 
νd ν

+ 4 πc −2 v i 

[ ∫ νg+ 

νg−
χ0 ( ν) B νdν − 1 

3 
� g ( νχ0 B ν) 

] 

+ c −1 v j 
∫ νg+ 

νg−

[
χ0 ( ν) + ν

∂ χ0 

∂ ν

]
P 

ji 
ν dν. (14) 

The equations do require that one adopt a closure relation for the
adiation pressure tensor P g . QUOKKA uses the Levermore ( 1984 )
losure for the RHD system by default – see Paper I for full details –
ut the method we describe here is independent of this choice. In our
heirs in terms of comoving frame quantities. One can readily verify that our 
xpressions are identical to order v/c by substituting their equations (27a) 
nd (27b) for the comoving frame energy and flux into their equations (28a) 
nd (28b) for the time-like and space-like parts of the four-force, setting the 
cattering opacity to zero (since we neglect scattering), and dropping terms 
f order v 2 /c 2 and higher. 
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ultigroup implementation, we express the radiation pressure tensor 
or a radiation group, P g , in terms of the radiation energy density
nd flux from the same group, E g and F g , i.e. we apply this closure
roup-by-group. 
Before proceeding further, we pause to demonstrate that our 

ormulation of the radiation four-force to order v/c is consistent. 
he reason we might worry that it is not is that, as Lowrie et al.
 1999 ) point out, there can be an inconsistency in keeping only
rder v/c terms in the radiation four-force. To understand this issue,
onsider equation 13 , specializing to the case of a grey material, χ0 

ndependent of ν, for simplicity. In this case, and summing o v er all
roups (or equi v alently taking νg± → ±∞ ), we have 

− cG 

0 = χ0 

(
4 πB − cE + c −1 v i F 

i 
)
, (15) 

here B, E, and F are the Planck function, radiation energy, and
adiation flux integrated over all frequencies. Now consider a moving 
edium that is in thermal equilibrium in its rest frame. The issue that
owrie et al. point out is that, to order v/c, the Planck function and

adiation energy are the same in the lab and comoving frames, E =
 0 = 4 πB 0 /c = 4 πB/c, but the lab- and comoving-frame fluxes

re not the same; the comoving-frame flux F 

i 
0 = 0, but the lab-frame

ux is F 

i = (4 / 3) v i E, and this means that c G 

0 = (4 / 3) χ0 v 
2 E/c ,

hich is non-zero even though it should be zero for a medium in
quilibrium. To a v oid this issue, Lowrie et al. advocate replacing
 

i F 

i with v i F 

i 
0 in the expression for cG 

0 . While doing so alleviates
he inconsistency, the price of this fix in a multigroup method is that
t requires constructing the third moment of the specific intensity, 
hereby obviating one of the main advantages of our mixed-frame 
ormulation (see Section 1 ). 

Fortunately, such a fix is also unnecessary, as we no w sho w. It
s unnecessary because all that is required for a formulation to be
onsistent is that in the equilibrium state where cG 

0 and G 

i vanish
hat E and F take on the correct values, and our formulation does
atisfy this condition. To see this, note that, one can verify by direct
ubstitution into equations ( 13 ) and ( 14 ) in the case of constant χ0 

hat the equilibrium solution that gives cG 

0 = G 

i = 0 is 

 = 

4 πB 

c 

(
1 + 

4 

3 

v 2 

c 2 

)
F = 

4 

3 
v 

(
4 πB 

c 

)
, (16) 

hich is in fact the correct expression for the lab-frame energy 
ensity and radiation flux (cf. equation 9.13 of Mihalas & Mihalas 
984 ) to order v 2 /c 2 . The extra v 2 /c 2 term in E comes from the
 

i F 

i and not from the a higher order expansion in v/c and therefore
oes not make the formulation more relativistically correct than order 
/c. None the less, this means that, even though we only have formal
ccuracy to order v/c, our formulation ensures that we recover the 
orrect equilibrium state. 

.2 Evaluation of group-averaged emissivities and opacities 

quations ( 13 ) and ( 14 ) involve a series of inte grals o v er quantities
hat take the form of an opacity multiplied by a radiation quantity. We

ust therefore now adopt a strategy for e v aluating these integrals.
ost previous studies have taken the approach of using either 

onstant opacity within each radiation bin (Zhang et al. 2013 ; Skinner
t al. 2019 ), or some form of weighted opacities, such as the Planck
nd Rosseland means (e.g. Jiang 2022 ). The former approach o v er-
implifies the problem, failing to account for potentially significant 
ariations in opacity within each frequency bin. While the latter is
ccurate in the diffusion limit, it becomes highly inaccurate outside 
his regime, where there is no reason to assume that the frequency
istribution within a frequency bin resembles a Planck function. 
o address this, we first implement a simple model with piecewise
onstant (PC) opacities, assuming the opacity is a constant function 
f frequency within each radiation group, similar to the approach 
sed in earlier codes. We then introduce a piecewise power-law 

PPL) approximation, which we will show below offers signifi- 
antly better accuracy for a very modest increase in computational 
ost in the common situation where the frequency resolution is 
ow. 

.2.1 Piecewise constant opacity 

n the piecewise constant (PC) model, we assume the absorption 
oefficient is a constant function of ν within each frequency bin, i.e. 

0 ( ν) = χ0 ,g , for νg− < ν < νg+ 

, (17) 

gnoring the discontinuity at group boundaries, this assumption 
mplies that the ∂ χ0 / ∂ ν terms in equations ( 13 ) and ( 14 ) vanish,
nd by replacing χ0 ( ν) with χ0 ,g , we obtain 

− cG 

0 
g = 4 πχ0 ,g B g − cχ0 ,g E g + c −1 v i χ0 ,g F 

i 
g 

−G 

i 
g = −c −1 χ0 ,g F 

i 
g + 4 πc −2 v j χ0 ,g 

(
B g − 1 

3 
� g ( νB ν) 

)
+ c −1 v j χ0 ,g P 

ji 
g , (18) 

here we have introduced the shorthand notation that for any 
requency-dependent quantity Q ( ν), we define � g ( Q ) ≡ Q ( νg + ) −
 ( νg − ), i.e. � g ( Q ) is simply the difference between Q ( ν) e v aluated

t the upper and lower frequency limits for a given group. 
Compared to the frequenc y-inte grated formulation equations ( 5 )

nd ( 6 ), we notice an extra term that is proportional to � g ( νB ν). This
erm can be calculated analytically at a given gas temperature for
ach group, and the terms have the property that they vanish when
ummed o v er all groups to produce the frequenc y-inte grated four-
orce ( G 

0 , G ) (as long as our frequency grid is broad enough that νB ν

s negligible at both the low- and high-frequency edges of the grid).
o understand the physical meaning of these extra terms, recall that

G is the total rate of momentum transfer from matter to radiation,
nd the term −4 πc −2 v j χ0 P B appearing in equation 6 represents
he momentum transferred from gas to radiation because moving 
atter produces Doppler-shifted emission that, as a result of the shift,

arries a non-zero net momentum. This Doppler shift, ho we ver, also
hanges the distribution of this momentum o v er frequenc y, so that
he distribution of momentum in frequency is not identical to the
istribution of energy. It is this additional difference between the 
nergy and momentum distributions of the thermal emission that is 
aptured by the terms proportional to � g ( νB ν). 

.2.2 Piecewise power-law opacity 

hile the piecewise constant approach has the advantage of simplic- 
ty, and has been the most common approximation used in previous

ultigroup RHD methods (e.g. Vaytet et al. 2011 ; Zhang et al. 2013 ;
kinner et al. 2019 ), it ignores the potentially large variations of the
pacity within an energy group that can occur when the frequency
esolution is limited, as is often the case in real applications. To
etter capture this situation, we introduce the piecewise power- 
aw (PPL) approximation; this approach is somewhat similar to the 
ne proposed by Hopkins ( 2023 ), but here, we extend this method
o the mixed-frame formulation of RHD, including the Doppler 
ffect terms responsible for energy exchange between energy 
roups. 
MNRAS 535, 3059–3076 (2024) 
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Our fundamental ansatz is to assume the absorption coefficients
an be expressed as power-law functions of frequency over each bin: 

0 g ( ν) = χ0 ,g−

(
ν

νg−

)αχ0 ,g 

, νg− ≤ ν ≤ νg+ 

. (19) 

e note that part of our moti v ation for this ansatz is that power-
aw functional forms are often expected on physical grounds; for
xample, both infrared dust opacities and free-free opacities are close
o power laws in frequency. Thus, in many cases, we know the bin
dges opacities χ0 ,g− and power-law indices αχ0 ,g simply from the
hysical nature of the opacity. In cases where this is not the case and
he opacity χ0 is tabulated, we can adopt the approximation 

χ0 ,g = 

ln 
[
χ0 ( νg+ 

) /χ0 ( νg−) 
]

ln ( νg+ 

/νg−) 
. (20) 

ur implementation in QUOKKA allows users to either use this
pproach or specify αχ0 ,g for each group directly, co v ering either
ase. 

