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ABSTRACT

We analyse the spatial statistics of the 2D gas-phase oxygen abundance distributions in a sample of 219 local galaxies. We
introduce a new adaptive binning technique to enhance the signal-to-noise ratio of weak lines, which we use to produce well-
filled metallicity maps for these galaxies. We show that the two-point correlation functions computed from the metallicity
distributions after removing radial gradients are in most cases well-described by a simple injection—diffusion model. Fitting the
data to this model yields the correlation length /.., which describes the characteristic interstellar medium (ISM) mixing length-
scale. We find typical correlation lengths .., ~ 1 kpc, with a strong correlation between I, and stellar mass, star formation
rate (SFR), and effective radius, and a weak correlation with Hubble type. Two galaxies in the sample show significantly larger
lcorr, and both prove to be interacting or merging systems. We show that the trend of /., with SFR can be reproduced by a
simple transport + feedback model of ISM turbulence at high SFR, and plausibly also at low SFR if dwarf galaxy winds have
large mass-loading factors. We also report the first measurements of the injection width that describes the initial radii over
which supernova remnants deposit metals. Inside this radius the metallicity correlation function is not purely the product of a

competition between injection and diffusion. We show that this size scale is generally smaller than 60 pc.

Key words: galaxies: abundances — galaxies: ISM.

1 INTRODUCTION

Metals (chemical elements heavier than helium) are forged inside
stars and redistributed when stars reach the ends of their lives. Once
ejected into the surrounding interstellar medium (ISM), some of the
metals will be incorporated into the next generation of stars. This
cycle makes metals in both gaseous and stellar phases natural tracers
of galactic and chemical evolution (for reviews, see Tinsley 1980;
Maiolino & Mannucci 2019; Sanchez et al. 2021).

Measurements of the gas-phase oxygen abundances (hereafter
metallicities) of HII regions can be made using both direct elec-
tron temperature methods and strong emission-line diagnostics (for
a review, see Kewley, Nicholls & Sutherland 2019). Traditional
spectrographs used these tools to explore the global metallicities of
nearby galaxies (e.g. Tremonti et al. 2004; Gallazzi et al. 2005), and
in some cases metallicity gradients using long-slit spectra (e.g. Vila-
Costas & Edmunds 1992; Henry & Worthey 1999). The development
of integral field spectroscopy (IFS) surveys (e.g. Marmol-Queraltd
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et al. 2011; Croom et al. 2012; Sanchez et al. 2012; Bundy et al.
2015; Erroz-Ferrer et al. 2019; Lopez-Coba et al. 2020; Emsellem
et al. 2022) has recently enabled studies of the full 2D spatially
resolved metallicities of nearby galaxies (e.g. Rosales-Ortega et al.
2011; Sanchez et al. 2014; Sanchez-Menguiano, Sanchez & Pérez
2016a; Sanchez-Menguiano et al. 2020b; Grasha et al. 2022; Metha
et al. 2022). Large IFS surveys have allowed statistical studies
of metallicity gradients which confirm earlier results that nearby
galaxies generally have a negative azimuthally averaged metallicity
gradient — metallicities in central regions are higher than outer
ones (e.g. Belfiore et al. 2017; Poetrodjojo et al. 2018; Sanchez-
Menguiano et al. 2018; Kreckel et al. 2019). Full 2D metallicity
maps have also made it possible to study azimuthal variations (e.g.
Sanchez-Menguiano et al. 2016b, 2020a; Ho et al. 2018).

Driven by the goal of extracting more information from metallicity
maps, Krumholz & Ting (2018, hereafter KT18) proposed a first-
principles model based on stochastically forced diffusion that pre-
dicts the two-point correlation functions of metallicity fields caused
by the competition between chemical mixing and metal production.
Following KT18, a number of recent studies have investigated the
statistical correlations of local galaxies. Li et al. (2021, hereafter
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Paper I) apply the KT18 model to a hundred galaxies from the Calar
Alto Legacy Integral Field spectroscopy Area (CALIFA) survey, and
report that the correlation scale of the metallicity, which is correlated
with the rate of metal mixing in the ISM, positively correlates with
several galactic properties including stellar mass (M.,), star formation
rate (SFR), and effective radius (R,). Kreckel et al. (2020) and
Williams et al. (2022) analyse two-point correlations of 8 and 19
PHANGS-MUSE nearby galaxies, respectively. Their main conclu-
sion is that the 50 per cent correlation scale (where the correction
function drops to 0.5) is typically ~800 pc. Metha, Trenti & Chu
(2021) use the semivariogram, a mathematical tool similar to the
two-point correlation function, to analyse the size and spatial scale
of metallicity fluctuations of 7 PHANGS-MUSE galaxies. The main
discovery is that the metallicities of H1I regions separated by more
than ~1-3 kpc can be considered to be uncorrelated, but those closer
to one another are correlated. To sum up, all the studies are in
agreement that nearby galaxies show correlations over ~kpc size
scales.

These studies push the frontier of metallicity map analysis to an
unprecedented level — metallicity fluctuations on top of well-studied
metallicity gradients can provide crucial constraints on models of
the ISM and galaxy formation. Compared to our understanding of
the nucleosynthesic processes that produce metals, we have poor
knowledge of how metals are transported once they are created.
It still remains an open question what typical ISM metal transport
length/time-scales are, and how they are influenced by other galactic-
scale activities, e.g. gas inflow/outflow. Observational constraints
therefore serve to guide theoretical models (e.g. Sharda et al. 2021)
and numerical simulations (e.g. de Avillez & Mac Low 2002;
Kobayashi & Nakasato 2011; Yang & Krumholz 2012; Minchev,
Chiappini & Martig 2013; Petit et al. 2015; Ceverino et al. 2016;
Colbrook et al. 2017; Escala et al. 2018) of star formation history
and galaxy chemical evolution.

