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A B S T R A C T 

Cosmic rays (CRs) are a dynamically important component of the interstellar medium (ISM) of galaxies. The ∼GeV CRs that 
carry most CR energy and pressure are likely confined by self-generated turbulence, leading them to stream along magnetic 
field lines at the ion Alfv ́en speed. Ho we ver, the consequences of self-confinement for CR propagation on galaxy scales 
remain highly uncertain. In this paper, we use a large ensemble of magnetohydrodynamical turbulence simulations to quantify 

how the basic parameters describing ISM turbulence – the sonic Mach number, M (plasma compressibility), Alfv ́en Mach 

number, M A0 (strength of the large-scale field with respect to the turbulence), and ionization fraction by mass, χ – affect the 
transport of streaming CRs. We show that the large-scale transport of CRs whose small-scale motion consists of streaming 

along field lines is well described as a combination of streaming along the mean field and superdiffusion both along (parallel 
to) and across (perpendicular to) it; M A0 drives the level of anisotropy between parallel and perpendicular diffusion and χ

modulates the magnitude of the diffusion coefficients, while in our choice of units, M is unimportant except in the sub-Alfv ́enic 
( M A0 � 0 . 5) regime. Our finding that superdiffusion is ubiquitous potentially explains the apparent discrepancy between CR 

dif fusion coef ficients inferred from measurements close to indi vidual sources compared to those measured on larger, Galactic 
scales. Finally, we present empirical fits for the diffusion coefficients as a function of plasma parameters that may be used as 
subgrid recipes for global ISM, galaxy, or cosmological simulations. 

Key words: magnetohydrodynamics (MHD) – turbulence – methods: numerical – (ISM:) cosmic rays. 
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 I N T RO D U C T I O N  

he role that the non-thermal particles known as cosmic rays (CRs)
lay in both star formation and galaxy evolution is one of the largest
pen questions in modern astronomy. Within the diffuse interstellar 
edium (ISM), CRs are important dynamically because their energy 

ensities – directly measured at the Earth and indirectly inferred at 
arger distances in the Milky Way and in extragalactic systems – are 
omparable to those in other interstellar reservoirs, such as turbulent 
otions of gas, magnetic fields, interstellar radiation, and self-gravity 

Spitzer & Arny 1978 ; Boulares & Cox 1990 ; Ferriere 2001 ; Draine
010 ; Grenier, Black & Strong 2015 ). As a result, CRs may play an
mportant role in either initiating or sustaining galactic winds and 
n regulating star formation (e.g. Socrates, Davis & Ramirez-Ruiz 
008 ; Salem, Bryan & Hummels 2014 ; Simpson et al. 2016 ; Pakmor
t al. 2016 ; Girichidis et al. 2016 ; Ruszkowski, Yang & Zweibel 2017 ;
ao & Ostriker 2018 ; Hopkins et al. 2021a , b ; Crocker, Krumholz &

hompson 2021a , b ). In the denser parts of the ISM that are shielded
rom ultraviolet starlight, CRs play a vital role in determining the 
istribution of thermal energy and the ionization state and in initiating 
any of the chemical reaction chains that give rise to the formation
 E-mail: matt.sampson@princeton.edu 
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f molecules (Cesarsky & Volk 1978 ; Padovani, Galli & Glassgold
009 ; Glo v er et al. 2010 ; Everett & Zweibel 2011 ; Drury & Downes
012 ; Grassi et al. 2014 ; P ado vani et al. 2020 ). 
CRs having comparable energy density to other components of 

he ISM is a necessary but not sufficient condition for them to be
ynamically important. To be dynamically important, sufficiently 
arge gradients in CR energy densities must develop; as the transport
f CRs largely determines these gradients, it is important to get an
ccurate description of the diffusion of CRs. 

Since they are charged, CRs propagate via spiralling around 
agnetic field-lines under the Lorentz force. This motion means CRs

re coupled to the magnetic fields existing in astrophysical plasmas 
Strong, Moskalenko & Ptuskin 2007 ; Grenier, Black & Strong 2015 ;
renier et al. 2015 ; Gabici et al. 2019 ), but it also means that CRs

an interact resonantly with Alfv ́en waves whose wavelengths are 
omparable to their radius of gyration. These resonant interactions 
catter CRs by altering the pitch angle between the CR velocity
ector and the local magnetic field. The Alfv ́en waves responsible
or resonant scattering can either be part of a turbulent cascade
nitiated by large-scale disturbances of the ISM (e.g. supernova 
last waves), or can be generated by the CRs themselves via the
treaming instability (e.g. Kulsrud & Pearce 1969 ; Wentzel 1974 ;
armer & Goldreich 2004 ; Bell 2013 ). Low-energy CRs ( � 10–
00 GeV in Milky-Way-type galaxies and up to ∼10 TeV in
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tarbursts – Krumholz et al. 2020 ), which dominate the total CR
nergy budget, are numerous enough and have small enough gyro-
adii that self-excitation is likely dominant for them. This leads to a
ituation of self-confinement, whereby CRs stream along magnetic
eld lines at the same speed as the Alfv ́en waves they generate in the

onized component of the gas, and in a direction opposite the gradient
n CR pressure. 1 In this paper, we will refer to populations of CRs
hat have been self-confined to stream along magnetic field lines at
oughly the ionic Alfv ́en speed as streaming cosmic rays (SCRs). 

While streaming may be the correct description of CR transport on
cales comparable to CR gyroradii ( � 1 pc for ∼GeV CRs), there is
mple evidence that CR transport can be described approximately as
if fusi ve when measured on molecular cloud or even galactic scales
e.g. Krumholz et al. 2020 ). Direct in situ observations of high-
nergy CRs reaching the Solar system indicate that their directions
f travel are very close to isotropic, as would be expected for
if fusi ve transport; models based on diffusion have successfully
eproduced a large number of observations (e.g. Strong et al. 2007 ;
weibel 2017 , and references therein). Nor is it surprising that such
 description applies: even if CRs move purely by streaming along
eld lines, interstellar plasmas are turbulent (see Federrath 2016 , for
 re vie w), and so the field lines themselves are neither straight nor
ime independent. Thus, even if on small scales CRs did not diffuse
t all, just the turbulent motion of the magnetic field lines to which
hey are bound should induce diffusion-like behaviour. 

In principle, it should be possible to compute diffusion coefficients
o describe this process in terms of the parameters that describe the
agnetized turbulence, most prominently the sonic Mach number
 , Alfv ́en Mach number M A , and ionization fraction χ . These

if fusion coef ficients could be quite different from the traditional
patial diffusion coefficient for CRs that can be computed from, e.g.
uasi-linear theory (QLT), because they describe a very different
rocess, av eraged o v er v ery different scales. The traditional CR
if fusion coef ficient from QLT is fundamentally a result of CRs
aking random walks in pitch angle, which leads them to perform
 corresponding random walk in space along the magnetic field.
he characteristic size scale o v er which it is reasonable to describe

his process as a random walk, and thus as dif fusi ve, is the mean
istance that CRs travel before resonant scattering off incoherent
lfv ́en waves causes their pitch angles to randomize; this is much

maller than the characteristic scales associated with interstellar
urbulence. By contrast, the dif fusion coef ficients associated with
urbulent motion of the gas can only be defined on scales comparable
o the sizes of turbulent eddies in the flow, and the diffusion they
escribe does not depend on rates of pitch angle scattering. Indeed,
he turbulent diffusion could be non-zero even if the CR pitch
ngle distribution were a δ-function, corresponding to no small-
cale diffusion at all. Similarly, even though random walks in pitch
ngle only induce diffusion along field lines (at least to linear order),
urbulence can induce diffusion perpendicular to the direction of the
ean field. 
Since most observational constraints on the rate at which CRs

if fuse are sensiti ve to scales comparable to (or greater than) the
cales of interstellar turbulence, rather than the much smaller scales
f CR isotropization, the ef fecti ve rate of diffusion expected for SCRs
t those larger scales is of considerable interest. While there have
NRAS 519, 1503–1525 (2023) 

 It should be made clear here that individual CR particles still mo v e at 
elocity ∼ speed of light. Ho we ver, due to the constant randomization in 
itch angle, the mean position of self confined CR populations propagates 
long the magnetic field lines at roughly the ion Alfv ́en speed. 
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een efforts to develop theories for these quantities (Yan & Lazarian
002 , 2004 , 2008 ; Shalchi et al. 2004 , 2009 ; Lazarian & Beresnyak
006 ; Beresnyak, Yan & Lazarian 2011 ; Zweibel 2013 ; Evoli &
an 2014 ; Cohet & Marcowith 2016 ; Shukurov et al. 2017 ; Zhao
t al. 2017 ; Dundovic et al. 2020 ; Krumholz et al. 2020 ; Reichherzer
t al. 2020 , 2022 ), robust parameter studies probing the relations
etween the plasma properties and CR diffusion o v er a wide range of
arameter space are lacking. Thus, we still lack a complete ef fecti ve
heory of CR transport that can be used in simulations or models
hat do not resolve the characteristic scales on which CR transport
ecomes ef fecti vely dif fusi ve, and thus a pure streaming description
ecomes inadequate. 

This issue is of broad importance for understanding the role of
Rs in the ISM. Thus, far attempts to address, it have mostly
roceeded empirically, for example by carrying out simulations
r making models using a wide range of candidate CR transport
rescriptions and seeing which ones best match observations (e.g.
abici et al. 2010 ; J ́ohannesson et al. 2016 ; Lopez et al. 2018 ; Chan

t al. 2019 ; Crocker et al. 2021b ; Hopkins et al. 2021b ). Ho we ver,
his approach has its limitations: it can determine what parameter
alues best fit the data within the context of a particular model but
annot tell us if that model is missing essential ingredients. Nor do
hese observations, which are largely limited to the Milky Way and
ts nearest neighbours, provide much insight into how CR transport
ight differ in more distant galaxies whose interstellar environments

iffer from those found locally (e.g. Krumholz et al. 2020 ). In this
aper, we therefore attempt a different approach: assuming that
elf-confinement and streaming are the most rele v ant mechanisms
or CR transport on small scales, at least for the low-energy CRs
hat dominate the CR pressure budget, we seek to determine an
f fecti ve theory for CR diffusion when measured o v er larger scales.
e do so o v er a v ery wide range of plasma parameters, combining

umerical simulations of magnetohydrodynamic (MHD) turbulence
ith those of CR transport through this turbulence and using the

esults as a series of numerical experiments to which we can fit a
odel. 
The plan for the remainder of this paper is as follows. We describe

he set-up of our numerical experiments in Section 2 and show the
esults in Section 3 . We use these results to build up an ef fecti ve
heory for CR transport in Section 4 and summarize our findings in
ection 5 . 

 M E T H O D S  

ur goal is to measure the ef fecti ve dif fusion coef ficient for CRs
treaming along field lines in turbulent plasmas, across a wide range
f plasma parameters. To this end, we construct a simulation and
nalysis pipeline in several steps. We first perform MHD simulations
o produce background plasmas through which we can propagate
Rs. We discuss the details of the MHD simulations in Section 2.1 .
ur second step is to simulate the streaming of CRs through these
lasmas, a process we describe in Section 2.2 . In the final step,
e construct a forward model for the CR position distribution

hat we can compare to our simulation results to infer large-scale
iffusion parameters. We outline this model and our fitting method
n Section 2.3 . 