Inserting this functional form into equations ( 13 ) and ( 14 ), we
btain for the time-like component of the radiation four-force 

− cG 

0 
g = 4 πχ0 B,g B g − cχ0 E,g E g 

+ c −1 (1 + αχ0 ,g ) v 
i χ

( i) 
0 F,g F 

i 
g , (21) 

nd for the space-like component 

− G 

i 
g = −c −1 χ

( i) 
0 F,g F 

i 
g 

+ 4 πc −2 v i 
[
χ0 B,g B g − 1 

3 
� g ( νχ0 B ν) 

]

+ c −1 v j (1 + αχ0 ,g ) χ
( ji) 
0 P ,g P 

ji 
g , (22) 

here 

0 Q,g ≡
∫ νg+ 

νg− χ0 ( ν) Q ν( ν)d ν

Q g 

(23) 

s the mean opacity at group g averaged over a spectrum Q ν( ν),
here Q can be B, E, F 

i , or P 

ji . The opacity with a superscript
 or ji represent the opacity weighted by the i or ji components
f the corresponding radiation quantity. For reasons of speed and
ode simplicity, we further assume that χ ( ji) 

0 P ,g ≈ χ0 E,g , which is
qui v alent to neglecting the frequency-dependence of the Eddington
ensor when e v aluating mean opacities. 

.2.2.1 Relations between the mean opacities We next note that the
ean opacities χ0 E,g , χ0 B,g , and χ0 F,g appearing in equation ( 22 ) are

equired to obey certain relations in the limit of high optical depth
f we are to ensure that our method limits to the correct diffusion
olution, one of the important design goals of our algorithm. The
bvious requirement for this to be the case is that at high optical depth
he radiation energy spectrum E ν approaches the Planck function
 ν , and thus to ensure that G 

0 
g vanishes in this limit, we require that

0 E,g and χ0 B,g approach the same value at high optical depth. We
an guarantee that this is the case simply by using the same method
o estimate both quantities. 

The more subtle requirement involves χ0 F,g . For an optically thick
niform medium at rest, we should have F ν → 0, in which case
ur choice of χ0 F,g does not matter. But now consider a moving
omogeneous medium, for which F ν is non-zero. Indeed, examining
he spacelike component of the radiation four-force, we see that the
NRAS 535, 3059–3076 (2024) 
ondition for radiation–matter equilibrium (i.e. G 

i 
ν → 0) reduces to 

 

i 
ν → 

4 

3 
πc −1 v i 

(
2 B ν − ∂ ln χ0 

∂ ln ν
B ν − ∂ B ν

∂ ln ν

)

+ 

(
1 + 

∂ ln χ0 

∂ ln ν

)
v j P 

ji 
ν . (24) 

n the optically thick limit, the radiation pressure tensor (to order
/c) is P ν = 

1 
3 

4 πB ν
c 

I , and we obtain 

 

i 
ν, diff = 4 πc −1 v i 

(
B ν − 1 

3 

∂ B ν

∂ ln ν

)
. (25) 

hen, we integrate F 

i 
ν, diff within a energy bin and get the group-

ntegrated flux in the diffusion limit 

 

i 
g, diff = 4 πc −1 v i 

[
4 

3 
B g − 1 

3 
� g ( νB ν) 

]
. (26) 

f we insert this result into equation ( 22 ), we see that in order
o guarantee that our numerical approximation to G 

i 
g properly

pproaches zero at high optical depth in a moving medium, our
xpression for the group-averaged flux-mean opacity must approach 

0 F,g, diff = 

( χ0 B,g + 

1 
3 χ0 E,g ) B g + 

1 
3 

[
αχ0 ,g χ0 E,g B g − � g ( νχ0 B ν ) 

]

4 
3 B g − 1 

3 � g ( νB ν ) 
. 

(27) 

ote that, as we might expect, equation ( 27 ) reduces to χ0 F,g, diff =
0 ,g in the PC opacity case where χ0 B,g = χ0 E,g = χ0 ,g . In prin-
iple, any method of approximating χ ( i) 

0 F,g with the property that
t approaches χ0 F,g, diff at high optical depth would satisfy this
equirement. Ho we ver, for simplicity, we choose to enforce this
equirement in all cases and in all directions, so that we have
ompletely specified χ ( i) 

0 F,g in terms of χ0 E,g , χ0 B,g , and the matter
roperties. 

.2.2.2 PPL approximations to radiation quantites We have now
educed our problem to the selection of an algorithm to estimate
0 E,g and χ0 B,g . For the latter, since B ν is a function only of

he matter temperature, we could of course e v aluate the average
irectly. Ho we ver, adopting this method would carry a significant
isadvantage: since we have just shown that we must use the same
lgorithm to e v aluate χ0 E,g and χ0 B,g , e v aluating χ0 B,g directly from
he matter temperature would force us do the same for χ0 ,Eg , which
ould amount to assuming that the radiation spectrum within each
in looks like a blackbody spectrum. While this is a less restrictive
ssumption than it would be a grey method, since we would be
ssuming a thermal spectrum only within each frequency bin rather
han across all frequencies, we none the less wish to a v oid making it
ecause it is highly inaccurate at low optical depth. 
Instead, we consider an alternative approach whereby we assume

hat both E ν and B ν can be expressed approximately as power-law
unctions of frequency within each bin, 

 ν( ν) = Q νg−

(
ν

νg−

)αQ,g 

, νg− ≤ ν ≤ νg+ 

, (28) 

here Q νg− is chosen such that ∫ νg+ 

νg−
Q ν( ν) dν = Q g . (29) 

s with our PPL limit for the opacities, this choice is moti v ated
y the fact that for many physical situations radiation frequency
istributions are in fact well described by power law over large
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anges in frequency; an obvious example of this is the Rayleigh–
eans tail of the Planck function. For this choice, one can show that
quation ( 23 ) e v aluates to 

0 Q,g = χ0 ,g−

[ 
r 

αQ,g + 1 
g − 1 

αQ,g + 1 

] −1 [ 
r 

αχ0 ,g + αQ,g + 1 
g − 1 

αχ0 ,g + αQ,g + 1 

] 
(30) 

here for convenience, we have defined r g ≡ νg+ 

/νg−; note that, the 
rst and second terms in square brackets are replaced by ln r g for the
pecial cases αQ,g = −1 and αχ0 ,g + αQ,g = −1, respectively. Also 
ote that, as one might expect, the expressions above reduce to the
C case for αχ0 ,g = 0, and that αQ,g matters only when αχ0 ,g 	= 0,

.e. we care about the frequency-dependence of radiation quantities 
nly if the material opacity varies across a frequency bin. 
The remaining question is how to choose the indices αQ,g . For

his purpose, we consider two possible methods. One is to determine 
0 B,g and α0 E,g directly by fitting E ν and B ν to a PPL functional 
orm, and we describe a method to do so in Appendix A . Ho we ver,
e show below that this approach does not perform any better than

he fa v oured one we describe next, and has a significantly higher
omputational cost. Thus, while we include it for testing purposes, 
n practice we do not recommend using it. 

After testing several approaches, our fa v oured one is to make the
imple assumption that νQ ν is constant across a bin, or equi v alently
hat αQ,g = −1; we refer to this as the PPL fixed-slope method.
n addition to having the advantage of simplicity and therefore very 
ow computational cost, this approximation gives the correct avera g e 
alue of αQ,g , which we can see by noting that this average for any
uantity Q ( ν) is given by ∫ ∞ 

0 αQ 

( ν) Q ( ν) d ν∫ ∞ 

0 Q ( ν) d ν
= 

∫ ∞ 

0 
d ln Q ( ν) 

d ln ν Q ( ν) d ν∫ ∞ 

0 Q ( ν) d ν

= 

∫ ν=∞ 

ν= 0 ν d Q ( ν) ∫ ∞ 

0 Q ( ν) d ν

= 

νQ ( ν) | ν=∞ 

ν= 0 − ∫ ∞ 

0 Q ( ν)d ν∫ ∞ 

0 Q ( ν) d ν

= −1 , (31) 

here in the final step we note that νB ν → 0 at ν = 0 and ∞ for any
nite matter temperature, and that νE ν must similarly approach zero 
t ν = 0 and ∞ in order to ensure that the total frequenc y-inte grated
adiation energy is finite. Thus, the mean power-law index of both E ν

nd B ν , when weighted by the spectrum itself, is −1. Our numerical
ests have demonstrated that this PPL fixed-slope method performs 
f fecti vely in handling problems with rapidly varying opacity across
requencies, even when using a small number of energy bins (see 
ections 4.1.2 and 4.2.3 ). 