However, the information that can be gleaned from the obser-
vational analyses published to date is limited, because existing
samples suffer from either low spatial resolution or small sample
size. PHANGS-MUSE achieves ~50-pc resolution, but in currently
<20 galaxies, and covering a narrow range of galaxy mass and
morphological type. This makes it difficult to use these data to
examine relationships between metal transport and other galaxy
properties. Conversely, Paper I samples an order of magnitude
more galaxies, but with a resolution of several hundred pc. This
is sufficient to measure gross characteristics of the metals such as the
correlation length, and its relationship with other galaxy properties,
but the spatial resolution is not enough to look at finer details of the
metallicity distribution.

The goal of this paper is to extend the analysis techniques
developed in Paper I, which build on the basic statistical tool proposed
in KT18, to both higher spatial resolution and larger sample sizes.
The former makes it possible for the first time to constrain details in
the shape of the metallicity correlation, which potentially constrain
the details of metal injection as well as transport through the ISM.
The latter, on the other hand, can extend our scope, especially to
dwarf galaxies with low M, and SFR. For this purpose, we analyse
galaxies drawn from the AMUSING++ compilation (Lépez-Cobd
et al. 2020), which provides much higher spatial resolution than
CALIFA, but a much larger and more diverse galaxy sample than
PHANGS-MUSE.

The outline of this paper is as follows. In Section 2, we provide
an overview of the galaxy catalogue, our selection criteria, and the
method we use to derive metallicities from the observations. In
Section 3, we discuss our method for analysing the spatial metallicity

distributions and finalize the sample selection; part of this method
involves a novel binning algorithm for the purpose of S/N ratio
enhancement. In Section 4, we describe the two main results from
the pipeline, galactic correlation lengths, and injection widths, which
are the two fundamental quantities in our model for the two-point
correlation function. In Section 5, we discuss the potential insight
provided by the extracted correlation lengths and compare them with
previous work. Finally, we draw conclusions in Section 6.

2 DATA

The instrument Multi Unit Spectroscopic Explorer (MUSE; Bacon
etal. 2010) is an integral field unit (IFU) at the Very Large Telescope
(VLT). It has a field of view (FoV) of 1 arcmin x 1 arcmin, and a
spatial sampling of 072 x 0”2. MUSE has a wavelength coverage
from 4650 to 9300 A, and achieves a spectral resolution of 1750 (at
4650 A) and 3750 (at 9300 A). The combined spectral and spatial
resolution provides unique opportunities to explore the elemental
abundance distribution in galaxies (e.g. Sdnchez-Menguiano et al.
2018).

AMUSING++ (Lopez-Coba et al. 2020) is currently the largest
compilation of nearby galaxies observed by MUSE. It consists of 532
galaxies from several different surveys (Lopez-Coba et al. 2020);
a majority of these come from the All-weather MUse Supernova
Integral-field of Nearby Galaxies (AMUSING; Galbany et al. 2016).
The emission lines and the stellar population content of the data
cubes were derived using PIPE3D (Sanchez et al. 2016b), which is a
fitting routine adapted to analyse IFS data using the package FIT3D!
(Sanchez et al. 2016a).

We describe the procedure to obtain the full widths at half
maximum (FWHM) of the point spread functions (PSFs) of the
AMUSING++ sample in Appendix A. The median FWHM for the
AMUSING++ galaxies is 0791. The median distance of galaxies
in the AMUSING++4 sample is similar to that of CALIFA (~70
Mpc), but since AMUSING+-+ has a much smaller angular PSF than
CALIFA (~1 arcsec versus ~2'5), it achieves much finer physical
resolution (~300 pc versus ~800 pc). Compared with PHANGS-
MUSE, AMUSING++ uses the same instrument and has similar
seeing conditions. The closer distances (median ~11 Mpc) of the
PHANGS-MUSE sample make its physical resolution even finer
(~50 pc), but at the price of a much smaller sample size covering a
more limited range of galaxy types. The AMUSING++ sample
therefore represents a sample intermediate between PHANGS-
MUSE and CALIFA, with galaxies at a wide range of distances
(68 per cent range from 24 to 170 Mpc) resulting in a range of spatial
resolutions (68 per cent range of FWHM from 111 to 882 pc).

We derive gas-phase metallicities for AMUSING++ galaxies
using the available strong emission lines. While in Paper [ we use the
[N1]/[O11] diagnostic (Kewley et al. 2019) due to its insensitivity
to ionization parameter, the wavelength coverage of MUSE does not
include [O11] for nearby galaxies. We therefore use the metallicity
diagnostic proposed by Dopita et al. (2016, abbreviated as D16),

12 + log(O/H) = 8.77 4+ y 4+ 0.45(y + 0.3)°, 1

y = log(IN 1] 16584 /[S 11] A.6717, 31)
+0.264 log(IN 1] 16584 /Ha). 2)

D16 shows the least dependence on the ionization parameter among
the current optical metallicity diagnostics (U; Kewley et al. 2019). In

Thttp://ifs.astroscu.unam.mx/pyPipe3D/
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principle one can estimate log (U) using the existing strong lines, but
we find that attempting to do so yields unreliable results, we therefore
adopt the original D16 diagnostic without making a separate estimate
of log (U); we discuss this issue in detail in Appendix B. Comparison
of the results from different metallicity diagnostics is also illustrated
in Appendix C1, where we show that using a different diagnostic does
not change our qualitative results. Before inferring the metallicity
from any diagnostic, we correct the AMUSING++ line fluxes for
the extinction within the source galaxies using the E(B — V) map
provided as part of the AMUSING++ compilation, assuming the
extinction curve proposed by Calzetti et al. (2000). We do not
correct for Galactic extinction, as that correction (computed using
the Cardelli, Clayton & Mathis 1989 model) is already included in
the line fluxes reported in the AMUSING++ data products.