We apply our pipeline to simulations at a range of sonic Mach
umber M , Alfv ́en Mach number M A0 and ionization fraction (by
ass) χ . The first two of these describe the plasma itself, while χ

ffects the speed at which CRs stream, since the streaming speed
s set by the ion Alfv ́en speed rather than the total Alfv ́en speed.

e alter both M and M A0 in the MHD simulation runs, while χ
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2 A corollary of this expression is that, if one adopts a CR streaming model 
where the streaming speed is not exactly equal to the ion Alfv ́en speed, but 
is instead some multiple of it, then this is completely equi v alent to changing 
the value of χ . That is, if one assumes CRs stream at 10 times the local ion 
Alfv ́en speed, then this is equi v alent to simply reducing χ by a factor of 100. 
3 Available from https:// bitbucket.org/ krumholz/criptic/src/master/ . 
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s an input parameter for the CR propagation simulation step. The 
arameter values we sample are M ∈ [2, 4, 6, 8, 10], M A0 ∈ [0.1,
.5, 1, 2, 4, 6, 8, 10], and log χ ∈ [ −5, −4, −3, −2, −1, 0]. These
alues are chosen to capture the diversity of M and M A encountered
n the ISM (Tofflemire, Burkhart & Lazarian 2011 ; Burkhart et al.
014 ). We carry out runs with every possible combination of these
arameters, for a total of 240 trials. The naming convention for
he trials is M x MA y C z where x is M , y is M A0 (with the decimal
oint omitted), and z is equal to −log χ . Thus, for example trial
2MA05C4 has M = 2, M A0 = 0 . 5, and χ = 1 × 10 −4 . 

.1 MHD simulations 

e generate turbulent MHD gas backgrounds through which we can 
ropagate CRs using a modified version of the FLASH code (Fryxell 
t al. 2000 ; Dubey et al. 2008 ), utilizing a second-order conserv ati ve
USCL-Hancock 5-wave approximate Riemann scheme (Bouchut, 
lingenberg & Waagan 2010 ; Waagan, Federrath & Klingenberg 
011 ; Federrath et al. 2021 ) to solve the 3D, ideal, isothermal
HD equations with a stochastic acceleration acting to drive the 

urbulence, 

∂ρ

∂t 
+ ∇ · ( ρw ) = 0 , (1) 

∂ w 

∂t 
− ∇ ·

[
1 

4 π
B ⊗ B − ρw ⊗ w −

(
c 2 s ρ + 

B 

2 

8 π

)
I 

]
= ρ f , (2) 

∂ B 

∂t 
− ∇ × ( w × B ) = 0 , (3) 

 · B = 0 , (4) 

here ⊗ is the tensor product, I is the identity matrix, w is the fluid
elocity, ρ is the density, B = B 0 ̂  z + δB ( t) the magnetic field, with
 constant mean (large-scale) field B 0 ̂  z , and turbulent field δB ( t),
 s is the sound speed, and f is the turbulent acceleration field. The
imulation domain is a triply-periodic box of volume V = L 

3 and we
rive the turbulence on the driving scale � 0 centred at � 0 = L /2. The
ime evolution of the driving field f follows an Ornstein–Uhlenbeck 
rocess with finite correlation time, 

= � 0 / 
〈
w 

2 
〉1 / 2 

V = L/ (2 c s M ) , (5) 

nd is constructed such that we are able to set 2 � M � 10 and force
ith equal energy in both compressive ( ∇ × f = 0) and solenoidal

 ∇ · f = 0) modes. The driving is isotropic, and performed in k 
pace, centred on | k L/ 2 π | = 2 (corresponding to driving scale
 0 = L /2) and falling off to zero with a parabolic spectrum within
 ≤ | k L/ 2 π| ≤ 3 (see Federrath, Klessen & Schmidt 2008 , 2009 ;
ederrath et al. 2010 , 2022 for further details on the turbulence
riving method). 
We set the magnitude of the large-scale magnetic field component 

 0 by specifying the desired Alfv ́en Mach number of the mean field,
 A0 , the turbulent M , and then requiring B 0 = c s 

√ 

4 πρ0 M / M A0 .
he initial velocity field is set to w ( x , y , z, t = 0) = 0 , with units
 s = 1, the density field ρ( x , y , z, t = 0) = ρ0 , with units ρ0 = 1
nd δB ( t) = 0 , with units c s ρ

1 / 2 
0 . For more details about the current

imulations, we refer the reader to Beattie, Federrath & Seta ( 2020 )
nd Beattie et al. ( 2022a , 2021 ). 

We run the simulations for 10 τ but only use data from the
ast 5 τ because for t < 5 τ the turbulence is not necessarily fully
eveloped for simulations with M A0 < 1 (Beattie et al. 2022a ),
.e. 〈 X ( t + 
t 〉 V �= 〈 X ( t) 〉 V , for v olume-a verages of arbitrary field 
 ariable X and time interv al 
 t . Ho we ver, we note for M A0 � 1 the
urbulence is fully developed within 2 τ (Federrath et al. 2010 ). We
ump an MHD realization of the 3D field variables every t = τ /10.
or our main results, we discretise the L 

3 domain into 576 3 cells. Both
he grid resolution and the temporal resolution are determined via 
onvergence tests detailed in Appendix A . The choice of resolution
ere is made based on the analysis of the CR propagation post-
rocessing results, as opposed to an analysis of parameters of the
HD data set itself. 

.2 Cosmic ray propagation simulations 

ith the MHD simulations in hand, our next step is to simulate
he propagation of CRs streaming through them. We envision that 
ach of our simulation boxes is subject to a large-scale CR pressure
radient, on scales much larger than the box scale, so that CRs stream
hrough the simulation box in a single direction. We further assume
hat our boxes are much larger than the size scale on which the CR
itch angle distribution isotropizes or the scale o v er which the CR
istribution function comes into equilibrium between growth of the 
treaming instability and damping of Alfv ́en waves. Under these 
ssumptions, we can treat CR propagation within the simulations as 
imply streaming down field lines at the ion Alfv ́en speed, together
ith advection with the gas. Formally, we assume that the CR
istribution function f ( x , t) evolves as 

∂f 

∂t 
= ∇ · [ ( w + v str b ) f ] , (6) 

here w is the gas bulk velocity, v str is the streaming speed, and
b = B / | B | is a unit vector parallel to the local magnetic field. The
treaming speed in turn is equal to the ion Alfv ́en speed, and thus is
 function of the local magnetic field strength B , density ρ, and the
onization fraction χ : 2 

 str = 

B √ 

4 πχρ
= 

1 

M A0 
√ 

χ

(
� 0 

τ

) (
B 

B 0 

) (
ρ

ρ0 

)−1 / 2 

. (7) 

We solve equation ( 6 ) using the CR propagation code CRIPTIC 

3 

Krumholz, Crocker & Sampson 2022 ). CRIPTIC solves the Fokker–
lanck equation for the CR distribution function including gain and 

oss processes using a Monte Carlo approach whereby we follow 

he trajectories of sample CR packets. For the purposes of the
imulations here, we disable all CRIPTIC functionality that describes 
iffusion or microphysical interactions between CRs and the gas, so 
he equation solved reduces to equation ( 6 ). 

We initialize our CRIPTIC simulations by placing a grid of 9 × 9
ources in the plane perpendicular to B 0 , each of which injects
R sample packets into the simulation volume at a rate � inj =
 inj / τ , where we select n inj = 10 6 based on the convergence testing
resented in Appendix A . We evolve the injected CRs for t = 5 τ
starting at t = 5 τ , so the turbulence has reached statistical steady
tate at the point where injection begins), and we use periodic
oundary conditions on the CRs, consistent with the boundary 
onditions used in the MHD simulations. 

CRIPTIC needs to know the plasma state at arbitrary positions and
imes, so that it can evolve equation ( 6 ). To achieve this, we linearly
nterpolate the MHD simulation realizations (dumped at intervals of 
MNRAS 519, 1503–1525 (2023) 
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4 Maximizing the log likelihood function is equi v alent to maximizing the 
likelihood function so we take the log likelihood for computational simplicity. 
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/10) at every position, x i , and time, t i (noting i subscript denotes for
ach individual CR packet). We use linear interpolation rather than
 higher-order scheme because only linear interpolation maintains
 · B = 0. 
The output from each CRIPTIC simulation is a set of three-

imensional CR positions dumped every t = τ /10 3 . Each CR is
abelled by the source from which it emerged and by the time at
hich it was injected. Hence, for each CR we know the current
osition, the starting position, and the amount of time for which the
R has been moving in the simulation. 
Fig. 1 shows a visual example of the CRIPTIC outputs. In this

anel, CRs trajectories are shown in green, with age increasing from
he darkest to lightest shading of green. Each panel represents a
ifferent MHD simulation with M A0 increasing with the rows, and
 increasing with the columns. We see in the low M A0 trials (top

our panels) the SCRs travel predominantly directly up the domain
ith little deviation from straight lines, while as M A0 increases the

rajectories become increasingly isotropic and random. 

.3 CR diffusion model and fitting 

he third step in our simulation pipeline is to reduce the set of CR
acket ages t i and displacements x i relative to the location of that
acket’s source (where x here can mean the coordinate in either
he direction parallel to the mean field, z, or perpendicular to it,
 or y – we carry out a separate fit for the parameters describing
ransport in each cardinal direction) output by our simulations to a
et of summary statistics that allow us to compare macroscopic CR
ransport between trials with different plasma parameters. Here and
hrough much of the rest of the paper, we work in a dimensionless
nit system where the turbulent driving scale � 0 = 1 and the turbulent
urno v er time τ = 1 (cf. equation 5 ); in this unit system, the streaming
peed at the mean density and magnetic field in the simulation is
 str, 0 = 1 / 

√ 

χM A0 . 
Let θ be a vector of parameters describing CR transport as a

unction of the plasma parameters M , M A0 , and χ ; we wish to fit
from the set of CR packet positions and times ( x i , t i ) determined

rom our simulations. From Bayes’ theorem, the posterior probability
ensity at a particular point in parameter space obeys 

( θ |{ x i , t i } ) = N L ( { x i , t i }| θ ) p prior ( θ ) , (8) 

here p prior ( θ ) is the prior probability density, N is a normalization
actor chosen to ensure the integral over our probability density
unction = 1, and L ( { x i , t i }| θ) is the likelihood function e v aluated
t { x i , t i } for a vector of parameters θ . With this formulation, we
ay use a Markov chain Monte Carlo (MCMC) fitting approach

o generate the posterior distribution. We must now determine an
ppropriate likelihood function that specifies the probability density
f the data ( x i , t i ) given θ . 
For this study, we approximate CR transport to be well described

y a linear combination of CRs streaming along magnetic field-lines
nd superdif fusi ve transport (Xu & Yan 2013 ; Lazarian & Yan 2014 ;
itvinenko & Effenberger 2014 ). Often numerical studies on CR

ransport calculate diffusion coefficients directly from the second
oment of the CR spatial distribution (Qin & Shalchi 2009 ; Xu &
an 2013 ; Snodin et al. 2016 ; Seta et al. 2018 ; Wang & Qin 2019 ).
o we ver, this method is only viable when spatial dispersion grows

inearly with time, which is not the case if superdiffusion is present.
e also expect to have a systematic drift of CRs in the z direction

ue to CR streaming, which moti v ates us to use a model adjusted to
apture both superdiffusion and constant drift. 
NRAS 519, 1503–1525 (2023) 
.3.1 Likelihood function for generalized diffusion 

o derive our model, we start from the simplest case of drift-free
iffusion in an infinite domain, then add streaming and periodicity.
uperdif fusi ve transport is characterized by a generalized diffusion
quation, whereby the probability density f ( x , t ) evolves as 