 N U M E R I C A L  M E T H O D  

he o v erall structure of a time-step for our multigroup method
ollows the same asymptotic-preserving structure that we introduced 
or grey radiation in Paper II , which we only briefly summarize
ere. We solve the system formed by equation ( 1 ) with state vector,
ransport terms, and source terms given by equation ( 12 ) using an
perator split approach. In the first step, we solve the hydrodynamic 
ransport subsystem 

∂ 

∂ t 

⎡ 

⎣ 

ρ

ρv 

E gas 

⎤ 

⎦ + ∇ ·
⎡ 

⎣ 

ρv 

ρv ⊗ v + p 

( E gas + p) v 

⎤ 

⎦ = 0 (32) 
sing a method of our choice; for all the tests presented below the
ethod we use is as described in Paper I . In the second step, we update

he radiation transport and matter–radiation exchange subsystems, 
sing time steps that are sub-cycled with respect to the hydrodynamic
pdate. F ollowing P aper II , we handle these subsystems using a
ethod of lines formulation where we define E ijk as the volume-

veraged radiation energy density in cell ijk, and similarly for all
ther variables, and express the radiation subsystem for each cell as 

d 

d t 
U ijk = T ( U ijk , t) + S ( U ijk , t) , (33) 

here, dropping the ijk subscript from this point forward for con-
enience and introducing the reduced-speed-of-light approximation, 
e define 

 = 

⎡ 

⎢ ⎢ ⎣ 

ρv 

E gas 

E g 
1 
c ̂ c 

F g 

⎤ 

⎥ ⎥ ⎦ 

, T = −∇ ·

⎡ 

⎢ ⎢ ⎣ 

0 
0 

ˆ c 
c 

F g 

P g 

⎤ 

⎥ ⎥ ⎦ 

, S = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∑ 

g G g 

c 
∑ 

g G 

0 
g 

− ˆ c G 

0 
g 

−G g 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (34) 

s the vectors of conserved quantities, the transport terms, and the
ource terms for the radiation subsystem update. In these equations ̂  c 
s the reduced speed of light, which we can set to value value <
 to reduce time-step constraints. We provide this formulation for 
ompleteness, but unless otherwise noted below, we al w ays set ̂  c = c,
hereby reco v ering the e xact equations. We solv e this system using
he IMEX method introduced in Paper II to integrate equation 33
 v er a time �t in a two-stage process: 

 

( n + 1 / 2) = U 

( n ) + �t T ( U 

( n ) ) + �t S ( U 

( n + 1 / 2) ) (35) 

 

( n + 1) = U 

( n ) + �t 

[
1 

2 
T ( U 

( n ) ) + 

1 

2 
T ( U 

( n + 1 / 2) ) 

]

+ �t 

[
1 

2 
S ( U 

( n + 1 / 2) ) + 

1 

2 
S ( U 

( n + 1) ) 

]
, (36) 

here the superscript ( n ) indicates the state at the start of the radiation
pdate (but after the operator-split hydrodynamic update), ( n + 1)
ndicates the state at the end of the radiation update, and ( n + 1 / 2)
ndicates an intermediate stage. As discussed in Paper II , this
cheme has the advantage of asymptotically preserving the diffusion 
imit and requiring no more communication than hydrodynamics, 
hich is a huge advantage on modern GPU-based structures where 

ommunication is e xpensiv e. We refer the reader to P aper II for
etails of the time-integration scheme. 
Evaluating each stage of this two-stage integration requires first 

 v aluating the explicit terms – those that depend only on ( n ) quantities
t the first stage, and those that depend on ( n ) or ( n + 1 / 2) quantities
t the second stage – and then solving the remaining implicit 
quation for the next stage terms – ( n + 1 / 2) at the first stage and
 n + 1) at the second stage. The extension of the explicit terms to the
ultigroup case is trivial, since one can simply e v aluate them group-

y-group. We therefore focus on the implicit stage, which requires 
odification for the multigroup case. To start with, for both stages

f the IMEX integrator, we can express the implicit equation to be
olved in the generic form 

 

( t+ 1) 
gas − E 

( t) 
gas = cθ�t 

∑ 

g 

G 

0 , ( t+ 1) 
g (37) 

 

( t+ 1) 
g − E 

( t) 
g = − ˆ c θ�tG 

0 , ( t+ 1) 
g for g = 1 , 2 , · · · , N (38) 

or the energies, and 

 ρv ) ( t+ 1) − ( ρv ) ( t) = θ�t 
∑ 

g 

G 

( t+ 1) 
g (39) 
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F 

( t+ 1) 
g − F 

( t) 
g = − ˆ c cθ�t G 

( t+ 1) 
g for g = 1 , 2 , · · · , N g (40) 

or the momenta. Here, terms with superscript ( t) denote the state
fter applying the explicit terms – for example during the first stage
equation 35 ) we have E 

( t) 
g = E 

( n ) 
g − �t( ̂ c /c) ∇ · F 

( n ) 
g – and terms

ith superscript ( t + 1) denote the final state for which we are
ttempting to solve; the factor θ is unity during the first stage and
 / 2 during the second stage. 
In each cell, this is a system of 4 + 4 N g equations in 4 + 4 N g 

nknowns – gas energy and N g radiation energies, three components
f gas velocity, and three components of N g radiation fluxes –
hat must be solved simultaneously. As discussed in Paper II , it
s numerically convenient to divide this problem into an inner and an
uter stage; in the inner stage, we solve the energy equations while
reezing v and F g , and in the outer stage, we update the fluxes and
as velocity and then if necessary, go back to the inner stage and
ecompute E g and E gas using the updated values of v and F g . The
eason this is more efficient is that it allows the inner iteration stage
o consider only 1 + N g variables rather than 4 + 4 N g , making it
aster, and in most cases the work terms proportional to v and F g are
mall in the energy equations, so E g and E gas change little to none as
 result of the update to v and F g and the whole procedure converges
n a single or at most a few outer iterations. 

The inner stage consists of solving equations ( 37 ) and ( 38 ) for the
ew energies, which we do via Newton–Raphson iteration following
owell & Greenough ( 2003 ), Paper I , and Paper II . For the multi-
roup case, we can write out the system to be solved as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 = F G 

( E 

( t+ 1) 
gas , E 

( t+ 1) 
1 , E 

( t+ 1) 
2 , · · · ) 

≡ E 

( t+ 1) 
gas − E 

( t) 
gas + 

( c 

ˆ c 

)∑ 

g 

R 

( t+ 1) 
g 

0 = F R, 1 ( E 

( t+ 1) 
gas , E 

( t+ 1) 
1 , E 

( t+ 1) 
2 , · · · ) 

≡ E 

( t+ 1) 
1 − E 

( t) 
1 − ( R 

( t+ 1) 
1 + S 

( t+ 1) 
1 ) , 

. . . 

0 = F R,N g ( E 

( t+ 1) 
gas , E 

( t+ 1) 
1 , E 

( t+ 1) 
2 , · · · ) 

≡ E 

( t+ 1) 
N g 

− E 

( t) 
N g 

− ( R 

( t+ 1) 
N g 

+ S 
( t+ 1) 
N g 

) , 

(41) 

here 

R 

( t+ 1) 
g ≡ −ˆ c G 

0 , ( t+ 1) 
g θ�t 

= 

[
4 πχ0 B,g B g − cχ0 E,g E g 

+ c −1 (1 + αχ0 ,g ) v 
i χ

( i) 
0 F,g F 

i 
g 

] 
θ�t 

(42) 

nd S g is an optional term to include, for example, the addition of
adiation by stellar sources. We remind readers here that, although we
ave omitted them to a v oid clutter, E g and all the variables that can
epend on E gas – χ0 B,g , χ0 E,g , χ0 F,g , and B g – carry the superscripts
 t + 1) to indicate that they are e v aluated at the new time, while v 
nd F g are fixed to their values at the start of the inner stage as noted
bo v e, and thus do not carry subscripts ( t + 1) and do not evolve
uring the inner Newton–Raphson stage. 
A single Newton–Raphson iteration for this system consists of

olving the linearized equations 

 · � x = −F ( x ) , (43) 

here x is the set of variables to be updated, � x is the change
n these variables during this iteration, F ( x ) is the vector whose
ero we wish to find, and J is the Jacobian matrix of F ( x ). As
iscussed in Paper II , we use the gas energy and the source terms as
NRAS 535, 3059–3076 (2024) 
he base variables o v er which to iterate and compute the Jacobian:
x = ( E gas , R 1 , R 2 , · · · , R N g ). The Jacobian in this basis is 

∂ F G 

∂ E gas 
= 1 (44) 

∂ F G 

∂ R g 

= 

c 
ˆ c (45) 

∂ F R,g 

∂ E gas 
= 

∂ E g 

∂ E gas 
| R g = const. = 

1 
C v 

∂ 
∂ T 

(
χ0 B,g 

χ0 E,g 

4 πB g 

c 

)
(46) 

∂ F R,g 

∂ R g 

= 

∂ E g 

∂ R g 
| T = const. − 1 = − 1 

ˆ c θ�t χ0 E,g 
− 1 (47) 

n practice, we assume ∂ ( χ0 B,g /χ0 E,g ) / ∂ T = 0 in the calculation of
he Jacobian for simplicity, but this simplification only changes the
ate of convergence; it does not affect the converged solution. 

The Jacobian matrix is sparse: 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ F G 

∂ E gas 

∂ F G 

∂ R 1 

∂ F G 
∂ R 2 

· · · ∂ F G 

∂ R N g 

∂ F R, 1 

∂ E gas 

∂ F R, 1 
∂ R 1 

0 · · · 0 

∂ F R, 2 

∂ E gas 
0 

∂ F R, 2 

∂ R 2 
· · · 0 

. . . 
. . . 