To measure reliable correlation functions for the 2D metal field,
we require galaxies to have an axial ratio b/a > 0.4. The requirement
limits the sample to galaxies that can be deprojected accurately and
downsizes the whole sample from 532 to 447 galaxies. Next, three
criteria are used to mask pixels where the ionization is not primarily
due to star formation, or shows significant contamination by shocks
or active galactic nuclei (AGNs); we cannot reliably estimate the
metallicity in these pixels using the D16 diagnostic. First, we mask
non-star-forming pixels using the criterion proposed by Kauffmann
et al. (2003). This represents a more conservative masking than if
we were to use the AGN line proposed by Kewley et al. (2001), but
we make this more conservative choice because the D16 diagnostic
is relatively sensitive to shock and AGN contamination, with even
a 20 percent contribution yielding appreciable errors (Kewley &
Ellison 2008). Secondly, we mask the pixels where the equivalent
width (EW) of Ha is <6 A, because ionization in low EW regions
is usually dominated by old stellar populations (e.g. Sdnchez et al.
2014, 2015; Espinosa-Ponce et al. 2020); the D16 diagnostic is also
unreliable for these regions. Thirdly, we mask the pixels for which
the 12 + log (O/H) value returned by the D16 diagnostic is higher
than 9.23 or lower than 7.63 (Kewley et al. 2019), meaning that it is
outside the range where D16 provides valid results. The pixel removal
reduces the coverage of the metallicity map, and this renders some
of the maps too sparse to provide useful constraints on metallicity
correlations. We provide a full description of our treatment of missing
pixels in Section 3.3 after discussing the rest of our analysis pipeline,
and in that Section we determine criteria for galaxies having sufficient
coverage to allow accurate analysis. After applying all these criteria,
we are left with a sample of 219 galaxies out of the 447 with which
we started.

In Fig. 1, we show the distribution of SFR and stellar mass for both
the full AMUSING++ sample and the sub-sample of 219 galaxies
that pass all our selection criteria. We see that the effect of our
selection is primarily to remove galaxies with low SFRs for their
stellar masses, which sit below the star-forming main sequence. Not
surprisingly, such galaxies tend to have relatively sparse coverage of
H1I regions that allow reliable metallicity inference. However, our
sample still covers a broad range of masses for galaxies on the main
sequence.

3 ANALYSIS METHOD

As discussed previously, this work is focused on analysis of the 2D
distribution of metals via the two-point correlation function. The
backbone of the analysis method generally follows Paper I, though
we make some changes that we describe in this section. We first
introduce an adaptive binning scheme in Section 3.1. In Section 3.2,
we summarize our pipeline, including metallicity maps, two-point
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Figure 1. Dust-corrected Ho star formation rate versus stellar mass
(integrated value estimated by Pipe3D). The open circles show the full
AMUSING++ spectroscopic sample of 532 galaxies, while blue circles show
the sample we select for analysis in this work (219 galaxies, see Section 3.3).

correlation functions, and the parametric model fit; the steps here are
similar to those in Paper I, and we refer readers there for full details. In
Section 3.3, we discuss our selection criteria, which downsize the full
AMUSING++ mother sample to a subset for which we can conduct
the analysis reliably. In addition, we have performed an extensive
series of tests on our analysis pipeline in order to verify that the results
we derive are robust against various choices of parameters, choices of
metallicity diagnostics (section 4.1 of Paper I), and analysis method,
and against variations in the observing conditions. We describe these
validation tests in Appendix C.

3.1 Adaptive binning reconstruction

Of the four emission lines on which the D16 metallicity diagnostic
relies (Ha, [N 1] A6584, [S1] 16717, 31), [S11] 6731 has the lowest
signal-to-noise ratio (S/N) and He the highest. If we simply require
a minimum S/N of 3 in each line in order to derive a metallicity for
a given pixel, the number of pixels that meet this threshold in the
[S1u] A6731 line is typically 30 per cent of the number that do so in
the He. This makes [S11]A6731 a bottleneck, since the number of
pixels for which we can estimate metallicities from equation (1) is
determined by the weakest line. Since we are interested in spatial
statistics, having large gaps in our map where the signal is too weak
to measure the metallicity presents obvious problems.

In order to recover as many spatial pixels as possible, we use an
adaptive binning scheme.? For independent, identically distributed
data we expect the S/N of binned data to increase in proportion to the
square root of the number of binned pixels. This increase is paid for
by a corresponding decrease in spatial resolution, and thus we only
want to bin pixels where we are required to do so for S/N reasons.
We therefore carry out the following steps:

(1) First we create a series of maps which cover the same area as
our data, which we denote map;, map,, mapy, mapg, and so forth,
where mapy is a map where we have binned each group of N? adjacent
pixels in our data together. Therefore map, is our original data, while

2The source code for our method is available at
https://doi.org/10.5281/zenodo.6517216.
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in map, we have averaged together every 2 x 2 set of pixels; thus
map, has half the resolution of map;, but 2 x the S/N of the original
data. Note that, although map, has been averaged down, we keep the
number of pixels the same as in the original map by tiling each block
of 2 x 2 cells with the same value, equal to the average value for
that block. When the size of the image is not divisible by the map
number, we simply pad the map by repeating edge values. Similarly,
in maps we bin together every set of 4 x 4 pixels from the original
map to create a map with 4 x the S/N, and so forth.?