∂f 

∂t 
= κ
 

αf , (9) 

here 
 

α is the fractional diffusion operator of order α, where α ∈ R .
aussian diffusion corresponds to α = 2 in which case 
 

α = ∇ 

2 ,
he Laplacian operator. A general solution to equation ( 9 ) may be
ritten in terms of a Green’s function that solves the initial value
roblem f ( x , 0) = δ( x ), where δ is the Dirac delta function. For an
nfinite domain the Green’s function is 

 ( x, t) = N 

∫ 

exp ( −ik x) exp ( −κ| k | αt) d k , (10) 

here N is the normalization factor to be chosen such that 
∫ 

G ( x ,
 ) dx = 1 ∀ t , and κ is the generalized diffusion coefficient (Zaburdaev,
enisov & Klafter 2015 ). Note here that N may be an explicit

unction of time, such that N = N ( t). The integral in equation ( 10 )
annot be solved analytically for general α; hence, it is left repre-
ented in the Fourier domain. For the special case α = 2, one can
mmediately see that equation ( 10 ) reduces to the Fourier transform
f a Gaussian, which is also a Gaussian. 
For a CR packet of age t i , the Green’s function gives the PDF of

osition x i , and thus the log likelihood function 4 for our ensemble of
R packets is 

n L ( { x i , t i }| α, κ) ∝ 

N ∑ 

i= 1 

ln G ( x i , t i | α, κ) , (11) 

here the parameters are θ = ( α, κ). Note that, at fixed age t , the spa-
ial distribution G ( x , t ) is a L ́evy stable distribution, which previous
uthors have found to be suitable for modelling CR and brownian-
ike diffusion (Zimbardo et al. 1995 ; Lagutin & Uchaikin 2001 ;
iu, Anh & Turner 2004 ; Litvinenko & Effenberger 2014 ; Rocca
t al. 2016 ). Our implementation uses the PYLEVY PYTHON package
Miotto 2016 ), which provides efficient numerical evaluation of
ntegrals of the form given by equation ( 10 ). 

To add streaming in the direction parallel to B 0 (i.e. along z) to
his picture, let u be the mean streaming velocity, so that we replace
ur positional variable x with x i − ut i . Since we fit in each direction
ndependently, we have three streaming speeds, u x , u y , and u z . We
xpect u x = u y = 0 due to symmetry, but we none the less keep them
n our fitting pipeline as a check for sensible results. The inclusion
f streaming transforms equation ( 11 ) into 

n L ( { x i , t i }| α, κ, u ) ∝ 

∑ 

i 

ln G ( x i − ut i , t i | α, κ, u ) , (12) 

here we now have three fit parameters, θ = ( α, κ, u ), and u from
ere on is referred to as the drift parameter. 

.3.2 Periodic boundary conditions 

hus far we have written down the likelihood function for an
nfinite domain. Ho we ver, our simulations use periodic boundary
onditions, which admit a different Green’s function. To construct
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Figure 1. Alfv ́en velocity structure (background) and SCR packet positions (points) projected perpendicular to the direction of the mean magnetic field, B 0 . 
The field colour indicates the logarithmic streaming velocity along the projection direction, 

∫ 
d ( � ⊥ /L ) v A / v A0 , where v A0 = 〈 v A 〉 V ; red indicates locations 

where the streaming speed is abo v e the mean, blue below the mean and black, equal to the mean. Points show the positions of sample CR packets through 
their time-evolution up until the age of the visualized gas background. Colour of the particles indicates their age, t age in turbulent correlation times (black is 
early in the particles temporal evolution and green later). Simulations are organized by M A0 (fixed M A0 each row) and M (fixed M each column), where 
the simulations with the strongest magnetization ( M A0 = 0 . 1) and weakest compressibility ( M = 2) are shown in the top row, first column, and the weakest 
magnetization ( M A0 = 10) and strongest compressibility ( M = 8) in the bottom row, last column. 
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he periodic domain likelihood function we note that our periodic
omain from x = −1 to 1 (recalling that we work in units where the
urbulent driving scale � 0 = 1, so the box length L = 2) containing
 single source at x = 0 is completely identical to a non-periodic
omain containing an infinite array of sources located at x = nL for
 ∈ { −∞ , . . . , −2 , −1 , 0 , 1 , 2 , . . . , ∞ } . We can therefore write the
reen’s function for a periodic domain of length L as 

 L ( x, t) = N 

∞ ∑ 

n =−∞ 

G ( x + nL, t) , (13) 

here G ( x , t ) is our Green’s function for the infinite domain. Here
e note that G ( x , t ) has the scaling behaviour G ( x , t ) ∼ t / | x | 4 α + 1 .
ince α > 0 due to the definition of the fractional diffusion operator,
quation ( 13 ) approaches a convergent geometric series for large | n | .

In practice, we approximate the infinite sum in equation ( 13 ) as
ollows. Let us define a finite value N such that we may approximate
 L ( x , t ) as 

 

( N) 
L ( x, t) ∝ 

N ∑ 

n =−N 

G ( x + nL, t) , (14) 

here the normalization factor N has been omitted. Now, we define
n error estimate 

 

( N) ( x, t) = 1 − G 

( N−1) 
L ( x, t) 

G 

( N) 
L ( x, t) 

. (15) 

e can then approximate G L ( x , t ) by G 

( N) 
L ( x, t) e v aluated with a value

f N chosen such that ε ( N ) ( x , t ) < tol for some specified tolerance
arameter tol. Thus, our final likelihood function is 

n L ( { x i , t i }| α, κ, u ) ∝ 

∑ 

i 

ln G L ( x i − ut i , t i | α, κ, u ) , (16) 

here we approximate G L by G 

( N) 
L e v aluated with a tolerance tol =

0 −3 . 

.3.3 Fitting method and priors 

ow, that we have written down the log likelihood function, equa-
ion ( 16 ), we can compute the posterior probability, equation ( 8 ),
rom Bayes’ theorem. In practice, we carry out this calculation using
MCEE (F oreman-Macke y et al. 2013a ). F ollowing the conv entions
sed in the PYLEVY (Harrison & Maria Miotto 2020 ), instead of using
, u , and κ as our parameters, we instead use α, u , and c , where c =
1/ α; ho we ver, we report our results in terms of κ rather than c . We
dopt flat priors o v er the range 0.75 < α ≤ 2, 5 c ≥ 0, and u ≥ 0.
e fit each direction individually, i.e. we perform separate EMCEE

 v aluations for x i = x , y , and z. For all trials, we use 48 w alk ers with
000 iterations and a burn-in period of 400 steps. Visual inspection
f the chains confirms that this burn-in period is sufficient for the
osterior PDF to reach statistical steady state. 

 RESU LTS  

n this section, we summarize the outputs of our simulation and
tting pipeline. We begin in Section 3.1 by walking through one
xample case to illustrate the typical results of our fits, and then in
NRAS 519, 1503–1525 (2023) 

 We note here that an upper bound of α = 2 is a requirement of the PYLEVY 

odel. Ho we ver, as α > 2 implies subdiffusion (which has not been suggested 
n the literature) we do not expect this limitation to have significant effects 
n our results. 

W  

s  

e  

a  

t  

p  
he remainder of this section we summarize the broad trends that
e observe in the drift speed u (Section 3.2 ), superdiffusion index α

Section 3.3 ), and diffusion coefficients κ (Section 3.4 ) as we vary
he simulation parameters. We report our fit results for all trials in
able 1 . 

.1 Example case 

e begin by examining in detail the results for trial M6MA4C4 ( M =
 , M A0 = 4, χ = 10 −4 ), in order to illustrate the nature of the results
nd the action of our fitting pipeline. In Fig. 2 , we show histograms
f the SCR displacements in the three cardinal directions, 
 x , 
 y ,
nd 
z, at the final output time, 10 τ . The upper panels show SCR
istributions in narrow age windows t = (0.25 ± 0.025) τ (i.e. CRs
ith an age t ∼ τ /15), τ /10, and τ /5, while the bottom panels show

he distribution for all SCRs with ages <τ /5. As expected, the CR
isplacement distributions in the x and y directions are symmetric
bout zero, with the width of the distribution increasing with time. In
he z direction, parallel to the large-scale magnetic field, streaming
nduces a substantial asymmetry, so that, particularly at young ages,

ore SCR packets have 
z > 0 (i.e. in the direction of streaming
long the mean field) than 
z < 0. 

For comparison, the dashed lines in the figure show the predicted
istribution of SCR positions at the corresponding ages (integrated
 v er age for the lower panels) for our superdiffusion plus streaming
odel, e v aluated using the 50th percentile values of the fit parameters
, u , and α. We can see the model matches the data very closely;
hile there is a slight systematic o v erestimation of the central bins
f the integrated data, the shapes of the wings and the asymmetry in
he parallel direction due to streaming are well captured. 

Fig. 3 shows the posterior distributions for the fit parameters we
btain for this case; the upper panel shows one of the two directions
erpendicular to the mean magnetic field direction, while the lower
anel shows the direction along the mean field. We see that in all cases
he fit parameters are tightly constrained with small uncertainties. 

.2 Drift speed: u 

e fit for a drift parameter, u , in all simulations, for all spatial
imensions. As expected, we find u x ≈ u y ≈ 0 for all trials since we
ave no preferential SCR direction perpendicular to B 0 . Thus, we
ill not discuss these cases further. Fig. 4 shows the results for u � ≡ u z 

s a function of χ at each M A0 . For comparison, the microphysical
treaming speed in our unit system with length measured relative
o the turbulence outer scale � 0 and time measured in units of the
urbulent crossing time τ , is 

 str = 

1 

M A0 
√ 

χ
. (17) 

e see that the macroscopic parallel drift rates we measure are close
o this value, which is indicated by the dashed line in Fig. 4 , with
he exception of runs with M A0 ≥ 1 and χ < 0.01. We explore the
rigin of this deviation in Section 4 . 

.3 Superdiffusivity index: α

e ne xt e xamine results for the superdif fusi vity index α, which repre-
ents the fractional power in our generalized diffusion equation (see
quation 9 ). Physically, α = 2 corresponds to classical diffusion
nd the smaller α becomes compared to 2, the more superdif fusi ve
he system. Fig. 5 displays α in the directions parallel ( α� = αz ) and
erpendicular ( α⊥ 

= αx or αy – we do not differentiate between these
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Table 1. Results from MCMC fitting for sample of trials. Columns show, from left to right, the name of the trial, the generalized dif fusion coef ficients 
in the three cardinal directions, κx , κy , κz , the superdiffusion indices, αx , αy , αz , and the drift parameters, u x , u y , u z . For each quantity we report 
the 50th percentile of the marginal posterior PDF for that parameter, with the superscript denoting the 84th −50th percentile and the subscript the 
50th −16th percentile ranges. All parameters expressed in a unit system whereby positions are measured in units of the turbulent driving length � 0 , 
and times in units of the turbulent turno v er time τ . This table is a stub to illustrate form and content. The full table is available in the electronic 
version of this paper and at CDS via https://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS. . 