. . . 
. . . · · ·

∂ F R,N g 

∂ E gas 
0 0 · · · ∂ F R,N g 

∂ R N g 

. 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(48) 

hysically, this sparse structure is a manifestation of the fact that
he different energy groups are coupled only via the gas, not directly
ith each other. This allows inversion of the matrix via Gauss–

ordan elimination rather than via more general, and much more
 xpensiv e, matrix inv ersion methods. First, we cancel the 2nd, 3rd,
th,..., elements of the first row with the 2nd, 3rd, 4th,..., rows,
espectively, which eliminates all variables except �x 1 and allows
s to solve for it. Then, we substitute �x 1 into the 2nd row and solve
or �x 2 , and substitute �x 1 into the 3rd row and solve for �x 3 ,
nd so forth. These steps take only O( N g ) floating-point operations,
ompared to O( N 

3 
g ) operations from a general Gaussian elimination

lgorithm. 
After solving equation ( 43 ) for � x , we update x ← x + � x ; we

hen repeat the procedure of solving for � x and updating x until the
ystem converges, as determined by the condition 

| F G 

| 
E tot 

< ε and 
c 

ˆ c 

∑ 

g 

∣∣F R,g 

∣∣
E tot 

< ε (49) 

here 

 tot = E 

( t) 
gas + 

ˆ c 
c 

( ∑ 

g 

E 

( t) 
g + 

∑ 

g 

S ( t) g 

) 

. (50) 

s the total radiation and material energy at the beginning of the time-
tep accounting for the reduced speed of light. We set the relative
olerance ε = 10 −11 by default. Once this Newton–Raphson system
onv erges, we hav e solv ed for E 

( t+ 1) 
gas , R 

( t+ 1) 
0 , R 

( t+ 1) 
1 , · · · . We update

he radiation energy with E 

( t+ 1) 
g = E 

( t) 
g + R 

( t+ 1) 
g + S ( t+ 1) 

g and update
he material energy with E 

( t+ 1) 
gas = E 

( t) 
gas − ( c/ ̂ c ) 

∑ 

g R 

( t+ 1) 
g . Note that,

or ̂  c = c and S g = 0, this guarantees conservation of total energy to
achine precision regardless of the level of accuracy with which we

ave iterated the equations to convergence. 
We then proceed to the outer stage of the iteration where we solve

he flux and momentum update equations, equations ( 39 ) and ( 40 ),
ith the updated gas temperature, opacity, and radiation energy. For
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implicity, we use the outdated velocity while updating radiation 
ux. The solution to equation ( 40 ) is straightforward: 

 

i, ( t+ 1) 
g = 

{
F 

i, ( t) 
g + ̂

 c θ�t 

[
4 πc −1 v i 

(
χ0 B,g B g − 1 

3 
� g ( νχ0 B ν) 

)
+ v j (1 + αχ0 ,g ) χ0 E,g P 

ji 
g 

]}
/ 
(
1 + ̂

 c χ0 F,g θ �t 
)
. (51) 

astly, we update the gas momentum via 

 ρv i ) ( t+ 1) = ( ρv i ) ( t) − ( c ̂ c ) −1 
∑ 

g 

(
F 

i, ( t+ 1) 
g − F 

i, ( t) 
g 

)
. (52) 

his update also ensures momentum conservation to machine pre- 
ision. After we update the gas momentum, we also recalculate the 
as’s internal energy (which in QUOKKA , we track separately because 
e implement a dual energy formalism) by subtracting the updated 
inetic energy from the updated total energy. 
As previously indicated, the gas velocity v and radiation flux F 

e use in the inner stage of the iteration are lagged. This can cause
ignificant inaccuracies at high optical depths when the velocity- 
ependent terms are non-negligible. To eliminate errors like this 
nd render this scheme fully implicit, we now repeat the inner 
teration using the updated values of v and F , and compute new 

stimates for v and F , repeating this procedure until the sum of
he absolute change in the value of the terms proportional to v and
F in R (equation 42 ) from one outer iteration to the next is below
0 −13 

∑ 

g R g and 10 −13 E tot . Except in the dynamic diffusion limit,
here the velocity-dependent terms are at the same order as all 
ther terms, this iterative process typically terminates after just one 
teration, and in all the tests we present below, and for all the test
roblems presented in Paper I and Paper II , we never require more
han a handful of outer iterations. Thus, the cost is modest. This
ompletes accounting for all terms in the radiation four-force, thus 
ompleting radiation-matter coupling. 

 N U M E R I C A L  TESTS  

e next carry out a series of tests of our numerical method to verify
ts accuracy. Our tests can be divided into those that purely test the
adiative transfer part of the code (Section 4.1 ) and those that test the
ull radiation-hydrodynamics functionality (Section 4.2 ). 

.1 Radiation transport tests 

e begin with tests in which we disable the hydrodynamic update 
arts of the code, and we test the radiation transport parts in isolation.

.1.1 Multigroup Marshak Waves 

ur first test, taken from Vaytet et al. ( 2011 ), consists of simulations
f Marshak waves. We consider three different models for opacity: (a) 
onstant opacity, (b) frequency-dependent opacity, and (c) frequency- 
nd temperature-dependent opacity. The goal is to e v aluate the 
ccuracy of the multigroup method in handling variable opacities 
nd to study how these opacities affect wave propagation. 

In all three simulations, the gas is at rest with a uniform density
= 10 −3 g cm 

−3 and a temperature T = 300 K, in equilibrium with
he radiation. The simulations use six frequency groups, with the first
v e groups ev enly spaced between ν = 0 and ν = 1 . 5 × 10 14 Hz,

he last group co v ering the range from 1 . 5 × 10 14 Hz to ∞ . The heat
apacity of the gas is set to ρC V = 10 −3 erg cm 

−3 K 

−1 . The 1D
patial grid extends from 0 to 20 cm, resolved using 500 cells. The
oundary conditions on the radiation are set to zero flux initially, with
n energy density in each group corresponding to blackbody radiation 
t temperatures of 1000 and 300 K on the left and right sides of the
omain, respectively. We run the simulations to t = 1 . 36 × 10 −7 s. 
In simulation (a), the gas has a constant specific opacity κ0 =

000 cm 

2 g −1 independent of frequency. The total opacity is χ0 = 

κ0 = 1 cm 

−1 , so in this simulation the optical depth across the
imulation domain is 20. For the frequency-independent material 
pacity the PC and PPL methods are identical, so we need not
istinguish them. We show the results from this simulation in the
rst panel of Fig. 1 , where the curves represent the gas temperature,

abelled as T gas , the radiation temperature, labelled as T rad , and the
adiation temperature inside each individual energy group T rad ,g , 
abelled as an integer g. We define T rad ,g by the following relation: 

 g = a R T 
4 

rad ,g , (53) 

nd we define the total radiative temperature T rad by ∑ 

g 

E g = a R T 
4 

rad . (54) 

he numerical calculation is performed on the domain [0, 20] cm,
ut we limit the x-axis to [0, 12] cm, which is the most rele v ant
ortion of the data. We compare T gas , T rad , and T rad ,g from our
umerical calculation (solid lines) with the exact ray-tracing solution 
dashed lines) from Vaytet et al. ( 2011 ), finding excellent agreement.
n particular, we see that we reproduce an important feature in
he solution: although the opacity is the same in all groups, and
hus all groups have the same diffusion speed, variation in the
 v erall radiation temperature across the domain leads to a shift in
hich frequency groups dominate, with group 1 dominating in the 
pstream, cool gas and groups 2, 3, and 4 becoming dominant in
he heated regions. In addition to demonstrating the o v erall accurac y
f our method, this test demonstrates the validity of the M 1 closure
pproximation in our code, at least for this problem. 

We also carry out one additional comparison here, by running the
roblem using the grey method described in Paper II – for frequency-
ndependent opacity, this method is highly accurate. We compare 
 gas and T rad computed the multigroup model presented in this paper
solid lines) to those computed using the grey method (dotted line),
nd find excellent agreement – the lines for multigroup and single- 
roup models are indistinguishable to the eye. This demonstrates 
hat the multigroup scheme consistently reduces to a grey model for
requency-independent opacities. 

Simulation (b) employs group-specific opacities: χ0 ,g = 

1 , 0 . 75 , 0 . 5 , 0 . 25 , 0 . 01 , 0 . 01] cm 

−1 for groups 1–6, respectively;
ollowing Vaytet et al. ( 2011 ), the opacities are assumed to be
onstants across groups, and thus we use the PC opacity model,
r equi v alently the PPL model with αχ0 ,g = 0 for all groups. For
hese opacities the optical depth of the domain varies from 20
n group 1 to 0.2 in groups 5 and 6. The results are shown in
he second panel of Fig. 1 . Unlike in Vaytet et al. ( 2011 ), we do
ot extend the grid to the right with extra cells. Compared to the
olution in panel (a), we see that radiation in groups with lower
pacities (notably groups 5 and 6) rapidly traverses the entire grid
nd heats the gas at the right edge, raising the gas temperature to
30 K from its initial value of 300 K. This pre-heating by the more-
apidly propagating radiation in the low-opacity groups in turn causes 
he the radiation in groups 1 and 2 to advance slightly further than
n the constant opacity case. Comparison between the numerical 
olution and exact ray-tracing solutions is again excellent for the gas
emperature. The total radiative temperatures are slightly larger than 
MNRAS 535, 3059–3076 (2024) 
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M

Figure 1. Multigroup Marshak wave tests calculated using three different opacity models: constant opacity (panel a), frequency-dependent opacity (panel b), 
and frequency- and temperature-dependent opacity (panel c). We plot the gas temperature, marked with T gas , the radiation temperature, marked with T rad , and 
the temperature of 6 radiation groups, marked with the group index; see the main text for our definitions of T rad and the group radiation temperatures. We 
compare the numerical solutions (solid lines) computed using QUOKKA with exact ray-tracing solutions (dashed lines, data adapted from Vaytet et al. 2011 ) and 
find good agreement. 
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n simulation (a), particularly in the low-opacity groups 5 and 6. As
aytet et al. ( 2011 ) point out, this is primarily a boundary condition
f fect: when the dif ference between the left and right fluxes is large
which is the case for groups 5 and 6 at the left boundary since the
ux in the ghost cells is set to zero), the M 1 model becomes less
ccurate. 