(i) We then generate an output map with the same size as map;.
For each pixel in the output map, we first locate the corresponding
pixel in map,, and ask if its S/N ratio is above some specified
threshold. If so, we set the value of the pixel in the output map
to the value of the pixel in map;. If the S/N does not reach our
threshold, we then examine the pixel in map, that covers the same
area, and use its value instead if the S/N ratio is high enough. If not,
we proceed to mapy, and so forth. We fill in every pixel in the output
map in this manner.*

We illustrate this process in Fig. 2. The left-hand panel shows the
original data, with pixels below a S/N ratio of 3 masked. The middle
panel shows the value N of the mapy for which the S/N reaches the
target S/N of 3. As is clear from the figure, the algorithm uses high-
resolution data in high S/N regions, and degrades smoothly to more
and more binned data in regions of weak signal. The right-hand panel
then shows the final output, adaptively binned map. Again, we see
that high-resolution information has been preserved where possible,
but now none of the map area is masked.

We apply the adaptive binning scheme to the [S1] 16731 line
map first, using an S/N ratio target of 3. We choose this value
because in tests of our pipeline we have found that the choice
of the target S/N ratio does not significantly influence the results
(see Appendix C2), and we therefore adopt an S/N ratio of 3. For
consistency, we then reconstruct the fluxes in all other lines using
the same binning, i.e. using the map number shown in the middle
panel of Fig. 2. We do this in order to ensure that we only ever
compute metallicities using ratios of lines that are measured as
the same spatial resolution. In the final, adaptively binned maps,
we then mask any pixels where none of the lines in the original,
unbinned map were detected at S/N >3; in practice, since Ha is
almost always the brightest line, this means that our final, adaptively
binned maps are limited to the footprint where H o was detected in
the original, unbinned map. This ensures that our adaptively binned

3Note that there is no reason in principle why our maps need to proceed
in powers of 2; for example, we could have map,, mapsz, maps, maps, etc.
The reason for proceeding by factors of 2 is simply computational, as our
algorithm as implemented has a computational cost that scales as N,InN,,
where N, is the number of pixels per side in the original image, while an
algorithm that considered every possible rebinning from 2 to N, would have
an N,Z, computational cost. The accuracy gains from proceeding in steps of
unity would also be minimal, since the improvement in resolution compared
to our existing algorithm would on average not be better than a factor of /2.
4Note that this procedure does not guarantee conservation of total flux, since
some parts of, for example, a single map4 pixel may be filled in by map, data,
while other parts where the S/N is higher may be filled by map, or map; data.
We could (at a modest resolution penalty) modify the algorithm to make it
conservative by requiring that, if any part of a mapy pixel requires map4 data
to reach the target S/N, the entire pixel must use maps data. However, for our
purposes here we are only interested in the ratios of two emission line maps,
not the absolute flux. Thus, as long we always compute ratios using data
reconstructed with identical map numbers (which we do ensure — see below),
the fact that our algorithm does not conserve total flux does not matter.

maps do not go past the real edge of ionized gas emission in the
galaxy.

Applying this algorithm to our sample on averages increases the
number of usable pixels in a galaxy by a factor of &2, but this
value varies significantly from galaxy to galaxy, with some galaxies
only gaining an ~ 10 per cent improvement in number of usable
pixels, and some increasing by a factor of ~10. To illustrate the
resolution of the final analysed maps, Fig. 3 shows the distribution
of median spatial resolution (in physical rather than angular units)
for the reconstructed maps. We find that 55 per cent of our maps
by area, and the great majority of the area inside R,, are covered by
pixels whose effective size is <1 kpc.

We also investigated other possible binning schemes, e.g. Voronoi
binning (Cappellari & Copin 2003). However, we find that the adap-
tive binning scheme described above offers superior performance for
our data because it is better able to handle the non-axisymmetric
features of star-forming galaxies. Although the Voronoi binning
algorithm parameter ‘roundness’ accounts for the shape of bins,
the algorithm is optimized for elliptical galaxies, and applying it to
our data both leaves large areas that do not reach the target S/N,
and leads to the production of binned Voronoi pixels whose shapes
leave obvious artefacts when we compute metallicity maps and derive
spatial statistics from them.

3.2 The backbone: metallicity maps, two-point correlation
functions, and the parametric model fit

Once we have adaptively binned the data, we run the rest of our
pipeline, which is substantially the same as in Paper 1. The pipeline
starts by rotating the images to align the major axis of the original
image to the x-axis, and then deprojecting the galaxy from an ellipse
to a circle.’ A rotation matrix does both at the same time, converting
the original coordinate of each pixel (x, y) to a new one , )
as

x| cosf sin 6 X 3)
Y|~ |—sinf/cosi cosf/cosi| |y|’
where 0 represents the position angle (PA) and i is the inclination

angle. We determine i using the classical Hubble formula (Hubble
1926)

(b/ay —q2
1—q2

cos’i =

, (C))
where b/a is the axial ratio in the original image and gy = 0.13
(Giovanelli et al. 1994, i = 90° for bla < qy). We adopt this value
of qo although the sample consists of a wide range of Hubble types
(see Section 4.1 and Fig. 7). Adopting a larger g, does not change
our results (see Appendix C3).

After deprojecting each of the line maps, we generate a deprojected
metallicity map (each value denoted as Z;) using the D16 diagnostic.
The next step is to remove the radial metallicity gradient to produce a
fluctuation map. We choose to subtract the mean value, Z,., computed
in annular bins of a bin width which is the same as the physical
sampling scale (072). The physical bin width varies from galaxy to
galaxy; the median value over the sample is 64 pc. The metallicity
fluctuation Z/ for each pixel is Z, = Z; — Z,. This fluctuation map
by construction has zero mean.