Trial κx κy κz αx αy αz u x u y u z 

M2MA01C0 0 . 039 0 . 002 
0 . 003 0 . 027 0 . 002 

0 . 002 0 . 239 0 . 005 
0 . 004 1 . 450 0 . 007 

0 . 010 1 . 509 0 . 007 
0 . 010 1 . 538 0 . 010 

0 . 010 0 . 032 0 . 003 
0 . 004 0 . 000 0 . 020 

0 . 000 10 . 61 0 . 020 
0 . 016 

M2MA01C1 0 . 051 0 . 000 
0 . 001 0 . 035 0 . 000 

0 . 001 0 . 211 0 . 004 
0 . 007 1 . 449 0 . 002 

0 . 012 1 . 510 0 . 002 
0 . 010 1 . 883 0 . 011 

0 . 015 0 . 033 0 . 004 
0 . 004 0 . 000 0 . 02 

0 . 000 32 . 69 0 . 030 
0 . 030 

M2MA01C2 0 . 038 0 . 001 
0 . 002 0 . 26 0 . 001 

0 . 001 0 . 459 0 . 009 
0 . 010 1 . 468 0 . 016 

0 . 011 1 . 521 0 . 016 
0 . 014 1 . 813 0 . 008 

0 . 008 0 . 032 0 . 004 
0 . 004 0 . 000 0 . 02 

0 . 000 102 . 7 0 . 048 
0 . 040 

· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
M10MA10C5 2 . 242 0 . 142 

0 . 110 2 . 025 0 . 209 
0 . 102 2 . 659 0 . 042 

0 . 041 1 . 673 0 . 013 
0 . 015 1 . 657 0 . 010 

0 . 003 1 . 604 0 . 018 
0 . 015 0 . 229 0 . 043 

0 . 034 0 . 165 1 . 031 
0 . 002 3 . 042 0 . 038 

0 . 0 . 041 

Figure 2. Probability distribution of SCR displacements 
 x , 
 y , 
z in run M6MA4C3 for SCR age slices of ∼ τ /15, τ /10, and τ /5 (upper panels), and for an 
integrated distribution of SCRs of age <τ /5 (lower panels); positions are measured normalized to the turbulent driving scale � 0 , so the periodic simulation box 
goes from −1 to 1. Histograms indicate simulation results, with error bars showing the Poisson uncertainty from the finite number of SCRs in each bin. Dashed 
lines show our streaming plus superdiffusion transport model, evaluated using the 50th percentile values of the fit parameters κ , u , and α. 
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wo) to the large-scale field as a function of χ at fixed M A0 . All α
alues lie in the range 1.4 � α < 2, indicating we have superdiffusion
 v er our entire parameter space. Both parallel and perpendicular 
ractional diffusion indices exhibit little systematic trend with M A0 

r χ , with the exception that in the parallel direction transport seems
o approach pure diffusion ( α� = 2) for M A0 � 1 and χ � 0.01. The

ajority of trials have an α value ≈1.5 for M A0 � 1. We explore
he physical significance of this result in Section 4 . 

.4 Diffusion coefficients: κ

s with α, we separate our results for the diffusion coefficient into
alues parallel to ( κ� = κz ) and perpendicular to ( κ⊥ 

= κx or
y ) the large-scale mean field. These parameters show non-trivial 
ependence on both M A0 and χ , which we explore below. We
eiterate here that our units for κ are � α0 /τ = � α−1 

0 c s M , hence any
esults for κ have an intrinsic dependence on the velocity dispersion 
nd driving scale. 

Fig. 6 shows the fitted diffusion coefficients as a function of Alfv ́en
ach number at fixed χ , with the sonic Mach number shown in

olour. Red vertical lines mark M A0 ≈ 2, the value for which there
s approximate equipartition between the turbulent and coherent parts 
f the magnetic field. We see in the upper plot of κ⊥ 

that this value
lso marks a transition in the behaviour of κ⊥ 

: abo v e M A0 = 2, κ⊥ 

eaches a plateau value such that further increases in M A0 no longer
av e an y effect on the diffusion rate. The height of this plateau varies
nversely with χ . The variation of κ� with χ is quite different. In the
MNRAS 519, 1503–1525 (2023) 
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M

Figure 3. Corner plots showing posterior distributions from MCMC fitting 
for the three parameters κ , α, and u for trial M6MA4C4 . At the top of each 
column, we report the 16th, 50th, and 84th percentile values; 50th percentile 
values are also indicated by the red lines in the plots, while in the histograms, 
dashed vertical lines show the 16th to 84th percentile range. Upper panel: We 
show results for the x direction (perpendicular to B 0 ). Lower panel shows 
the same results for the z direction (parallel to B 0 ). In both cases, we see 
very small uncertainties (range between 16th and 84th percentiles) on the 
50th percentile. Note we omit the corner plot for y due to its similarity 
to x . 
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6 Note that we are using the terminology ‘tangling and stretching’ instead of 
the more conventional terminology ‘field line random walk’ (FLRW). We 
use this terminology to distinguish between trajectories along static magnetic 
fields, as considered for example by Yan & Lazarian ( 2008 ), Snodin et al. 
( 2016 ), and time-evolving magnetic fields, such as those in the present study. 
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pper panel of Fig. 6 , for κ⊥ 

, we see almost a sigmoid like shape,
hile in the bottom panel for κ� we see a much more linear decrease

n κ� with M A0 , indicating a single power-law relation may be a
ood fit to these data. 
In Fig. 7 , we plot κ� and κ⊥ 

as a function of χ at fixed M A0 ;
gain, M is indicated by the colour. For comparison, we also show
 power-law relation 

∝ 

1 √ 

χ
, (18) 
NRAS 519, 1503–1525 (2023) 
oti v ated by the CR streaming speed being proportional to 1 / 
√ 

χ .
t high M A0 , we see that κ⊥ 

and κ� behave very similarly, and
oth approach this power-law scaling at high χ . Thus, for a highly
angled fields (large M A0 ) and relatively slow streaming ( χ close to
nity), the diffusion coefficient appears to scale with the streaming
peed. Ho we ver, as the streaming speed increases ( χ → 0), the
iffusion rate scales more weakly with χ that 1 / 

√ 

χ , leading to a
atter dependence. 
At low M A0 the situation is quite different, and κ� and κ⊥ 

do not
cale with χ in similar ways. We find that κ� follows a clear 1 / 

√ 

χ

caling up to at least O(10 2 ) at all χ , while κ⊥ 

becomes both small
nd nearly independent of χ . Instead, M appears to be the primary
actor go v erning the rate of diffusion. 

 DI SCUSSI ON  

n this section, we develop a physical picture to help understand
he results presented in Section 3 . We begin by presenting an
 v erview of macroscopic diffusion mechanisms, and use this to
rovide a taxonomy of different diffusiv e re gimes, in Section 4.1 . We
rovide fitting formulae to our numerical results, suitable for using
n analytic models or simulations that do not resolve ISM turbulence,
n Section 4.2 . We discuss superdiffusion and its observational
mplications in Section 4.3 . Next, we make a comparison between
ur results and the literature in Section 4.4 . In Section 4.5 , we discuss
he limitations of our study. 

.1 Diffusi v e mechanisms and regimes 

s described in Section 2 , our transport equation for CRs (equation 6 )
s purely adv ectiv e, and includes no e xplicit diffusion. None the less,
e have seen in Section 3 that superdiffusion is a good description of

he resulting macroscopic SCR transport. It is therefore of interest to
nderstand what physical mechanisms are responsible for producing
he effectively dif fusi ve behaviour. 

The go v erning equation of motion for the SCR distribution is
quation ( 6 ), which immediately shows that there are two main
hannels through which the diffusion may occur: (1) dispersion in w 

i.e. via turbulent advection) and (2) dispersion in v str b (i.e. by either
hanging v str ∝ B/ 

√ 

ρ or by changing the direction of the magnetic
eld b ). In principle, dispersion in χ within a plasma may also be

mportant, but is excluded from this study due to the numerical set-
p. Based on these two channels for dispersing populations of SCRs,
e conclude there are four potential physical mechanisms that will

ontribute to the macroscopic diffusion: 

(i) Magnetic field line tangling and stretching (i.e. fluctuations in
 str b by either changing the magnetic field magnitude, and thus v str ,
r changing the direction of b with respect to B 0 ), 6 

(ii) The advection of magnetic field lines (i.e. fluctuations in the
omponent of w normal to b , which advect the field), 

(iii) Density fluctuations (i.e. fluctuations in v str via the density), 
(iv) Gas flow along field lines (i.e. fluctuations in w in the direction

arallel to b ). 

We explain each of these phenomena in detail below. 

art/stac3207_f3.eps
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Figure 4. 50th percentile values from the fits for the parallel drift parameter u � as a function of χ at fixed M A0 . Error bars show the 16th to 84th percentile 
range, but for most points in the plot this range is so small that the error bars are hidden behind the marker for the 50th percentile. Panels from left-to-right, 
top-to-bottom are increasing in M A0 . In all panels, points are coloured by M . The dependence on M is weak since we see no systematic changes in u � with 
M . The dashed line indicates u ‖ = ( M A0 

√ 

χ) −1 as expected if u � is equal to the SCR streaming speed. 
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7 Note that for M A0 = 2 the fluctuating and large-scale field are in energy 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/1/1503/6815731 by N
ew

 York U
niversity user on 18 January 2023
.1.1 Field line tangling and stretching ( M A0 > 2) 

or M A0 � 1, where the energy in the ordered part of the magnetic
eld is much less than the energy in the turbulence, globally the

B -field lines become tangled as they are advected by the turbulent 
otions, and isotropically distributed (e.g. in k -space) through the 

lasma. SCRs will stream along B and, because the field lines are 
ent relative to B 0 , there will be perpendicular displacement in their 
osition relative to B 0 , leading to diffusion in the perpendicular 
irection. Even though the fields are statistically isotropic on large- 
cales, field line tangling also results in inhomogeneous magnetic 
eld amplitudes in space and time (see fig. 1 in Beattie et al. 2020 ).
ence, SCRs separated on larger scales than the magnetic correlation 

ength will experience different magnetic field amplitudes, giving rise 
o variations of v str ∝ B/ 

√ 

ρ between the populations, producing 
arallel diffusion as well. The final result is ef fecti ve macroscopic
iffusion, globally. This mechanism can also affect the net streaming 
peed, so that, for χ � 1, u � � v str . We can understand this as
 result of field line tangling as well: o v er a fixed time 
 t , SCRs
oving along bent field lines will be displaced less along the large

cale B 0 field direction, 
� , than they would had the field lines been
traight. This effect is large when χ � 1, because in this case v str 

w, and the field lines do not have time to move significantly as
Rs stream down them, so CRs travel along curved paths, lowering 

heir mean rate of progress down the field, u � . By contrast, when
∼ 1, v str � w, and the field lines have significant time to mo v e

s CRs stream down them. Thus the net streaming speed becomes 
ensitive not to the instantaneous shape of the field lines, but to their
ime-averaged shape, which remains aligned with B 0 . This explains 
hy field line tangling produces u � � v str for χ � 1, and u � ∼ v str 

or χ ∼ 1. 

e

.1.2 The advection of magnetic field lines ( M A0 < 2) 

n M A0 < 2 plasmas, the ordered B -fields have more energy than
s contained in the turbulence. 7 Because of this, field lines resist
ending via the magnetic tension force, and the turbulence can only
huffle the field lines in motions perpendicular to B 0 . In this regime,
ue to flux freezing and the extremely rigid B -field, the velocity
s unable to produce strong diagonal modes and can only maintain
ither flows along the field lines, u � , or perpendicular to the field
ines, u ⊥ 

, creating self-organized, solid-body ( u r ∝ r , where r is the
adial coordinate with the vortex core at the origin) vortices in the
lane perpendicular to B 0 (see fig. 10 and section 7.1 in Beattie
t al. 2022a ). The dynamical time-scale of the outer vortex rotation
s set by the correlation time of the turbulent driving τ (equation 5 )
hich scales inversely with M . In such a system, there will be
erpendicular dispersion in the SCRs’ positions based on where they 
re in the vortex plane. 