Simulation (c) features both frequency- and temperature-
ependent opacities: χ ′ 

0 ,g = χ0 ,g ( T /T 0 ) 3 / 2 , where T 0 = 300 K and
0 ,g in the groups 1–6 are the same as in simulation (b), and we
gain use PC opacities to be consistent with the assumptions used
o derive the reference solution. The results are shown in the third
anel of the figure. As the gas temperature T gas increases, so does
he opacity, leading to more rapid radiation absorption. Group 1 is
ess affected by this effect due to re-radiation from the hot gas. We
nce again see good agreement between the multigroup M 1 model
nd the exact ray-tracing model, especially for the gas temperature. 

Overall, these Marshak wave simulations demonstrate the capabil-
ty of the multigroup method to handle variable opacities accurately
nd highlight the effects of different opacity models on Marshak
ave propagation. 
NRAS 535, 3059–3076 (2024) 
.1.2 Marshak waves with continuously frequency-dependent 
pacity: convergence rates for different opacity models 

ur next test is intended to measure the accuracy and convergence
ates of the three different methods we have described for computing
roup-mean opacities: PC, PPL with fixed slopes for the radiation
uantities, and PPL will full-spectrum fitting for the radiation
uantities using the algorithm outlined in Appendix A . In order to
est these approaches, we repeat the Marshak wa ve test, b ut instead
f the piecewise constant opacities adopted in Vaytet et al. ( 2011 ),
e use a more realistic opacity that varies continuously as function of

requency, χ0 ( ν) = 3 . 2 × 10 4 ( ν/ 10 13 Hz ) −2 cm 

−1 . For each opacity
ethod, we run the same simulation with 4, 8, 16 energy bins, and

ompare their results with the converged result, which we obtain
y using 128 bins with the PC method – though at this frequency
esolution all three methods converge to nearly identical results. For
hese tests frequency bins are evenly distributed in logarithmic space
etween 6 × 10 10 and 6 × 10 14 Hz. 

We show the results in Fig. 2 . Panels (a) and (b) show T rad ,g 

nd T rad , respectively, while the remaining panels (c)–(f) show
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Figure 2. Results for the Marshak wave tests with a continuously variable opacity χ0 ∝ ν−2 obtained from calculations with 4, 8, and 16 energy bins using 
various opacity models – PC (blue), PPL with fixed slopes (green), and PPL with free slopes (orange). Solid, dashed, and dotted lines show results for 4, 8, and 16 
radiation groups, respectively. The top row shows the gas temperature and the total radiation temperature, while the bottom ro w sho ws the radiation temperature 
of the four radiation groups, [6 × 10 10 , 6 × 10 11 , 6 × 10 12 , 6 × 10 13 , 6 × 10 14 ] Hz. In each panel the error shown is relative to the converged results we obtain 
at very high spectral resolution. 
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f fecti ve radiation temperature, T g (defined per equation 53 ), in-
e grated o v er four energy ranges: [6 × 10 10 , 6 × 10 11 , 6 × 10 12 , 6 ×
0 13 , 6 × 10 14 ] Hz. These bins correspond to the ones used in the
our-group simulation, and in simulations with more than four bins 
e simply sum o v er the finer bins to allow direct comparison. 
From panel (a), we immediately notice a few trends on the
onvergence rate of these three methods. First, with 4 bins, the PPL-
xed and PPL-free methods work similarly and significantly better 

han the PC method. With 8 bins, all three methods give results with
imilar accuracy. With 16 bins, the results from the PPL-fixed and
MNRAS 535, 3059–3076 (2024) 
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M

Figure 3. Linear multigroup diffusion test discussed in Section 4.1.3 . We show dimensionless temperature (left) and total radiation energy density (right) at the 
dimensionless time t = 1. The optical depth per cell is τc ≈ 6 × 10 7 for the lowest frequency group. The numerical results (solid lines) are in good agreement 
with the exact diffusion solutions (circles). We observe a slight mismatch in the radiation energy density between our numerical solution and the exact diffusion 
solution because the problem is not in the diffusion limit for highest frequency groups – see the main text for details. 
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PL-free methods are similar and slightly worse than that of the PC
ethod. These trends are understandable. With a small number of

ins, the resolution of the spectrum is poor, so the PPL-fixed method,
hich uses the average slopes for the spectrum, works as well as or
etter than the PPL-free method, and both of them are better than
he PC method. Ho we v er, when the spectrum is well resolv ed with a
arge number of bins, while the PPL-free methods provides a good
pproximation to χ0 B,g and χ0 E,g , the diffusion flux-mean opacity
equation 27 ) introduces inaccuracies into the calculation. Our tests
how that this inaccuracy is diminished when using PPL models for
 v aluating χ0 F,g . Conversely, because the bin width is so small, the
iecewise-constant opacity model is a good approximation so the PC
ethod work the best. Finally, we note that the o v erall accurac y is

xtremely good for even a small number of bins: for example four
ins using the PPL-fixed method is sufficient to achieve accuracy
etter than 10 per cent in all quantities. 
Based on this test, we recommend the following strategy for

hoosing the opacity method based on the problem and the number
f energy groups. For N g � 10, we recommend using PPL with
xed-slope spectrum as it has the best accuracy. For N g � 10, we
ecommend PC, provided that the bin widths are small enough, on
he basis that it is nearly as accurate as PPL-free, but is noticeably
aster since there is no need to e v aluate the slopes. More precisely,
e recommend PC whenever the bin widths in logarithmic space are

maller than ∼ W / 10, where W is the width of the full frequency
ange in logarithmic space, and PPL with fixed-slope otherwise. 

.1.3 Linear diffusion with multigroup radiation 

ur third pure radiation test is a linear diffusion problem introduced
y Shestakov & Bolstad ( 2005 , their problem 1). This test is unique in
hat it includes non-trivial frequency dependence in the opacity and
adiation field structure, but also admits an exact analytic solution. An
dditional benefit specific to our code is that this test is derived in the
iffusion limit, and therefore allows us to verify that our multigroup
NRAS 535, 3059–3076 (2024) 
ethod shares the asymptotic-preserving property demonstrated for
he single-group formulation in Paper II , meaning that, although we
re using a two-moment method that can properly capture both the
treaming and diffusion limits, our scheme properly approaches the
iffusion limit when the optical depth is high. 
For this test, we use non-dimensional units where c = 

√ 

3 ,
 πh/c 3 = 1, k B = h , and a R = 1. The computational domain is x =
0 , 4], with a reflecting boundary condition at the lower boundary and
n outflow boundary condition at the upper boundary; we discretize
his domain into 256 equal-sized cells. This domain is filled with
 motionless gas with density ρ = 1, heat capacity C V = 1, and
emperature T = 1 for x < 0 . 5 and T = 0 for x > 0 . 5; the initial
adiation energy density is zero everywhere. 

We use the same group structure as Shestakov & Bolstad ( 2005 ):
4 groups with ν1 − = 0 and ν1 + = 5 × 10 −4 , and the frequency width
f all other groups set by νg + − νg − = 1 . 1[ ν( g−1) + − ν( g−1) − ], i.e. the
idth of group g is set to be 1.1 times the width of group g − 1.
he absorption coefficient is taken to be constant within each group,
nd is set to a value χ0 ,g = ν−3 

g / 
√ 

3 where νg ≡ √ 

νg−1 / 2 νg+ 1 / 2 for all
roups except g = 1, for which we adopt ν1 = 0 . 5 ν1 + . For our chosen
esolution, this means that the optical depth per cell is τ = 6 × 10 7 

t χ0 = χ0 , 1 , and τ = 2 × 10 −4 at χ0 = χ0 , 64 . Therefore, at most
requencies, the problem is strongly in the asymptotic diffusion limit
here the photon mean free path is unresolved; ho we ver, at the
ighest frequencies the optical depth per cell becomes small, and in
act, the optical depth across the entire domain falls to ≈ 0 . 25. In
rder to obtain a closed-form solution, Shestakov & Bolstad ( 2005 )
ssume purely dif fusi ve radiation transport, and consider a medium
or which radiation emission follows a modified Wien’s law rather
han Planck’s law. For group g, the emissivity is 

 g = 

2 πk B 

c 2 
ν3 

g 

[
exp 

(
−hνg−1 / 2 

k B T f 

)
− exp 

(
−hνg+ 1 / 2 

k B T f 

)]
T , (55) 