5The source code for the deprojecion is available at
https://doi.org/10.5281/zenodo.7117990
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Figure 2. An illustration of adaptive binning reconstruction, using NGC 7674 (the host galaxy of SN2011hb) with a target S/N ratio of 3 as an example. The
left-hand panel shows the original [S1I] A6731 map; blank areas show masked pixels with S/N <3. The middle panel shows at which map (mapy) each pixel
reaches the target S/N. Note that red area in the middle panel corresponds exactly to the non-masked pixels in the left-hand panel, and these pixels will not be
altered by adaptive binning because they are already above the target S/N. The right-hand panel shows the final, adaptively binned [S 1I] A6731 map.
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Figure 3. The number distribution of the median spatial resolution of the
maps after applying adaptive binning reconstruction. The histogram bins are
spaced uniformly in logarithm.

We now compute the two-point correlation function of this
metallicity fluctuation map as

_ (Z'(r+1)Z'(r))
<Z/(r/)2>

where Z'(r) is the metallicity fluctuation at position x in the map,
and the angle brackets ( - ) denote averaging over the dummy position
variable r’. In practice we are interested only in the two-point
correlation as a function of scalar separation r rather than vector
separation . We compute this by taking every pair of pixels (i, j) in
the deprojected, mean-subtracted map, computing their separation
r;j, and binning the pixel pairs by r;;. We then compute the two-point
correlation function for the nth bin, spanning the range of separations
(s T+ 1) a8

&(r) , (&)

02,2
° S ziz), (©6)

n <r,'j§r,,+1

§n=
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where the sum runs over the N, pixel pairs (i, j) for which r,, < r;; <
Fu+1, and

Np

1 2
o2 = N Z_: z (7
i=1
is the total variance of the N, pixels in the map.°

We estimate the uncertainty of the two-point correlation function
using a Monte Carlo approach. For each pixel i in the original map,
we have a line flux f; and an uncertainty of the line flux o,;. In each
bootstrap trial, we generate a random line flux map by drawing
a value for each pixel i from the distribution N(f;, oy ;), where
N(u, o) denotes a normal distribution with mean p and standard
deviation o. We repeat this process for every line in our metallicity
diagnostic (i.e. Hor, [N1I] A6584, [S11] A6717, and [S11] A6731). We
then repeat the steps of our analysis pipeline, including adaptive
binning and reconstruction of the full line flux and metallicity field, to
derive a realization of the two-point correlation function. We repeat
this process 50 times, thereby deriving a sample of 50 two-point
correlations. We take the mean and standard deviation of these 50
realizations as our final two-point correlation function &, and its
uncertainty o obs.

We finally carry out a parametric fit to our derived two-point
correlation function using the functional form proposed by KT18.
The model is based on two key processes, the production of the
metals and their redistribution. We modify the model to account for
the effects of beam smearing and noise as described in Section 3.3
and Appendix D of Paper 1. For convenience, we repeat here the
functional form to which we fit:

2 O —¢ ix
Emodel (1) = o [ ( 7 P ) + ®(epix - r):|
In (1 + 002/2)
00
N/
/ e*d§a2/2 (1 _ e—ZKt*az) O(ar) da, (8)
0 a

where of = 0%, + Zwiznj, Obeam 18 the dispersion (not the FWHM)

of the observational beam in physical distance, wiy; is the physical

The source code for the two-point correlation is available at
https://doi.org/10.5281/zenodo.7117990
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injection width over which supernovae inject metals, « is the
diffusion coefficient, ¢, is the star formation duration, £ is the
size of a pixel in the observed map, and f is the factor by which
observational errors in the derived metallicities increase the variance
in the metallicity fluctuations compared to the true variance. Here,
O(x) is the Heaviside step function, and the purpose of the term in
square brackets containing ®(x) terms is to account for the fact that
errors are perfectly correlated within a single pixel of the observed
image, and completely uncorrelated (at least in our approximation)
between different pixels. In order to eliminate edge effects in the
correlation functions (e.g. Menon et al. 2021), we only fit & oge1(7)
over a range in r up to 70 per cent of the median radius (measured
relative to the galactic centre) of the available pixels. This cut is
comparable to 1R, for most galaxies, but due to the range of data
quality, resolution, and H o coverage it is preferable to use a data-
driven cut rather than simply truncating at R, for all galaxies.

We use the measured two-point correlation function &, and its
uncertainty o o for each galaxy in our sample to generate posterior
distributions for the parameters of equation (8) using the PYTHON
package EMCEE (Foreman-Mackey et al. 2013), an implementation
of an affine-invariant ensemble sampler for Markov chain Monte
Carlo (MCMC). We focus here on four parameters: o peam,» Winj» K1,
and f. The likelihood function is given as

In p(s | Obeams Winj, Kty, f) =

_ 2
12 (";:mc'del2 Eobs) +1In (Uéobs) ) (9)

2 B 0% obs

where quantities subscripted ‘model’ are evaluated from equation (8),
quantities subscripted ‘obs’ refer to the correlation functions mea-
sured in the observations, and the sum is over the n bins for which
we have evaluated the observed correlation function. We adopt
flat, uninformative priors on wjyj, kt,, and f for all positive values
(and zero for negative values). We adopt an informative prior for
O beam» Which follows a Gaussian functional form N(0 beam,05 O beam.std)s
where the central estimate 0 peam, 0 and standard deviation o peam std
are computed by translating our central estimate FWHM, and
uncertainty FWHMgy on the beam FWHM into physical dispersions
in the beam size as projected on to the galactic disc. The FWHM
central estimate and uncertainty are computed via the procedure
described in Appendix A. This approach allows us to marginalize
the remaining parameters over our uncertainty in the exact size of
the PSF.