.1.3 Gas flow along the field 

s the B field is advected with the gas so will the SCRs travelling
long them, and hence the total SCR velocity is a vector sum of the
treaming velocity plus the gas velocity (as indicated in equation 6 ).
s SCRs are transported along strong field lines, velocities parallel 

o the field lines will act to either slow them down (when the velocity
nd the streaming direction are antiparallel) or speed them up (when
he velocity and streaming direction are parallel). This process is 
epresented by the v term in equation ( 6 ). We see from equation ( 6 )
MNRAS 519, 1503–1525 (2023) 

quipartition, 
〈
δB 

2 
〉
/B 

2 
0 = 1 (Beattie et al. 2020 ). 
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Figure 5. Same as Fig. 4 but for the perpendicular (top) and parallel (bottom) fractional diffusion indices instead of the drift. In the parallel direction, we plot 
two points per trial, one corresponding to αx and the other to αy , the results of our fits in the x and y directions. Note that α = 2 corresponds to classical diffusion, 
while α < 2 corresponds to superdiffusion. The dashed horizontal lines indicate α = 1.5, corresponding to Richardson diffusion (see Section 4.3 ). 
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hat we only expect significant contributions to diffusion via this
rocess if | v | is comparable to | w | (e.g. for large χ ). Since the
elocity field varies in space and time, the process causes dispersion
n the position of SCRs propagating at different places at different
imes, and therefore acts like a dif fusi v e process. F or sub-Alfv ́enic
NRAS 519, 1503–1525 (2023) 
urbulence, where there is reasonable alignment between B and B 0 ,
his mechanism produces almost purely parallel diffusion. For super-
lfv ́enic turbulence, where B is not preferentially aligned with B 0 ,

he diffusion contribution from the velocity fluctuations is likely
sotropic. 
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Figure 6. Perpendicular (top) and parallel (bottom) diffusion coefficients plotted against Alfv ́en Mach number. The colour bar here indicates the sonic Mach 
number, while the panels represent decreasing values of χ (and thus increasing streaming velocities) from left to right, top to bottom. Red vertical dashed lines 
indicate M A0 = 2, marking approximate equipartition between the turbulent and organized parts of the magnetic field. 
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.1.4 Density fluctuations 

as density fluctuations in compressible turbulence are extremely 
nhomogenous, and are not isotropic when the large-scale field is 
trong (Beattie & Federrath 2020 ). 8 Since v str ∝ B/ 

√ 

ρ, inhomo-
 Note that even though the density fluctuations are not isotropic, i.e. do not 
xhibit perfect rotational symmetry in k -space, they do ho we ver qualitati vely 

s
o
d
2

eneities in the gas density can produce macroscopic diffusion in the
ositions of SCRs, regardless of the value of M A0 , as temporally
MNRAS 519, 1503–1525 (2023) 

upport a rotational symmetry around B 0 , hence the k -modes form a set 
f nested ellipsoids. The alignment of the semi-minor and semimajor axes 
epends upon the value of M but are al w ays along B 0 (Beattie & Federrath 
020 ). 
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Figure 7. Same as Fig. 6 , but now each panel shows fixed M A0 , and the plots show the variation of κ with χ . Dashed lines show a power-law relation 
κ = 1 / M A0 

√ 

χ in all panels except κ� , M A0 = 0 . 1, where we instead show κ = ( M / 22) / M A0 
√ 

χ . The κ ∝ 1 / 
√ 

χ scaling is expected if the diffusion 
coefficient is linearly proportional to the microphysical CR streaming speed, v str ∝ 1 / 

√ 

χ . 
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nd/or spatially separated SCRs populations experience different
ensity fluctuations along their trajectories (Beattie et al. 2022b ).
or M A0 < 1 turbulence, when the magnetic field fluctuations are
egligible, Beattie et al. ( 2022b ) showed that, in the absence of
trong advection, density fluctuations formed from gas flows along
he magnetic fields solely determine the macroscopic diffusion in � � .
or M A0 > 1, both the B -field fluctuations and correlations between

he B and ρ grow and contribute to setting the fluctuations in v str . 
NRAS 519, 1503–1525 (2023) 
We have seen empirically from the results presented so far, and
heoretically from the discussion in Section 4.1 , that macroscopic
CR diffusion works very differently in the M A0 � 2 and M A0 > 2
egimes (noting we are operating in the supersonic regime M ≥ 2).

e can see this clearly if we plot the ratio of the parallel and
erpendicular dif fusion coef ficients, which we do in Fig. 8 . We
ndicate three distinct regimes of diffusion (strongly related to the
ub- and super-Alfv ́enic regimes). The anisotropic regime is located
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Figure 8. Ratio of parallel and perpendicular diffusion coefficients as a function of M A0 for all trials; the ion fraction χ is shown in the colour bar. Note 
that, particularly for the runs with a target M A0 = 01, the actual M A0 values scatter slightly around the target because the actual velocity dispersion produced 
by our driven turbulence simulations fluctuates slightly relative to the target value we select by turning the driving rate. We highlight three distinct regions of 
M A0 , characterized by the dominance of dif ferent dif fusion mechanisms, which we term anisotropic ( M A0 � 0 . 5), transitional (0 . 5 � M A0 � 2), and isotropic 
( M A0 � 2). In the anisotropic region we have a clear difference between the rates of perpendicular and parallel diffusion. The level of anisotropy in this region 
is go v erned by χ , which we illustrate in the inset plot showing κ� / κ⊥ plotted against χ for the simulations with M A0 = 0 . 1, together with the simple scaling 
κ� / κ⊥ = v str /2; the data points are shown averages over the runs with different M , with the error bars showing the 1 σ scatter about this average. 
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t 0 � M A0 � 0 . 5, transitional, at 0 . 5 � M A0 � 2, and then finally
he isotropic, at M A0 � 2. A clear implication here is the importance
f M A0 for SCR transport. Our results suggest both the dominant 
hysical mechanisms and dif fusion coef ficients will be strongly 
ependent on whether the SCRs are being transported in a sub-
fv ́enic or super-Alfv ́enic plasma. 

.1.5 Anisotropic regime 

he anisotropic diffusion regime, which occurs when M A0 is small, 
s characterized by κ� / κ⊥ 

� 1, which can be seen in Figs 7 and
 . In this regime, κ⊥ 

is nearly independent of χ , but scales with
 , increasing from ≈0.02 to ≈0.1 as M increases from 2 to 8. By

ontrast κ� varies with both M and χ ; an approximate empirical fit
o the data is κ‖ = M / (22 M A0 

√ 

χ), which shows κ� scales close to
inearly with M . We can interpret these results in light of the physical

echanisms discussed in Section 4.1 . In the sub-Alfv ́enic regime, the
 -field lines are extremely resistant to bending, so field line tangling

Section 4.1.1 ) is negligible. Diffusion in the perpendicular direction 
ill therefore arise solely from field line advection (Section 4.1.2 ), 
hile parallel diffusion is produced only by gas flow along the field

Section 4.1.3 ) and density fluctuations (Section 4.1.4 ). 
First consider the perpendicular direction. Since field line advec- 

ion is the only mechanism, it is immediately clear why χ does not
atter: transport depends only on the motion of the background gas 
which is not sensitive to χ ), not on the flow of CRs relative to it
which is). To first order we might expect κ⊥ 

to be independent of
 as well, since we are working in a unit system where times are

lready normalized to the turbulent eddy turno v er time. The fact that
e find a weak increase of κ⊥ 

with M is probably a sign of the
ortices that advect the field lines being more disordered, and thus
ore ef fecti ve at dif fusing the field lines and the CRs attached to

hem, as M increases. None the less, this effect is relatively small. 
Now consider the parallel direction, where diffusion comes from 

andom modulation of the streaming speed by fluctuations in the gas
ensity (Section 4.1.4 ) and velocity (Section 4.1.3 ). We therefore
xpect the diffusion coefficient to increase with the strength of the
odulations, and thus with M , and with the underlying streaming

peed that is being modulated (and thus with 
√ 

χ). This is precisely
hat we observe. As with the perpendicular direction, the scaling 
ith the streaming speed, and thus with χ , is dominant, so that the

atio of κ� and κ⊥ 

depends only extremely weakly on M . Indeed, as
he inset plot in Fig. 8 shows, the κ� / κ⊥ 

ratio in the low- M A0 limit
s consistent with the simple scaling 

lim 

M A0 → 0 

κ‖ 
κ⊥ 

= 

v str, 0 

2 
= 

1 

2 M A0 
√ 

χ
, (19) 

here v str, 0 is the (dimensionless) streaming speed at the average 
imulation density and magnetic field. As κ⊥ 

is independent of χ
n this regime, with a systematic scatter set by M (see the top left-
MNRAS 519, 1503–1525 (2023) 

art/stac3207_f8.eps


1516 M. L. Sampson et al. 

M

h  

B
i  

c  

κ  

t  

B  

2  

i  

c  

a

4

T  

u  

a  

t  

i  

p  

M  

o
≈  

d
 

r  

W  

e  

(  

t  

i  

a  

r  

s  

s
 

χ  

d  

t  

fi  

b  

l  

e

4

A  

w  

u  

t  

a  

f  

s  

m  

p  

t  

c  

fl  

i  

r  

t  

t  

Table 2. Best-fitting parameters p 0 –p 5 , with uncertainties, for fits of the 
quantities indicated to the functional form given by equation ( 20 ). 

Fit quantity 
Parameter κ� / κ⊥ κ⊥ u � / v str 

p 0 1.077 ± 0 . 069 0.0541 ± 0 . 0050 1.546 ± 0 . 060 
p 1 −0.0175 ± 0 . 0097 −0.017 ± 0 . 016 0.223 ± 0 . 0058 
p 2 5.65 ± 0 . 69 0.0804 ± 0 . 0074 0.306 ± 0 . 071 
p 3 −0.403 ± 0 . 015 −0.324 ± 0 . 011 −0.110 ± 0 . 024 
p 4 −5.94 ± 0 . 42 5.59 ± 0 . 62 −7.1 ± 1 . 9 
p 5 −0.201 ± 0 . 022 0.074 ± 0 . 019 −0.132 ± 0 . 041 

Figure 9. Numerical results for κ� / κ⊥ as a function of M A0 (circles, with 
colour indicating χ ) compared to our empirical fitting formula (equation 20 , 
using the parameters from Table 2 ). The different dashed lines show the fitting 
formula e v aluated for log χ = −5 (top) to 0 (bottom) in steps of 
 log χ = 1. 
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and panel of Fig. 7 ) this shows that κ� ∝ v str, 0 /2. In this regime,
eattie et al. ( 2022b ) finds that κ‖ ∝ (1 / 4) σ 2 

s v str, 0 � cor ,ρ/ρ0 , where σ 2 
s 

s the logarithmic gas density variance and � cor ,ρ/ρ0 is the gas density
orrelation scale. By substituting this model into equation ( 19 ),
⊥ 

∝ (1 / 2) σ 2 
s � cor ,ρ/ρ0 , i.e. in our dimensionless units of large-scale

urno v er times and velocities, κ⊥ 

is set by the density fluctuations.
ecause σ 2 

s ∼ ln (1 + M 

2 ) (Federrath et al. 2008 , 2010 ; Molina et al.
012 ; Beattie et al. 2021 ), this explains the scatter in M that we see
n the top left-hand panel of Fig. 7 . We postpone a more detailed
omparison between Beattie et al. ( 2022b ) theory and our results for
 future study. 