here T f = 0 . 1, and for the purposes of this test we modify QUOKKA

o use this emission function. 
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5 One can alternatively derive the group-averaged fluxes directly from equa- 
tion ( 26 ); we choose to e v aluate it as shown abo v e to better illustrate the 
physical origin of the ef fect. Ho we ver, one can readily verify that the result 
obtained from numerical e v aluation of this integral is identcal that derived 
from equation ( 26 ) to at least order v/c, as expected. 
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We simulate the system using a CFL number of 0.8 and run to time
 = 1. We show the numerical results in Fig. 3 and compare them
ith the tabular data of Shestakov & Offner ( 2008 ). We plot the
omain between 0 and 1 to centre the location of discontinuity. The
esults for gas temperature are in excellent agreement with the exact 
iffusion solution, confirming that our multigroup method retains the 
symptotic-preserving property demonstrated for our the frequency 
ntegrated method in Paper II , i.e. we reco v er the diffusion limit
ven when we do not resolve the photon mean free path. We see a
light mismatch in the radiation energy density at x � 0 . 2 between
ur result and the reference solution, but this is to be expected.
ince the optical depth across the domain is < 1 in the highest
requency bins, this is not a pure diffusion problem, contrary to the
ssumption used to obtain the closed-form solution. Our two-moment 
ode does not assume pure diffusion, unlike previous authors who 
ave used this test (e.g. Shestakov & Offner 2008 ; Zhang et al.
013 ), so the difference is very likely due to the more accurate
reatment of radiation transport that we perform. This hypothesis is 
onsistent with where the mismatch between the analytic diffusion 
nd numerical solutions occurs: the diffusion approximation is best 
n the low-temperature region, where most radiation energy is at 
ower frequencies where the opacity is highest, and worst in the 
igh-temperature region, which is precisely where our numerical 
olution differs from the exact diffusion one. It is also consistent with
he results of the Su–Olson test presented in Paper I (their fig. 10),
here the M 1 solution obtained by QUOKKA yields a slightly higher 

adiation energy density than a diffusion approximation solution, 
hile more closely matching the transport solution in the high- 

emperature region. 

.2 Radiation-hydrodynamic tests 

ur tests thus far have been problems of pure radiative transfer with
 time-independent gas background. We now expand our testing 
egime to full RHD. 

.2.1 Frequency-dependence of the Doppler effect 

ariations in the spectrum of radiation produced by moving matter 
ue to the Doppler effect are handled by the ∂ / ∂ ν terms in
quations ( 9 ) and ( 10 ), and these terms are at the heart of our mixed-
rame formulation, since they a v oid the need to carry out explicit
rame transformations of the radiation quantities. In this test, we 
heck that the Lorentz transformation of emissivities and opacities 
s correctly implemented in our numerical scheme by considering a 
oving medium in thermal equilibrium and verifying that we reco v er

he correct, Doppler-shifted spectrum. 
For this test we adopt a dimensionless unit system for which 

 R = k B = h = c = 1. Our initial condition consists of a uniform
edium with density ρ = 1, temperature T gas , 0 = 1, specific heat 

t constant volume C V = 3 / 2, velocity v = 0 . 001, and frequency-
ndependent opacity χ0 = 10 5 . The initial radiation energy density 
s zero everywhere. The gas occupies a 1D periodic domain covering 
he region [0 , 64], which we cover with 64 grid cells. We use
ither 8, 16, or 64 frequency groups evenly covering ν = [10 −3 , 10 2 ]
ogarithmically; for a frequency-independent opacity, the PC and 
PL methods are identical, so it does not matter which of the
pproaches outlined abo v e we choose. We advance the system to
ime t = 1000, long enough to reach steady-state given the very
igh opacity, using a hydro CFL number of 0.8 and a radiation
FL number of 8.0; the latter is permissible because our code is
symptotic-preserving ( Paper II ). 
We can compute the expected equilibrium solution as follows. First 
ote that, in the frame comoving with the g as, the g as and radiation
hould reach equal temperatures, and the equilibrium temperature 
an be calculated directly from energy conservation once we recall 
hat gas temperature is a Lorentz scalar, and thus is the same in all
rames: 

 R T 
4 + C V ρT = C V ρT gas , 0 , (56) 

here T gas , 0 = 1 is the initial gas temperature. The resulting equilib-
ium temperature is T = 0 . 768032502191. The difference between
adiation energy density in the lab and comoving frames is second-
rder in v/c, so for our first-order treatment the equilibrium radiation
pectrum E ν in both the lab and comoving frames should simply be
 Planck function B ν( T ) e v aluated at the equilibrium temperature.
e verify that our code reproduces this solution in the left panel

f Fig. 4 , which shows near-perfect agreement independent of the
umber of frequency bins. The equilibrium gas temperature we 
btain is 0.768 032 709 7575, which differs by 3 × 10 −7 from the
 xact e xpectation. 

While this result is encouraging, the spectrum of the radiation 
ux is a far more stringent test. In the frame comoving with the
atter, the radiation is isotropic and the flux is zero. In the lab

rame, the intensities are Doppler-shifted depending on the angle, 
ausing a combination of Doppler and aberration effects that skew 

pecific intensities in the direction of gas motion, resulting in non-
ero radiation flux. We can calculate the expected flux spectrum by
ntegrating the Doppler-shifted specific intensity over angle. To order 
= v/c, the transformation of frequency from the lab frame to the

uid frame is given by (Mihalas & Auer 2001 ) 

0 = ν
(
1 − βi n i 

)
(57) 

nd the specific intensity transformation from the fluid frame to the
ab frame is given by 

 ( n , ν) = 

ν3 

ν3 
0 

I 0 ( n 0 , ν0 ) . (58) 

he radiation flux is therefore 

 

i 
ν = 

∫ 
d	 n i I ( n , ν) 

= 

∫ 
d 	 n i 

ν3 

ν3 
0 

I 0 ( n 0 , ν0 ) 

= 

∫ 
d 	 n i 

ν3 

ν3 
0 

B( ν0 ) 

= 

∫ 
d 	 n i 

2 ν3 

e ( ν/T ) ( 1 −βi n i ) − 1 

= 

∫ π

0 
d θ
∫ 2 π

0 
d ϕ sin 2 θ cos ϕ 

2 ν3 

e ( ν/T )(1 −β sin θ cos ϕ) − 1 
(59) 

here we have used βi = ( β, 0 , 0). The integral equation ( 59 ) can be
 v aluated numerically. 5 We show this comparison in the right panel of
ig. 4 , which again shows excellent agreement between the analytical 
alculation and the numerical results. The maximum relative error 
etween the numerical solution and the exact solution is below 0.1
er cent, regardless of the number of energy bins. The excellent
MNRAS 535, 3059–3076 (2024) 
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M

Figure 4. Solutions for the monochromatic radiation energy density (left) and flux (right) in the lab frame from the problem described in Section 4.2.1 . Lines 
show the exact monochromatic solution, while filled points show the mean energy (left) and flux (right) in each group computed by integrating the exact solution 
o v er the same frequency bins used in the simulation. Open squares show the corresponding group-mean energy and flux computed by the simulation, defined as 
E ν,g = E g / ( νg+ − νg−) and similarly for the flux. Blue points show results for 8 frequency bins, green for 16 frequency bins, and orange for 64. We see that 
the group-averaged numerical solutions (open squares) show excellent agreement with the group-averaged exact solutions (points) regardless of the number of 
energy bins; note that, we refrain from plotting the exact frequency-integrated solutions (filled points) for N g = 64 because they are visually indistinguishable 
from the monochromatic exact solution line, and it is therefore simpler to compare out N g = 64 solution directly to the exact monochromatic one. 
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greement between our numerical simulation and the analytical re-
ults on the spectra demonstrates that our multigroup implementation
ccurately accounts for frequency-dependent Doppler shifts to order
/c. 

.2.2 Multigroup non-equilibrium radiation shock 

ur next RHD test is the classical non-equilibrium radiative shock
est, following the set-up used by Skinner et al. ( 2019 ) for the Mach
 = 3 test given by Lowrie & Edwards ( 2008 ). In Paper II , we

howed results computed with the gre y RHD solv er. Here, we present
esults from a simulation with the multigroup RHD solver along
ith the resolved radiation spectrum, demonstrating both that our
ethod properly reproduces the frequenc y-inte grated result when

he opacity is frequency-independent, and that it returns a realistic
adiation spectrum while doing so. 