Our adaptive binning procedure introduces one extra complication
in our fitting procedure that did not arise in Paper I. While this
procedure allows us to obtain much better estimates of the correlation
length, /k1,, than would be possible using the unbinned maps that
have large gaps where the S/N is too low to allow reliable metallicity
measurements. It also potentially produces bias in our estimates
of wiyj. This is because in our model (equation 8), the correlation
function is only sensitive to a quadrature sum of the injection
and beam widths, of = o2, + Zwiznj. Thus while our posterior on
Kkt, is insensitive to the beamwidth (as confirmed numerically in
Paper I), the injection width wj,; is highly sensitive to it. A side
effect of binning is that the effective beamwidth, o peam, iS not
uniform across the map. As we show in Appendix C4, this makes
it problematic to derive a posterior distribution for wj,;, since then
there is no unique beamwidth.

For this reason, we carry out our MCMC estimation of the posterior
probability density functions (PDFs) in two stages. In the first
stage, we use &qps and oz ops derived from the adaptive-binning-
reconstructed map using the priors as described above. In the second

stage, where we expect to be able to obtain reliable estimates of
Wiy, We fit to correlation functions computed from the original, non-
binned maps. In this stage all the priors are the same as above, except
that rather than a flat prior for k., we use as our prior a Gaussian
kernel density estimate (KDE) of the posterior PDF of kt, derived
in the first stage. This approach allows us to compute an estimate
for wjy; using the unbinned map for which o pear, is well-defined, but
with «t, constrained by the more accurate estimates derived from
the binned map. In the results we report below, posteriors for kz, are
always those derived from the first stage (using the filled, adaptively
binned maps), while posteriors for wi,; are those derived from the
second stage (using the non-binned, sparser maps).

We carry out each stage of the MCMC fit using 100 walkers, run
for 1000 steps in total; visual examination shows that the chains are
well-converged after ~500 steps, so we discard the first 500 steps
for burn-in, and derive the posterior PDF from the final 500 steps.

3.3 Robustness of the method and sample down-selection

The AMUSING++ compilation has many galaxies in the sample
that are only sparsely filled by star-forming regions producing
enough ionizing radiation to allow us to measure the metallicity;
adaptive binning improves but does not completely remedy this
situation. Moreover, because many of the AMUSING++ galaxies
were originally observed for reasons other than to study the galaxy
itself (e.g. many were observed to analyse the host environment of
supernovae), the MUSE FoV is in some cases not well aligned with
the galaxy. We must therefore test how well our pipeline performs
under such conditions. In Paper I, we showed that our measurements
of the correlation function from CALIFA required a minimum
number of pixels in order to be robust. This approach worked well
for the diameter-selected CALIFA sample, which was designed such
that the targeted galaxies filled the IFU. A new approach is needed
for AMUSING++, which lacks this uniformity. In this work, we
therefore take a different approach that assesses both the number of
pixels available for analysis and their distribution within the MUSE
FoV.

Formally, for each galaxy we define two statistics: the number
filling factor and the area filling factor using the highest S/N maps
from H o emission. We define the number filling factor as the ratio
of the number of pixels for which the S/N ratio in all lines is >3
(i.e. those for which we can measure a metallicity) to the number
for which the He line is detected at S/N >3 in the binned map; we
take the number of H «-detected pixels to describe the approximate
size of the full galaxy, since for the great majority of the sample the
area covered by detected H o emission is 2> 7 R?. We define the area
filling factor as the ratio of the area covered by pixels where all lines
are detected at S/N >3 to the area of the convex hull defined by the
set of pixels where H « is detected at S/N above 3. Compared with the
simple number filling factor, the area filling factor reflects the pixel
distribution. If pixels for which we can derive the metallicity are
sparse, even though the number filling factor is high, the area filling
factor will be relatively low because there will be many uncovered
pixels in the convex hull. The number filling factor will always be
greater than or equal to the area filling factor, and with equality
holding when the H «-detected pixels form a convex set.

The number and area filling factors defined above allow us to
characterize how well the galaxy is sampled, but they do not by
themselves tell us what level of sampling is required to generate
reliable results. As a proxy for this question, we ask the closely
related question of how well we can fit a KT18 model (equation 13)
to the data. We characterize the offset between the observed & o, and
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Figure 4. Examples of galaxies with different spatial coverage and L' norm. The upper row shows a galaxy with a good fit (ESO 476-G 016, the host galaxy
of ASASSN-180a, L' = 0.011), while the lower row shows a poor fit (NGC 0613, L' = 0.030). From left to right, each row shows the deprojected, adaptively
binned metallicity map, the metallicity fluctuation map (i.e. the metallicity map after subtracting the radial gradient), and the two-point correlation function.
In the right-hand panels, black dots show the measured two-point correlation function (truncated at the radius where we reach 70 per cent of the median pixel
radius — see main text), the dashed line shows the best-fitting KT18 model, and the grey band shows the two-point correlation of a beam-smeared noise map

with the same masking as the galaxy map.

best-fitting model & ,04e1 tWO-point correlation functions (using the
model determined during the first MCMC stage) using the L' norm
defined as