.1.6 Transition and isotropic regimes 

he defining feature of the isotropic regime is κ� / κ⊥ 

approaching
nity, which can be seen in Fig. 8 . The equality between the parallel
nd perpendicular diffusion coefficients is driven by two opposite
rends in the transition regime: sharp increases in κ⊥ 

and sharp
ncreases in κ� as M A0 increases from ≈0.5 to ≈2 (Fig. 6 ), at which
oint the coefficients converge to ≈ ( M A0 

√ 

χ) −1 at M A0 ≈ 2. At
 A0 � 2, the dependence on M A0 disappears and κ depends only

n χ . For χ close to unity, this dependence is approximately κ⊥ 

κ� ∝ χ−1/2 , but the dependence flattens at χ � 0.01, where the
if fusion coef ficients reach a maximum of ≈1 −2. 
As in the anisotropic regime, we can interpret these numerical

esults in terms of the physical mechanisms introduced in Section 4.1 .
hen M A0 is large, the field lines are easily bent by the flow, and we

xpect the dominant process in this regime to be field line tangling
Section 4.1.1 ). In this regime, an increase in the speed of travel along
he field lines (i.e. a decrease in χ ) results in a corresponding increase
n the rate of diffusion in all directions, with κ⊥ 

≈ κ� ∝ v str ∝ χ−1/2 ,
s we observe. This is similar to the scaling of κ� in the anisotropic
egime: when diffusion acts by random modulation of the streaming
peed, the result is a dif fusion coef ficient that scales linearly with the
treaming speed. 

Ho we ver, this does not explain the flattening in κ⊥ 

and κ� at low
, which prevents them from exceeding ≈1 −2, corresponding to
iffusing a distance of order � 0 per time τ . We hypothesize that
his saturation is due to the rate at which field lines become space
lling inside our domain. That is, no matter how fast SCRs may
e travelling along B -field lines, the rate of diffusion is ultimately
imited by the time-scale on which the tangled field lines are able to
xplore all space in the box. 

.2 Fitting formulae 

s discussed in Section 1 , one of the primary moti v ations for our
ork is to provide an ef fecti ve theory for CR transport that can be
sed in cosmological or galactic-scale simulations that do not resolve
urbulence in the ISM. To facilitate this, in this section we construct
 series of models to calculate CR dif fusion coef ficients gi ven v alues
or M A0 and χ ; we omit M since its effects are small within our
ystem units of time = τ . The intended use for these models is
uch the same as in large eddy simulations: one can measure the

lasma parameters at the minimum resolved scales, and use these in
he formulae provided below to assign an ef fecti ve subgrid dif fusion
oefficient for CRs due to the unresolved turbulent structure and
ow; we discuss below how to treat superdiffusion approximately

n such a framework. Since we have seen that there are two general
egimes for CR transport, corresponding to M A0 � 1 and �1, and
hat the parameters describing transport are relatively flat in each of
hese two regimes, we fit all quantities using a generic functional
NRAS 519, 1503–1525 (2023) 
orm 

 ( M A0 , χ) = p 0 χ
p 1 + p 2 χ

p 3 

{ 

tanh 
[
p 4 ( log M A0 −p 5 ) 

] + 1 

2 

} 

. 

(20) 

he function in curly braces has the property that it goes to zero
or when M A0 → 0 (for positive p 4 ) and to unity for M A0 → ∞ ,
hich provides the two flat plateaus at low and high M A0 that we
av e observ ed. The parameters p 4 and p 5 control the steepness and
ocation of the transition between the two plateaus, respectively;
 0 and p 1 provide the normalization and dependence on χ for one
lateau, while p 2 and p 3 serve the same purpose for the other plateau.
We begin by providing a fit for κ� / κ⊥ 

, which quantifies the
nisotropy of the diffusion. We perform a simple non-linear least
quares fit of our data for log ( κ� / κ⊥ 

) from all our simula-
ions, weighting them all equally, to a functional of the form
og f ( M A0 , χ ), where f given by equation ( 20 ). We report the best-
tting parameters and their uncertainties in Table 2 , and we plot our
t against the data in Fig. 9 , which shows that the fit captures the
asic trends well. We repeat this process for κ⊥ 

and for u � / v str, 0 ,
here v str, 0 = 1 / M A0 

√ 

χ is the mean small-scale streaming speed.
e report our fit parameters for these quantities in Table 2 as well,

nd show the corresponding comparisons between model and data
n Figs 10 and 11 . For completeness, we also show our estimate of
he parallel diffusion coefficient, computed by multiplying our fits
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Figure 10. Similar to Fig. 9 but for κ⊥ . 

Figure 11. Similar to Fig. 9 but for u � normalized by the mean small-scale 
streaming speed, v str , 0 = ( M A0 

√ 

χ) −1 . 
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Figure 12. Similar to Fig. 9 but for κ� . Dashed lines show models, computed 
by multiplying our fits for ( κ� / κ⊥ ) and κ⊥ . 
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9 A word of caution is that these authors did not determine the generalized 
dif fusion coef ficient rigorously as we do here, because they compute their 
dif fusion coef ficients directly from the time averaged-spatial variance of the 
CR particles, as κ ∼ 〈 ( 
 x ) 2 〉 /2 t . In superdiffusion, the time rate of increase 
of 〈 ( 
 x ) 2 〉 is non-linear, so this method is not appropriate, and does not yield 
an accurate estimate of the diffusion coefficient when α �= 2. 
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or ( κ� / κ⊥ 

) and κ⊥ 

, in Fig. 12 . In all cases, we see that the model fits
he data reasonably well. 

.3 Superdiffusion and its implications 

.3.1 The ubiquity and origin of superdiffusion 

s discussed Section 3.3 , we find that CR transport in our simulations
s better characterized by superdiffusion, with an index α < 2, 
han by classical diffusion, α = 2. Viewed in terms of the Green’s
unction describing the instantaneous distribution of CRs injected at 
 particular place and time, superdiffusion yields a shape that has a
arrower core but more extended wings than a Gaussian, with the 
mount the wings are extended, and conversely the core is thinned, 
ontrolled by α. Perhaps more importantly, the rate at which the 
idth of the Green’s function e xpands o v er time is different for

uperdiffusion than classical diffusion: the characteristic width of 
he distribution 
 x ∝ t 1/ α , so for α < 2 the width 
 x increases with
ime more steeply than for classical diffusion. 

We see from Fig. 5 that α varies little with M A0 or χ for either the
arallel or perpendicular case, and for most cases the simulations lie 
n the range 1.4 � α � 1.8. This finding is consistent with studies of
R diffusion on much smaller scales that also find the transport to be
uperdif fusi ve (Xu & Yan 2013 ; Lazarian & Yan 2014 ; Litvinenko &
ffenberger 2014 ). 9 The typical index of α ≈ 1.5 that we measure can
lausibly be explained as a result of Richardson diffusion, whereby 
agnetic field lines (or any other quantity advected with a turbulent
o w) di verge at a rate of 〈| x 1 ( t ) − x 2 ( t ) | 2 〉 ∼ t 3 (Kupiainen 2003 ;
azarian, Eyink & Vishniac 2012 ), which corresponds to α = 3/2. 

.3.2 Observational implications of superdiffusion 

ur finding that CR transport at galactic scales is likely superdif fusi ve
ather than classically dif fusi ve has important implications for the
nterpretation of observations. To understand these implications, we 
egin by pointing out that some care is required to compare the
esults we obtain with dif fusion coef ficients reported in the literature,
s these quantities do not have the same units. F or e xample, a
if fusion coef ficient corresponding to an index α = 1.5, has units of
ength 1.5 /time. Clearly, this is not directly comparable to a classical
if fusion coef ficient with units of length squared per time. The two
an only be compared at a particular, specified length-scale, by 
onsidering the characteristic time required to travel that distance 
rom a source. That is, the characteristic time required for a classical
if fusi ve process with diffusion coefficient κclass to transport CRs
 distance � is t class ∼ 2 � 2 / κclass , while the time-scale required
or a superdif fusi ve process of index α and coefficient κ super to
ransport CRs the same distance is t super ∼ 2 � α / κ super ; the ratio of
hese two times is t class / t super = � 2 − α( κ super / κclass ). The fact that this
atio depends on � means that one cannot meaningfully ask whether
uperdiffusion is faster or slower than classical diffusion; the answer 
epends on the length-scale o v er which the y are being compared.
e illustrate this in Fig. 13 , where we show characteristic travel

imes t as a function of length-scale � for example classical diffusion
nd superdif fusion coef ficients. In the example sho wn, superdif fusi ve
MNRAS 519, 1503–1525 (2023) 
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M

Figure 13. Schematic diagram of cosmic ray travel times t = 2 � α / κ as a 
function of distance from source location. The red line indicates the expected 
travel time assuming a Gaussian model ( α = 2) with κ = 10 27 cm 

2 s −1 (with 
the dashed lines showing a factor of 100 larger and smaller coefficient for 
reference), with the blue line showing the expected times for a superdif fusi ve 
( α = 3/2, κ = 10 17 cm 

3/2 s −1 ) diffusion model. 
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10 Note that our description of this result in terms of the total Alfv ́en Mach 
number M A , rather than the large-scale field Alfv ́en Mach number M A0 

that we use, is intentional. The distinction is that, in simulations such as 
ours where the field is self-consistently evolved to steady state rather than 
frozen in time, it is possible to have M A0 � M A as a result of dynamo 
amplification, a process that obviously does not occur in simulations using 
frozen fields. Ho we ver, e ven in fully time-dependent simulations such as ours 
the difference between M A0 and M A is significant only when M A0 � 1, 
and thus the distinction is small in the regime we are currently discussing. 
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ransport with κ super = 10 17 cm 

3/2 s −1 yields a traveltime comparable
o classical diffusion with a coefficient κclass = 10 27 cm 

2 s −1 for �
3 pc, but more closely resembles classical diffusion with κclass =

0 29 cm 

2 s −1 for � ∼ 300 pc. 
This matters for the interpretation of observations because most

bservational methods of diagnosing diffusion coefficients are ul-
imately sensitive to CR travel times, which are then converted to
if fusion coef ficients assuming that diffusion is the correct descrip-
ion of CR transport. For example, the grammage through which a
R population passes, as deduced from its boron (B) to carbon (C)

atio (e.g. Adriani et al. 2014 ; Genolini et al. 2015 ; Evoli et al. 2020 ),
s simply the product of the ISM density the CRs encounter, the speed
f light, and the time taken by the population to reach the observer.
imilarly, measurements of changes in radio synchrotron or γ -ray
pectral index with distance off a galactic plane (e.g. Bloemen et al.
993 ; Castellina & Donato 2005 ; Evoli et al. 2008 ; Gabici et al. 2010 ;
enolini et al. 2015 ; L ́opez-Coto et al. 2022 ) are mainly sensitive

o the amount of time for which the CRs producing the emission
re subject to loss processes (pion production, inverse Compton and
ynchrotron radiation) before reaching a given distance off the plane.
f such an observation is interpreted in terms of a classical diffusion
odel, but CR transport is actually superdif fusi ve, then the classical

if fusion coef ficient that one deduces will depend on the length scales
robed by the measurement. Again examining Fig. 13 , we can see
hat superdif fusi v e transport with a fix ed coefficient will appear, if
nterpreted assuming a classical diffusion model, as diffusion with a
arger coefficient on larger scales and a smaller coefficient on smaller
cales. Significantly, while there are a huge diversity of results for
R dif fusion coef ficients av ailable in the literature, there does appear

o be tension where studies that infer their diffusion coefficient from
/C ratios (Lagage & Cesarsky 1983 ), which are mostly sensitive

o CR sources relatively close to the Earth and for which the CRs
a ve tra velled �1 kpc, tend to yield lower diffusion coefficients than
hose based on fitting the γ -ray or radio synchrotron distribution at
 kpc distances off the galactic plane, which generally fa v our larger

oefficients. If CR transport is superdiffusive rather than classically
if fusi ve, it may alleviate this apparent tension. 
NRAS 519, 1503–1525 (2023) 
.4 Comparison to previous results 

hen comparing our results to previous work, it is important to reit-
rate the distinction between the scales of CR transport studies. There
as been limited work on the scaling of macrophysical diffusion (i.e.
n scales comparable to the background flow correlation scale) with
 , M A0 , and χ . Hence, to compare our results with the literature,

e look at micro -physical simulations (on scales comparable to the
R scattering mean free path) first, pointing out the major differences

hat will affect the diffusion coefficient calculations. In the latter,
he gyroradius is resolved and CRs travel along a field line at ≈c ,
ompared to v A, ion in our simulations. Therefore there will be no
ependence on χ . A further implication of taking a micro-physical
pproach is that since the CR speed, c , is much greater than the gas
elocity, the dynamics of the turbulence will evolve on significantly
ifferent timescales to CR transport. Effectively, one may consider
he micro-physical studies to be performing frozen time simulations
n the MHD turbulence (such as: Yan & Lazarian 2008 ; Xu &
an 2013 ). Thus, one of our main dif fusi ve mechanisms, field line

angling and stretching, is attenuated (since the field is frozen rather
han time-dependent), and another, field line advection, is absent
ntirely (see Section 4.1.2 for more on field line advection). With
hese caveats in mind, we may still make useful comparisons about
he general picture of CR diffusion found here and in the prior
iterature. 