The set-up of this test is exactly the same as that in Paper I except
hat we now add a new run with 32 radiation groups. The lowest
nd uppermost boundaries of the groups are at 10 15 and 10 20 Hz,
espectively, and the groups are evenly spaced in logarithm. We use
n adiabatic equation of state with an adiabatic index to γ = 5 / 3.
he shock is simulated in a 1D region with x ∈ [0 , x R ], where
 R = 0 . 01575 cm, resolved with 512 cells, with the discontinuity
laced at x 0 = 0 . 0130 cm. The gas conditions on the left and right
ides of the shock are uniform, with densities, temperatures, and
 elocities giv en by ρL = 5 . 69 g cm 

−3 , T L = 2 . 18 × 10 6 K, v L =
 . 19 × 10 7 cm s −1 , and ρR = 17 . 1 g cm 

−3 , T R = 7 . 98 × 10 6 K, v R =
 . 73 × 10 7 cm s −1 , respectively. We initialize the radiation energy
ensities in each group to the values appropriate for blackbody
adiation at a temperature equal to the gas temperature, and the
adiation fluxes to zero. The states at spatial boundaries are held
t fix ed values. F ollowing Skinner et al. ( 2019 ), we use a reduced
peed of light ˆ c = 10( v L + c s,L ), where c s,L is the adiabatic sound
peed of the left-side state. The opacity of the gas is χ0 = 577 cm 

−1 

ndependent of frequency (so that the choice of opacity model does
NRAS 535, 3059–3076 (2024) 
ot matter) and local gas properties, and the mean molecular weight
s μ = m H . To match the assumptions used in the semi-analytic
olution, we use the Eddington approximation, P = (1 / 3) EI , to
alculate the radiation pressure tensor. We use a CFL number of
.4 and evolve until t = 10 −9 s. 
In the left panel of Fig. 5 , we show the temperature profile at

he end of simulation, with an inset zooming in on the Zel’Dovich
pike near the shock interface. We compare our numerical solution
ith the semi-analytic, exact solutions of Lowrie & Edwards ( 2008 ),
nding excellent agreement in both the non-equilibrium spike region
nd in the radiatively heated shock precursor in the upstream area.
he L 1 norm of the relative error of the gas temperature is 0.38
ercent, which is as good as the multigroup solution of Skinner
t al. ( 2019 ). This demonstrates that we successfully reproduce the
requenc y-inte grated result. 

With our multigroup method, ho we ver, we can go further by
esolving the spectrum of the radiation energy density and flux. We
lot spectra at two positions marked as A and B in Fig. 5 . Location A
s far upstream of the shock at x/x R = 0 . 1, and location B is just right
f the shock front. We see that the radiation deviates from a blackbody
pectrum at both locations. At location A, the energy spectrum is
lose to a blackbody at the local gas temperature for frequencies at
nd below the peak, but there is an excess at high frequency. This
xcess is due to radiation emitted by the hot material downstream
f the shock, which propagates upstream to location A, as indicated
y the ne gativ e value of the radiation flux at all frequencies. The
ptical depth from the shock to location A is moderate, τ ≈ 7, so
nough of the flux reaches A to be noticeable in the energy spectrum
t frequencies abo v e the local blackbody peak, where emission from
ocal material is exponentially suppressed. By contrast, location B
s near the temperature maximum across the entire domain, so there
s no significant source of radiation from other locations, and the
adiation energy density is close to an unperturbed blackbody curve.
y contrast there is a very large negative (left-propagating) radiation
ux due to the difference in radiation temperatures in the upstream
nd downstream regions. 
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Figure 5. Multigroup non-equilibrium radiation shock with M = 3. Left : Temperature profile at t = 10 −9 s. We compare radiation and gas temperature from 

the numerical calculation (dots) with the exact steady-state solution (solid lines), finding excellent agreement. Right : Spectra of the radiation energy density and 
radiation flux at the two marked locations in the profile. Dots show the numerical solution, and for comparison dashed lines in the top and bottom panels show 

B ν ( T gas ) and (4 / 3) vB ν ( T gas ), respecitvely, where v and T gas are the gas velocity and temperature at the indicated location. 
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Overall, the multigroup non-equilibrium radiation shock test 
alidates the robustness and accuracy of our multigroup RHD solver, 
emonstrating excellent agreement with semi-analytic solutions and 
f fecti ve resolution of the radiation spectrum across different regions 
f the shock profile. 

.2.3 Advecting radiation pulse with variable opacity 

n Paper II , we performed a test of advecting a radiation pulse by the
otion of matter (following the original test problem introduced 

y Krumholz et al. 2007 ) with the grey RHD solver. Here, we
epeat the test with frequency- and temperature-dependent opacities 
ollowing the extension to the test introduced by Zhang et al. ( 2013 ).
his test has two main purposes: first, it allows us to verify that
ur method correctly reduces to the diffusion limit, and that our 
pproximate opacities correctly approach the Planck- and Rosseland- 
eans, when the optical depth is large. Secondly, it allows us to

ompare the performance of our piece wise po wer-law approximation 
o the traditional piecewise constant approximation in a case where 
he true functional form of the frequency dependence is not a pure
ower law, but instead has significant curvature in log–log space. 
As in Paper II , we consider a 1D medium with initial temperature

nd density profiles 

 = T 0 + ( T 1 − T 0 ) exp 

(
− x 2 

2 w 

2 

)
, (60) 

= ρ0 
T 0 

T 
+ 

a R μ

3 k B 

(
T 4 0 

T 
− T 3 

)
, (61) 

ith T 0 = 10 7 K , T 1 = 2 × 10 7 K , ρ0 = 1 . 2 g cm 

−3 , w = 24 cm ,
nd μ = 2 . 33 m p = 3 . 9 × 10 −24 g . For this choice of parameters,
he system is initially in pressure balance, with radiation pressure 
ominating in the high-temperature region near x = 0 and gas 
ressure dominating elsewhere. Thus, without radiation transport 
he system should remain static. Ho we ver, due to radiation diffusion,
ressure balance is lost and the gas mo v es. We run two versions of
he simulation: a non-advecting case where the initial velocity is 
 0 = 0 everywhere, and an advecting case where v 0 = 10 6 cm s −1 
v erywhere. F ollowing Zhang et al. ( 2013 ), who developed a
ultigroup version of this test, the matter opacity is a continuous

unction of temperature and frequency, given by 

0 = 180 

(
T 

10 7 K 

)−0 . 5 ( ν

10 18 Hz 

)−3 
[

1 − exp 

(
− hν

k B T 

)]
cm 

−1 . 

(62) 

he reason for adopting this particular functional form will become 
pparent below. The optical depth across the pulse at T = T 0 for
requences near the peak of the Planck function is τ ∼ 10 3 , and since
≡ v 0 /c = 3 . 3 × 10 −5 , we have βτ ∼ 0 . 1, placing this problem in

he static diffusion limit for both the advecting and non-avecting 
ases. 

In the initial condition for the non-advecting case, radiation and 
atter are in thermal equilibrium and radiation flux is zero; we

herefore set our initial values of E g by numerically integrating the
lanck function at the local matter temperature in each cell o v er

he frequency range of each group, and set our initial values of F g to
ero. In the advecting case, as discussed in Section 4.2.1 , the radiation
nergy density remains equal to the Planck function (to order v/c),
ut due to the Doppler effect the radiation flux is non-zero and can
e computed using equation ( 26 ). We therefore initialize E g as in the
on-advecting case, and F g from equation ( 26 ). 
The computational domain for this test is a 1D region spanning

 −512 , 512) cm with periodic boundaries, and the grid consists
f 256 cells. The optical depth per cell for frequencies near the
eak of the Planck function is τc ≈ 200, placing this problem in
he asymptotic diffusion limit. For both the advecting and non- 
dvecting case, we perform two sets of multigroup simulations 
sing the PC and PPL-fixed models; we omit PPL-free based on our
ecommendations from Section 4.1.2 . Each set consists of three runs
ith 4, 8, and 16 radiation groups. The radiation bins are distributed

venly in logarithmic space between 10 15 and 10 19 Hz. We do not
se the Eddington approximation, and instead compute the radiation 
ressure for each group using the M1 closure. 
We can obtain a reference solution to which to compare the

imulation results as follows. First note that, for the functional form
MNRAS 535, 3059–3076 (2024) 
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Figure 6. Results from the multigroup diffusing, advecting radiation pulse problem with frequency- and temperature-dependent opacity using two opacity 
models: piecewise constant (PC, blue), and PPL with fix-slope spectrum (PPL-fixed, green). This problem is in the asymptotic diffusion limit – the optical depth 
per cell is τc ≈ 200. In the left column, green solid lines show the reference solution computed using the analytically e v aluated frequenc y-av eraged opacities, 
while the three blue and orange lines in each panel show results computed using the PC and PPL-fixed methods with 4, 8, or 16 energy groups; results with more 
groups are lighter and lie closer to the reference solution. The black dashed vertical line shows x = 0, and is provided as a visual aide to help judge the degree 
of symmetry between the leading and trailing edges of the pulse in the advecting case. In the right column, blue and green lines show errors in the multigroup 
results relative to the reference solution, with the black dashed horizontal line at zero indicating perfect agreement. We see that for N g = 4 the results of the 
PPL-fixed method are noticeably better than those from the PC method, but this advantage disappears when a large number ( � 8) of radiation groups are used. 
We also test both models with 64 energy groups, and find that both perfectly match the reference solution; we omit this curve from the plot, since it is visually 
identical to the reference solution. This verifies that our method correctly approaches the exact Planck- and Rosseland-mean opacities at high optical depth. 
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f the opacity χ0 that we have chosen, we can e v aluate the frequency-
ntegrated Planck- and Rosseland-mean opacities analytically: 

(0 P , 0 R) = (3063 . 96 , 101 . 248) 

(
T 

10 7 K 

)−3 . 5 

cm 

−1 . (63) 

ecause these mean opacities are exact, we can use the grey RHD
ethod described in Paper II to compute a reference solution

epresenting the results toward which our finite frequency-resolution
alculations should converge as N g → ∞ . We therefore compute a
eference solution using the grey method described in Paper II and the
xact analytic expressions for χ0 P and χ0 R ; for consistency with our
rder v/c method here, we use the order v/c-accurate grey method
s well (see Paper II for details). We compute reference solutions
or both the advecting and non-advecting cases, though as shown in
aper II the results for these are nearly identical once we remo v e

he o v erall translation. Our reference solution agrees well with the
iffusion solution obtained by Zhang et al. ( 2013 ). 
NRAS 535, 3059–3076 (2024) 

a

We show the density, temperature, and velocity profiles from the
dvecting runs at t = 2 w/v 0 = 4 . 8 × 10 −5 s in Fig. 6 ; the results are
hifted in space by v 0 t to centre them. We refrain from plotting
he corresponding results from the non-advecting runs because
he differences are so small as to be indistinguishable to the eye,
emonstrating the accuracy of our multigroup scheme in capturing
adiation advection. Note that, our advecting solutions are also almost
erfectly symmetric about the x = 0 line, demonstrating that, as with
he grey method from Paper II , our method here captures advection
ffects without introducing any artificial asymmetry between the
eading and trailing edges of the pulse. 