1 1 K
L E |§model - thsl dr
0

AR
7 Z |$m0del - Eobsl
n

= <|§m0dcl - Sobs‘) s

where R is the galactocentric radius, and AR is the radial extent of
one of the bins over which we compute our two-point correlation
functions. Intuitively, the L' norm is simply the mean difference
between the observed two-point correlation function and the best-
fitting KT18 model. Fig. 4 shows an example comparison between
two galaxies, one with a good (low L' norm, high filling factor) fit
and one with a bad (high L' norm, low filling factor) fit. It is clear
that two-point correlation function in the ‘good fit’ example is a
smooth function of separation and is well-described by the KT18
model, while the ‘poor fit” example, which has a much sparser map,
has significant non-monotonic structure in its correlation function.
It is possible that this represents not real structure but an artefact of
the very sparse spatial coverage, but in either case this galaxy is not
well-described by a KT18 model. The grey band in Fig. 4 shows the
two-point correlation of a beam-smeared noise map with the same
masking as the galaxy map. It serves as a reference with which one
can compare the two-point correlation of the galaxy metal field.
Fig. 5 illustrates the distribution of L' norm in the space of area
and number filling factor. There is a clear correlation between filling
factors and L' norm: the majority (roughly 82 per cent) of high L'
norm values (L' > 0.025) lie in the lower left shaded area, while,
conversely, the vast majority of the galaxies outside this area are
well fitted by a KT18 model. We therefore remove galaxies from
our sample if they fall within this region, corresponding to an area
filling factor less than 0.04 and a number filling factor less and 0.4.
This selection removes 210 of the galaxies in the sample. We also
choose to remove 18 galaxies with L' > 0.025 outside the shaded
area from the sample; while these galaxies do not suffer from poor

(10)
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Figure 5. The distributions of area (x-axis) and pixel number (y-axis) filling
factors, colour coded by L' norm. The shaded area denotes the region where
we reject the samples. Most of the high L! norm circles are located in the
shaded area, which is as expected since these galaxies discs are too sparsely
sampled to allow reliable parameter estimates. We also reject the red circles
(L1 > 0.025) outside the shaded area, but these are only a small minority of
the sample.

sampling, they are also not well-described by the model we fit to
them and we therefore wish to avoid drawing conclusions based on
the outcomes of those fits. The above selections reduce our initial
sample of 447 galaxies to a final sample of 219 galaxies, which have
a median beam size of 351 pc with a 68 per cent range from 96 to
814 pc. These figures differ slightly from those quoted in Section 2
due to the downsized sample.

4 RESULTS

The primary output of our analysis pipeline is a set of posterior PDFs
for the two-dimensional parameters that characterize our parametric
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Table 1. Global properties, correlation lengths, and injection widths of AMUSING++ galaxies. Columns are as follows: (1)
AMUSING++ name; (2) position angle; (3) b/a axial ratio; (4) distance; (5) r-band effective radius; (6) FWHM of physical PSF;
(7) median spatial resolution of the binned maps; (8) stellar mass; (9) Ha star formation rate; (10)—(11) correlation length and injection
width derived in this work, respectively. For l.orr and wiyj, the central value is the 50th percentile of the posterior PDF, and the error bars
show the 16th—84th percentile range. For cases where one of our fit parameters is not well-constrained (see Section 4) we only report the
86th percentile value as an upper limit (e.g. winj of NGC 1483). Columns (2)—(6) and (8) are from Lopez-Cobd et al. (2020) and Sdnchez
etal. (2022). The R, values are r-band half-light radii derived from an isophotal analysis. The SFR values are derived from dust-corrected
H o (Sanchez et al. 2021). This table is a stub to show structure; the full table is available in the electronic publication.

Name PA bla D R, PSF réSmed log(M./Mp) log (SFR/Mpyr~ 1) Leorr Winj
©) Mpe)  (kpe)  (pe)  (pc) (kpe) (po)

(1 ) 3) “) &) 6) (7 ®) © (10)

NGC 1042 17 0445 190 296 74 73 9.879£0.093  —1.097 £0.059 024115902 46718

NGC1068 118 0782 160 168 112 123 11383£0.111  0170£0.062 03217000 772

NGC1483 49 0714 161  1.60 58 15 9.033£0.091 —0.696+£0.059 0217000 <6

model: the injection width wj,; that characterizes the size of the
region into which metals are first injected by supernovae (SNe), and
the correlation length

leorr = VKt an

that characterizes the strength of the mixing in the ISM that occurs
after the metals are injected. We report the full set of results in
Table 1.

For each of these quantities, we derive the median and 68 per cent
confidence intervals. One subtlety that arises in computing confi-
dence intervals is that, for some cases (particularly for wj,), at
the available resolution of the observations our posterior PDFs are
essentially flat all the way to zero, because the signatures of wjy; or
lcore in the PDF are hidden within the part of the two-point correlation
function where the shape is determined purely by the beam size
Obeam- I this situation, we only obtain a meaningful upper limit,
and while we could still formally compute confidence intervals from
our MCMC results, their lower ends would be solely determined by
our choice of prior. While it is possible to detect this situation by
visual inspection of the posterior PDF, given the size of the sample
it is preferable to have an automated criterion. To construct such a
criterion, we note that our priors on wjpj and [co, are flat at values >0,
so in the situation we have just described where the posterior mirrors
this shape, we should find that the ratio p,/p,, = n/m, where p,, and
pw are the nth and mth percentiles of the marginal posterior PDE.
That is, if the posterior is flat from O to the 50th percentile value,
then the value of the 5th percentile is simply 1/10 of the value of
the 50th percentile. By contrast, if the posterior is peaked rather than
flat, we would expect ps/pso > 1/10, with ps/psy — 1 as our posterior
approaches an infinitely sharp §-distribution. Our automated check is
therefore to evaluate po/pso and p/pso. If we find that either po/pso
< 1/5 or pie/pso < 1/3, we report the result as an upper limit at the
86th percentile value, rather than giving a full confidence interval.
Similarly, we plot such points as upper limits using arrows pointing
downwards in the figures below.