One of our significant results is that κ⊥ 

= κ� for M A0 � 2. This
s consistent with earlier theoretical studies, which predict that CR
iffusion is isotropic when measured from scales larger than the
oherence length of the B -field lines (Casse, Lemoine & Pelletier
001 ; Yan & Lazarian 2008 ; Krumholz et al. 2020 ). Casse et al.
 2001 ) quantify the anisotropy as κ⊥ 

= η2.3 ± 0.2 κ� , where η, which
as a maximum of 1, characterises the strength of the turbulence. This
s generally in agreement with our results from Fig. 9 in which κ� / κ⊥ 

 1 as M A0 → 2. Ho we ver, there is less studies, and less agreement
n the literature regarding the behaviour of κ� with M A0 in the

 A0 � 1 regime. Here a number of authors report κ‖ ∼ M 

4 
A (Yan &

azarian 2008 ; Xu & Yan 2013 ; Cohet & Marcowith 2016 ), 10 i.e.
he diffusion scaling exactly with the magnetic field variance (Beattie
t al. 2022b ). While the direction of the scaling of κ� for sub-Alfv ́enic
urbulence found in these simulations is qualitatively consistent with
ur findings, we find a vastly different scaling, κ‖ ∼ M 

−1 
A0 , which

s closer to results from Casse et al. ( 2001 ). This difference may
ell be due to the physical differences in scale discussed abo v e, in

hat the dominant diffusion mechanism in the perpendicular direction
hen M A0 � 1 – field line advection – only occurs in larger-scale

imulations such as ours, and is necessarily absent in smaller scale
rozen-field simulations. 

While most previous numerical studies of CR transport have
ocused on the micro- and mesoscopic scales, both observations and
imulations on galactic or cosmological scales are sensitive almost
 xclusiv ely to transport on much larger scales. We may use our
esults to make some sample calculations about macroscopic CR
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iffusion rates expected in the ISM. A typical region of the warm
tomic ISM, of the type that fills most of the volume of the thin disc, is
haracterized by a total velocity dispersion σ V = 8 km s −1 , ionization
raction χ = 10 −2 , outer scale of turbulence comparable to the twice
he warm gas galactic scale height, � 0 ≈ 300 pc, and Alfv ́en Mach
umber M A0 ≈ 2 (e.g. Wolfire et al. 2003 ). The warm ionized phase,
hich fills the thick gaseous disc, has similar M A0 , but χ ≈ 1, � 0 ≈
 kpc, and σ V ≈ 20 km s −1 (Boulares & Cox 1990 ). Inserting these
gures into our fitting formula, equation ( 20 ), using our best-fitting
arameters from Table 2 , gives κ� / κ⊥ 

≈ 1 in both cases (i.e. transport
s close to isotropic), and κ‖ ≈ κ⊥ 

≈ 0 . 5 � α0 τ
−1 = 1 . 2 × 10 16 cm 

3/2 

 

−1 for the thin atomic disc and κ‖ ≈ κ⊥ 

≈ 0 . 14 � α0 τ
−1 = 3 × 10 16 

m 

3/2 s −1 for the thick ionized disc; in both cases we have adopted α =
/2 for the numerical e v aluation. Recalling our earlier discussion in
ection 4.3.2 , superdif fusi ve transport with the coef ficient we have
stimated for the thin neutral disc would, if interpreted assuming 
lassically dif fusi ve transport, appear to correspond to a diffusion
oefficient of κclass ≈ 4 × 10 26 cm 

2 s −1 on 300 pc scales (about 
he outer scale of WNM turbulence). Using our parameters for 
he thicker ionized disc, we would infer a dif fusion coef ficient of
 × 10 27 cm 

2 s −1 on 3 kpc scales (about the characteristic width
f the synchrotron-emitting regions seen around Milky Way-like 
alaxies; Krause et al. 2018 ). These values are similar to values
ound by Xu & Lazarian ( 2022 ) of ∼ 10 26 − 10 28 cm 

2 s −1 who
sed methods suggested by Krumholz et al. ( 2020 ) to calculate
acroscopic diffusion coefficients for ∼ 1 − 100 GeV streaming 
Rs. 

.5 Limitations of study 

ere, we outline some key limitations of this study. Some of these are
pecific to the w ork undertak en in this study and reflect the parameter
pace that has been explored (Section 4.5.1 ), while others represent 
undamental limitations of the physical assumptions we make when 
arrying out our simulations (Section 4.5.2 ). 

.5.1 Parameter space explored 

n all of our trials, we have assumed an isothermal ISM with no phase
tructure. In reality, the ISM is a multiphase plasma (Diamond et al.
989 ; Spaans & Carollo 1997 ; Hennebelle et al. 2008 ; Krumholz
012 ; Gent et al. 2013 ; Mandal, Federrath & K ̈ortgen 2020 ; Seta &
ederrath 2022 ). While each individual phase is approximately 

sothermal, CRs may not be confined to regions dominated by a 
ingle phase. Therefore, we have not explored how CR propagation 
s modified when CRs are able to cross from one phase to another,
n which the variation in χ between phases would be significant. 

A second limitation is that we have not explored subsonic 
urbulence ( M < 1), which differs from the supersonic regime we
av e e xplored due to the lack of density variations and compressible
odes and dominance of Alfv ́en modes (Kowal & Lazarian 2007 ;
owal, Lazarian & Beresnyak 2007 ; Burkhart et al. 2010 ; Esquivel &
azarian 2010 ; Beattie et al. 2021 ). While observations show 

hat the cooler phases of the ISM are highly supersonic, warmer 
hases such as the warm ionized and warm neutral medium are 
nly mildly supersonic ( M ∼ 1), and the intracluster medium is
ubsonic (Cho, Kang & Ryu 2020 ). As discussed in Section 4.1.4 ,
ensity fluctuations are the main driver of parallel CR diffusion 
n the sub-Alfv ́enic regime. This suggests that CR transport for
ubsonic, sub-Alfv ́enic turbulence may be fundamentally different 
rom the supersonic, sub-Alfv ́enic regime we have explored thus far. 
onversely, ho we ver, since density fluctuations are less important 
n super-Alfv ́enic transport, extending to the subsonic regime would 
ikely have little effect on our super-Alfv ́enic results. 

Another limitation, resulting from the restricted parameter space 
sed in this study, is that we have a driving scale of � 0 = L /2
n all of our MHD simulations. We have not explored the effects
f reducing the driving scale, and whether we may see different
ehaviour in κ as M A0 � 1 in this case. Somewhat connected to
his limitation is the restricted range of the turbulence cascade � 0 

� � � ν , where � ν is the numerical viscous dissipation scale,
n the MHD simulations with grid resolutions of 576 3 (Kitsionas 
t al. 2009 ; Federrath et al. 2010 ; Federrath 2013 ). This limited
esolution may affect the values of both the diffusion coefficients and
he superdiffusion index parameter α. We discuss convergence tests 
n Appendix A . The dynamic range of the turbulent cascade increases
inearly with grid resolution (Appendix C in McKee, Stacy & Li
020 ); hence we probe the change in size of the cascade by roughly
n order of magnitude between grid resolutions ∼100 3 and 1, 000 3 .
ver this range, we do not find any systematic trends between the
rid resolution and either of these parameter values. Thus, resolving 
igh- k modes in the turbulence cascade does not appear to be critical
o the results concerning large-scale CR diffusion coefficients or the 
ature of the diffusion reported in this study. 
A final limitation inherited from our MHD data set comes from

ur choice to drive all simulations using a ‘natural mixture’ of
ompressive and solenoidal modes. As driving becomes more com- 
ressive, density fluctuations increase and large voids and filamentary 
tructures dominate the density field (Federrath et al. 2010 ; Cohet &

arcowith 2016 ; Jin et al. 2017 ). This in turn will affect parallel
R diffusion in the anisotropic regime, where density fluctuations 
re a dominant generator of dispersion (see Beattie et al. 2022b , for
ore detail). Consistent with this general idea, Cohet & Marcowith 

 2016 ) find that compressively- and solenoidally driven turbulence 
roduce different levels of CR diffusion, but the differences vanish as
 A0 → 1. Mapping out the full effects of the driving modes in the

nisotropic regime will require a larger parameter study than either 
ohet & Marcowith ( 2016 ) or we have performed. 

.5.2 Physical assumptions 

e briefly re vie wed our treatment of SCR transport in Section 2.2 .
his model has certain limitations. One is that we assume one-way

nteraction of the plasma with the SCRs, i.e. we allow the plasma to
ffect the propagation of SCRs, but we neglect the effects of SCR
orces on the gas. To the extent that such back-reactions themselves
odify CR transport (as they must when the CR pressure gradient

ecomes high enough to modify the statistical properties of the turbu-
ence), our simulations will not capture those effects. The observed 
R pressure in the Milky Way is comparable to the ram pressure on

arge scales (Spitzer & Arny 1978 ; Boulares & Cox 1990 ; Ferriere
001 ; Grenier et al. 2015 ), but the CR distribution is much smoother
han the gas distribution. This means that CR forces are likely not
ominant at the galactic mid-plane, suggesting that our calculation is 
easonable. Ho we ver, this assumption is perhaps more questionable 
n regions of strong galactic wind or near local strong sources of
Rs, and it may also be problematic for star-forming dwarf galaxies

Crocker, Krumholz & Thompson 2020 ). It should be pointed out,
o we ver, that a self-consistent MHD plus CR fluid code would do
o better in this circumstance, unless the code reached resolutions 
ufficient to capture the full MHD turbulent cascade responsible for 
iffusion of CRs via the mechanisms we have identified. 
MNRAS 519, 1503–1525 (2023) 
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A second limitation is that our CR transport model is not applicable
o cosmic rays with energies � 0.1 − 10 TeV. We assume that the
R pitch angle distribution is isotropized on scales smaller than

hose being simulated, so the distribution of SCRs is adequately
escribed by the pitch-angle-averaged Fokker–Planck equation. As
R energy increases the rate of pitch angle scattering via the

treaming instability decreases (due to the decreasing density of CRs
nergetic enough to drive resonant Alfv ́en waves), both of which
ontribute to an increase in the CR isotropization scale. Krumholz
t al. ( 2020 ) estimate that our basic assumption – that CRs stream
t the ion Alfv ́en speed – will begin to fail when the streaming
nstability becomes too weak for CR energies abo v e ≈0.1 − 10
eV. Where ∼0.1 TeV being more rele v ant to normal star-forming
alaxies like the Milky Way, and ∼10 TeV to denser, more strongly
agnetized starbursts. In either case our treatment is valid for the

ange of CR energies that is most important for affecting the dynamics
nd chemistry of the ISM (P ado vani et al. 2020 ). 