Comparing our multigroup solutions to the reference solution, we
ee that our results are o v erall v ery accurate when the frequency
esolution is good, regardless of whether we use PC or PPL,
emonstrating that our multigroup scheme accurately preserves the
symptotic diffusion limit, similar to the single-group scheme in
 aper II . F or N g = 16, we match the reference solution to typical
ccuracies of a few percent for ρ and T , and within 1 km s −1 for v 
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Figure 7. Magnitude of velocity at t = 4 . 8 × 10 −5 in the multigroup static 
equilibrium test after subtracting off the initial background advection velocity. 
The exact solution should have v = 0 everywhere. The sound speed in this 
problem is 267 km s −1 and the advection speed is 10 km s −1 . The maximum 

velocity we find is about 1percnt of the sound speed, indicating good 
preservation of the static equilibrium in multiple dimensions. 
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where percentage errors are not easily defined, since the reference 
olution has v = 0 at several points). However, for N g = 4 the results
f the PPL-fixed model are noticeably better than those obtained 
sing the PC method, with errors 2 –3 times smaller; errors for PPL
ith N g = 4 are comparable to errors for PC with N g = 8. This
emonstrates that with PPL we hav e achiev ed our goal of substan-
ially impro ving accurac y for simulations with modest frequency 
esolution without increasing the computational cost significantly. 

hen we use more frequency bins, the accuracy of both methods 
re similar. This reinforces our recommendation from Section 4.1.2 
hat one should use PC for N g � 10, since in this case PPL offers
o accuracy gain and thus one might as well use the (slightly)
omputationally cheaper PC method, but that for fewer bins PPL- 
xed is preferable due to its higher accuracy. 

.2.4 Radiation sphere in static equilibrium 

n our final test, we demonstrate that the multigroup RHD solver
an maintain a stable static equilibrium in multiple dimensions and 
n a situation where both radiation pressure and gas pressure are 
ominant o v er differnent parts of the domain. The set-up is the same
s the static equilibrium simulation of Zhang et al. ( 2013 ). The
nitial conditions for radiation and matter are the same as those in the
est of the advecting radiation pulse test (Section 4.2.3 ) except that
he coordinate x in equation ( 60 ) is replaced by r = 

√ 

x 2 + y 2 , so
hat the region dominated by radiation pressure becomes circular, 
nd the opacity increased to κ0 = 10 20 cm 

2 g −1 . We use a 2D
rid of −512 cm < x < 512 cm and −512 cm < y < 512 cm
ith 512 uniform cells in each direction. The initial velocity is
 x = 10 6 cm s −1 and v y = 0 ev erywhere. The v ery large specific
pacity ensures that negligible radiation diffusion occurs over the 
ourse of the simulation, so the radiation and matter should remain 
n pressure balance and the only velocity should be due to the initial
dvection. 

We use 4 radiation groups evenly spaced in logarithmic space 
rom 10 16 to 10 20 Hz. Fig. 7 shows the magnitudes of velocity at
 = 4 . 8 × 10 −5 s, enough time for the pulse to have been advected
wice across its initial width. The maximum velocity at this time, after 
ubtracting off the initial advection velocity v x , is about 1 per cent
f the typical sound speed, or 3 × 10 5 cm s −1 . Such a relatively
mall gas velocity indicates that the multigroup solver in QUOKKA 

an maintain a good static equilibrium in multiple dimensions, even 
hough the radiation pressure and the gas pressure are operator-split 
n the Riemann solver. 

 C O N C L U S I O N  

e have presented an extension of the QUOKKA code to incorporate
ultigroup RHD in a mixed-frame formulation. Our approach suc- 

essfully integrates the advantages of lab-frame radiation transport 
ith comoving-frame emissivities and opacities, ensuring exact 

onservation of energy and momentum and addressing the com- 
lexities of frequency-dependent radiation-matter interactions. To 
ur knowledge this work represents the first mixed-frame, moment- 
ased, multigroup method presented in the astrophysical literature. 
The equations we derive to describe the radiation four-force in the
ultigroup method, equations ( 21 ) and ( 22 ), are relatively simple and

an be expressed in terms of group-integrated radiation quantities, 
roup-mean opacities, and the opacity at group boundaries. This 
ffers the significant advantage that in our method we can treat
atter-radiation coupling purely locally, in a way that requires no 

on-local implicit steps. As a result, the entire code maintains the
ame communication requirements as a pure hydrodynamics update, 
aking it highly efficient for parallel computations on GPU archi- 

ectures. The source term is handled with a set of equations where
he Jacobian matrix is of size N g + 1, where N g is the number of
adiation groups. The inversion of this matrix requires only O( N g )
omplexity, ensuring that the overall computational complexity of the 
adiation solver scales linearly with the number of radiation groups. 

A second key innovation of our method is the novel piecewise
ower-law approximation, which we introduce for the purpose of 
alculating the various group-averaged opacities that appear in 
he radiation-matter exchange terms. Construction of this scheme 
equires some care to ensure that it retains the correct limiting
ehaviour at high optical depths, but once we satisfy this constraint,
e find that the new scheme offers significantly better accuracy 

t only marginally greater cost than the traditional approach of 
pproximating the opacity as constant within a frequency bin when 
he number of frequency groups is � 10. Such coarse frequency
esolution is often una v oidable due to computational constraints, 
nd thus the new scheme is often preferable in practice. 

Through a series of rigorous tests, we demonstrate that our 
ultigroup method maintains the asymptotic-perserving properties 

f the original single-group scheme in the diffusion limit, accurately 
eco v ers all rele v ant limits of RHD, ef fecti vely handles variable
pacity using our no v el piece wise po wer-law approximation, and en-
bles spectrum-resolving capability. We also highlight the superiority 
f the piecewise power-law method over the traditional piecewise- 
onstant approach. 

Future work will focus on extending the capabilities of QUOKKA to
nclude additional physical processes, such as photoionization, and 
urther optimizing the algorithm for large-scale parallel computations 
n GPU architectures. The development of new methods for handling 
cattering and non-local thermodynamic equilibrium conditions will 
lso be explored. 
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MReX module (Zhang et al. 2019 ). The analysis made significant
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PPENDI X  A :  O N  T H E  E VA L UAT I O N  O F  

OWER-LAW  I N D I C E S  O F  R A D I AT I O N  

UANTI TI ES  

n our PPL with full-spectrum reconstruction method, we must with
he power-law slopes of αQ g 

of all radiation quantities on fly from the
ime-evolving and position-dependent solution. We do so as follows.

e first calculate the slopes at the bin edges, 

 g+ 1 / 2 = 

ln 
(
Q̄ g+ 1 / Q̄ g 

)
ln 
(
ν̄g+ 1 / ̄νg 

) , (A1) 

here ν̄g = 

√ 

νg+ 

νg− is the bin centre in logarithmic space and
¯
 g = Q g / ( νg+ 

− νg−) is the average specific radiation quantity in a
in. Then, we define 

Q,g = 

{−1 , g = 1 or N g 

minmod ( s g−1 / 2 , s g+ 1 / 2 ) g = 2 , 3 , · · · , N g − 1 
(A2) 

ote here the special treatment of the two edge groups, g = 1 and
 g . We cannot treat these as we treat all other groups since we cannot

ompute edge slopes for them, and must instead pick specific values.
e choose αQ,g = −1 for the edge groups because, as demonstrated

n the main text, the quantity-weighted average of αQ,g over all groups
ust be −1. We provide a visual demonstration of this method and

ompare it with the PPL-fixed reconstruction method in Fig. A1 . 

igure A1. Demonstration of reconstructing power-law indices of radiation
uantities. The black solid curves are Planck functions at the indicated
emperatures, representing the real spectra. The dots are the group-integrated
uantities E g using 5 radiation groups, which are the state variables used
n the simulation. All quantities are dimensionless. The green and orange
ines represent the reconstructed spectra from the state variables using the
PL method with fixed slope and with full-spectrum fitting, respectively. The
reen and orange lines o v erlap in the first and last group. 
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