 C O N C L U S I O N S  

n this study, we present results from simulations of streaming CRs
SCRs) through a supersonic, magnetized medium, with the aim of
e veloping an ef fecti ve theory that describes the transport of such
CRs as a function of the plasma Mach number M , the mean-field
lfv ́en Mach number M A0 , and the ionization fraction χ . We use

n e xtensiv e library of MHD and CR propagation simulations to
xplore this parameter space, and use the simulations to inform a
urbulent transport model. The theory we develop is suitable for
se in analytic calculations or simulations where turbulent structures
re unresolved, and has important implications for the interpretation
f observations used to infer SCR dif fusion coef ficients. Our main
esults are summarized below: 

(i) We identify two distinct regimes of SCR diffusion. When the
lfv ́en Mach number of the turb ulence M A0 � 0 . 5, we ha ve an

nisotropic regime where parallel diffusion is substantially more
apid than perpendicular diffusion, κ� > κ⊥ 

. In this regime, the
arallel diffusion is dominated by density fluctuations that randomly
odulate the streaming speed, causing SCRs traveling along parallel
eld lines to diverge. The parallel diffusion rate is therefore primarily
o v erned by χ , which sets the mean streaming speed, with a lesser
ependence on M due to the effect of M on the strength of the
ensity fluctuations. Perpendicular diffusion in this regime is caused
y field line advection by turbulent flows, leading to a diffusion
ate that, measured relative to the turbulent turno v er time, is nearly
onstant aside from a weak dependence on M . 

(ii) For M A0 � 2, by contrast, we find an isotropic regime where
� = κ⊥ 

, and diffusion is dominated by the tangling and turbulent
ransport of field lines as CRs stream down them. The diffusion
ate is sensitive to the streaming speed, and thus to χ , when χ
s not too small compared to unity, but when streaming is very
ast it becomes limited by the time required for the cosmic rays to
ravel through space-filling, highly tangled B field lines. Our finding
hat diffusion is approximately isotropic when M A0 � 2 provides a
hysical explanation for why models that assume a single isotropic
if fusion coef ficient appear to provide a good match to large-scale
bservations of galaxies. 
(iii) We find that almost ubiquitously in our parameter space SCR

ransport is better described by superdiffusion with an index α ≈
.5, rather than classical diffusion, α = 2. We propose that this may
xplain the apparent discrepancies between observationally-inferred
R dif fusion coef ficients that are ef fecti vely measured at dif ferent
NRAS 519, 1503–1525 (2023) 
ength scales: if one interprets superdif fusi ve transport in terms of
lassical diffusion, and attempts to assign a diffusion coefficient, it
ill appear that the diffusion coefficient is larger on larger scales and

maller on smaller scales, exactly as many studies of CR diffusion
eem to report. 

(iv) We provide fitting formulae for the ef fecti ve dif fusion coef-
cients and streaming speeds of SCRs subject to unresolved MHD

urbulence, calibrated based on our simulation library. These provide
ubgrid recipes suited to the inclusion of physically moti v ated SCR
iffusion prescriptions in simulations of galaxy evolution. 

This work provides the crucial first steps in bridging the gap
etween the disparate scales of CR transport and cosmological sim-
lations, increasing physical accuracy of simulations and allowing
or a deeper understanding of the evolution of galaxies. 
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PPENDIX  A :  C O N V E R G E N C E  TESTING  

s discussed in Section 2 , our simulation pipeline requires a number
f choices regarding the initial numerical configurations of either
he MHD fluid simulations, or the particle simulations. Here, we
ummarize a series of tests we carried out to determine the spatial,
emporal, and particle resolution needed for the study. For each
f these of these tests we assess convergence by running the full
imulation pipeline, fixing all parameters except the one we are
esting (i.e. a grid resolution 576 3 , 10 MHD realizations per τ ,
n injection rate of n CR / τ = 10 6 and 9 2 sources), and deriving
arallel and perpendicular dif fusion coef ficients as a function of
he resolution parameter being studied. We carry out this test using
rials M4MA10C0 and M4MA10C4 to sample the high M A0 regime
 v er a wide range in χ , and either M4MA05C0 , and M4MA05C4 or
4MA01C0 , and M4MA01C4 to amply sample the low M A0 regime.

1 Spatial resolution 

o test for convergence in grid resolution, we systematically vary
he number of grid cells used for the discretization of plasma
imulations between 72 3 and 1152 3 , increasing by factors of 2. We
NRAS 519, 1503–1525 (2023) 
how the results of this test in Figs A1 and A2 , which show the fitted
if fusion coef ficient κ and superdif fusion parameter α, respecti vely.
he experiments that vary the most with resolution are those with
igh M A0 and low χ , which show substantial resolution dependence
t lower grid resolutions tending to have reduced diffusion at higher
esolution; only the χ = 10 −4 , M A0 = 10 case shows noticeable
ifferences between resolutions of 576 3 and 1152 3 , and even these
re at the ≈ 30 per cent level. All other cases are extremely well
onverged at 576 3 . 

The relative insensitivity of our results to resolution might at
rst seem surprising, given that other authors studying cosmic ray
iffusion through turbulence have found that the results are sensitive
o resolution (e.g. Cohet & Marco with 2016 ). Ho we ver, it is important
o recall that, because we are studying ∼GeV cosmic rays whose
itch angles isotropise on unresolved scales, and thus whose ef fecti ve
elocity is �c , our diffusion mechanisms are very different than
hose studied by earlier authors, who have focused on much higher
nergy cosmic rays whose gyroradii are resolved by the simulation,
nd that mo v e through the background plasma at c . In the latter case,
he field is ef fecti vely frozen (since the cosmic ray speed is vastly
reater than the plasma speed), and the main diffusion mechanism
s via resonances between structures in the frozen magnetic field
nd the gyroscopic motion. Resolution matters for this because
he resonant structures are generally small compared to the total
imulation volume, and thus high resolution is required to capture
he turbulent cascades that create them. This process does not operate
n our simulations since we do not follow individual cosmic rays on
cales comparable to the gyroradius. Diffusion is instead driven by
he mechanisms discussed in Section 4.1 . A crucial difference is
hat all of these processes – field line tangling and stretching, field
ine advection, gas flow along the field, and density fluctuations –
re driven primarily by the largest eddies, which contain the bulk
f the turbulent power and have the largest associated velocities and
agnetic field perturbations. This makes the resolution requirements
uch less severe, since the majority of the ef fect is dri ven by large-

cale rather than small-scale structures. 

2 Temporal resolution 

e next check convergence in the time resolution with which we
ample MHD realizations of the plasma simulations for use in the
RIPTIC CR propagation simulation calculation. We parametrize this

n terms of the number of MHD realizations per turbulent turno v er
ime τ , and remind the reader that all of our CRIPTIC simulations
un for 5 τ . We test for values from τ = 1 − 20; for comparison,
e also test one case in which we simply freeze the MHD field
ut, non-self-consistently, continue to advect the CR packets using
he gas velocity field (the ‘frozen’ case), and another test where we
oth use only a single, frozen magnetic field structure and also set the
elocities to zero (the ‘no vel’ case). From Fig. A3 , we see increasing
he temporal resolution has little impact once at least 10 realizations
s used per τ , hence we use 10 realizations per τ for our study.
urprisingly, dif fusion coef ficients do not change dramatically e ven

f we use a frozen field, and only the χ = 1, M A0 = 0 . 5 case changes
ramatically if we disable velocity advection (which has the effect of
urning off field line advection, the dominant diffusion mechanism
n the perpendicular direction for this plasma regime). Ho we ver, this
esult can be understood if we recall that we are in this test still using
 grid of 81 different CR injection sites, each of which is sampling
 spatially distinct part of the magnetic field structure. The fact that
he time evolution of the field is relatively unimportant can therefore
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Figure A1. Results of grid resolution convergence test, where we show trials for M A0 = 0 . 5 (red) and M A0 = 10 (blue), with χ = 1 and 1 × 10 −4 which are 
indicated by the marker types. We see strong convergence in almost all cases at resolutions of 576 3 . 

Figure A2. Similar to Fig. A1 , but for superdiffusion parameter α as a function of numerical grid resolution. We find that both the parallel and perpendicular 
superdiffusion parameters show no systematic variation with grid resolution. 
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e seen as a manifestation of the ergodic nature of turbulence, i.e.
 X ( r , t) 〉 t ∼ 〈 X ( r , t) 〉 r , for statistical quantity X ( r , t). 

3 Particle resolution 

ur next convergence test is with regard to the rate at which
e inject CR packets from each source, and thus the temporal 

esolution with which we sample the structure in our CRIPTIC 
imulations. We parametrize this quantity in terms of the number 
f packets n CR injected per turbulent turno v er time τ ; we test
alues of 10 4 −10 7 in steps of 10. Fig. A4 shows the results of
he particle resolution testing. We see that there is little variation
o the extracted diffusion coefficients regardless of the particle rate. 

e use a particle rate of 10 6 n CR / τ . It should be noted here that the
njection rate only controls the number of sample particles injected at
 pre-set source location, so increasing n CR ef fecti vely increases the
umber of CR packets on a single fieldline. Thus, it is perhaps not
MNRAS 519, 1503–1525 (2023) 
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M

Figure A3. Temporal resolution tests for the same trials as in Fig. A1 . The x -axis is shown in units of MHD realizations per τ , with the frozen trials indicating a 
frozen field (i.e. one that does not evolve in time at all), and the no vel trials indicating cases where both the magnetic field is frozen and we set the gas velocity 
to zero. 

Figure A4. Similar to Fig. A3 , but now as a function of number of CRs injected per turbulent turno v er time, n CR / τ . Note that the parameters shown here for 
the low M A0 trials are slightly different than in Fig. A3 . We find that the fitted diffusion coefficients in both parallel and perpendicular directions have little to 
no variation across our range of n CR . 
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urprising that the results are not sensitive to this choice, as long as
 CR � 1. 

4 Source resolution 

ur final test e v aluates convergence of the dif fusion coef ficients in
he number of CR injection sites, which is a measure of how well we
igure A5. Similar to Fig. A4 except the x -axis shows the number of CR source l
the base of our simulation box). We see good convergence above 7 2 sources. 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
ample the turbulence spatially (or how our injection configuration 
hanges the nature of the measured diffusion). The geometry of the
R sources is in all cases a uniformly-spaced square grid placed
t the lower boundary ( z = −L ) of the simulation box; we vary the
umber of sources in this grid from 3 2 to 9 2 . Fig. A5 shows the results
f this test, which show reasonable conv ergence be yond 7 2 sources.
e use a 9 × 9 grid of CR sources for all trials in the main text. 
MNRAS 519, 1503–1525 (2023) 

ocations which are all configured in a square grid through the z = −L plane 
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