4.1 Correlation length

In Fig. 6, we report correlation length as a function of M, (left,
PIPE3D fitted), SFR (middle, dust-corrected Ha), and R, (right,
isophotal r band). The previous results from the CALIFA survey
(~800-pc resolution, Paper I) are also illustrated using heat density
maps. The Pearson correlations for the distributions from this work
shown in Fig. 6 are 0.50 (M.), 0.53 (SFR), and 0.62 (R,). To

estimate the uncertainties on the correlation coefficients, we draw
samples of I, from the posterior PDF for each galaxy, compute
the Pearson correlation between /. and a galaxy property for one
realization, and repeat the process 50 times. This gives a typical
uncertainty of Pearson correlation less than 0.01. It is clear that our
results are generally consistent with those of the lower resolution
CALIFA survey (Paper I), but that with the current data set the
correlation between /., and other galaxies is both tighter and extends
to significantly lower stellar mass, SFR, and R,. To first order
the relationship is between [, and the other galaxy quantities is
roughly consistent with a power law with a slope of 1/2 for stellar
mass and SFR, i.e. roughly .o o¢ M}/? oc SFR'2, and 1 for R,,
i.e. roughly [0 ¢ R.. As in Paper I, since stellar mass, SFR, and
R, are all correlated with one another in our galaxy sample, it is
difficult to determine which of these quantities plays a primary role
in determining /., and which are secondary correlations. We present
a possible interpretation of the results in light of a simple theoretical
model below.

In addition to these correlations with galaxy size and mass, several
authors have posited that large-scale structures in galaxy discs (e.g.
spiral arms or bars) are responsible for ISM chemical mixing (e.g.
Di Matteo et al. 2013; Grand et al. 2016; Sdnchez-Menguiano et al.
2017, 2020a; Spitoni et al. 2019). AMUSING++ does not provide
a quantitative estimate of bar strength, but it does provide a Hubble
type, which we can use as a rough proxy for the strength of spiral
arm structure in our sample. In Fig. 7, we show the medians (the
horizontal lines), the 25th percentiles (the lower boundaries), the
75th percentiles (the upper boundaries), and the extension from the
box by 1.5 x the interquartile range (the whiskers) of the correlation
lengths of galaxies grouped by Hubble type, from SO to I. We also
divide the whole sample into high and low stellar mass groups based
on the median value log (M./Mg) = 10.5 of the sample; these two
groups are shown in red and blue colours. The size of the samples
in each subset is also annotated next to the median value. In each
Hubble type, the high M, branch is always higher than the low M,
branch, consistent with the results in Fig. 6. From Sa to Sc there
is a weak trend towards increasing /.. in the high-mass subset of
the sample, even ignoring the final Scd-I bin that contains only one
galaxy. This partly agrees with the findings of Paper I, and suggests
that increasing spiral arm strength slightly increases the correlation
length, e.g. with SO galaxies with no spiral arms showing lower
average correlation lengths compared to Sc galaxies. However, the
effect is on order < 1o, and there is no obvious trend in the low-mass
sub-sample.
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Figure 7. A box plot of correlation lengths of galaxies grouped by Hubble
type and divided into two subsets, low stellar mass [log (M./Mg) < 10.5, blue
boxes] and high stellar mass [log (M./Mg) > 10.5, red boxes]. The lower and
upper boundaries of a box show the 25th and 75th percentiles, respectively,
with a line at the median (50th percentile). The whiskers show the extension
from the box by 1.5 x the interquartile range (IQR). The number of the
galaxies in the subset is also annotated next to the median of each box.

4.2 Outliers

We find two galaxies that have extremely large correlation lengths
leorr > 10 kpe (cf. Fig. 6), which are outliers with respect to the rest of
the sample that has /.oy < 5 kpc. They are NGC 6926 and JO206, and
we show their (undeprojected) H @ maps and metallicity fluctuation
maps in Fig. 8. Both galaxies show large non-axisymmetric metal-
licity fluctuations, demonstrating that the large correlation lengths
are not the result of an error in the fitting procedure. Instead, our
pipeline is correctly identifying galaxies experiencing large-scale
perturbations in their metallilcity distributions.

NGC 6926 is a spiral luminous infrared galaxy (LIRG) with a
Seyfert nucleus, and is at a very early stage of interaction with
the dwarf galaxy NGC 6929 that lies 4 arcmin to its east (outside
the MUSE FoV; Dopita et al. 2015; Herrero-Illana et al. 2017).
JO206 is a jellyfish galaxy experiencing gas stripping caused by
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ram pressure during its infall into a cluster (Ramatsoku et al. 2019).
These interactions provide a natural explanation for why these two
particular galaxies should have metallicity maps that differ so much
from the rest of the sample; they also corroborate the trend noted in
Paper I that interacting galaxies have larger correlation lengths. Since
the KT18 model does not take such complicated circumstances into
account, e.g. merging/interactions and ram-pressure stripping, there
is no reason to expect the simple prediction shown in equation (11)
to describe the two-point correlation functions for such galaxies.
That we are none the less able to achieve a reasonable fit should
serve as a caution against overinterpreting the goodness of fit for the
rest of the sample; the fact that the two-point correlation function
is close to the functional form predicted by KT18 does not, by
itself, confirm that this very simple model is accurately describing
the physical processes giving rise to that correlation function. On
the other hand, the fact that the pipeline returns such a large .o
in itself acts as a warning that we may be looking at a system
that is outside the range of galaxies described by the KT18
model.

Given that NGC 6926 is experiencing an interaction, there are two
plausible explanations for its unusual metallicity fluctuation map.
First, the regions where metallicities are enhanced [A(O/H) > 0]
roughly match the spiral arms. This could indicate that a burst of
the extreme star formation in the arms, triggered by shocks caused
by the tidal effect, has led to a real jump in the metallicity, which
would then be diffused away as the galaxy settles. Secondly, it is also
possible that the map of NGC 6926 simply reflects the failure of our
metallicity diagnostic. The D16 diagnostic is calibrated based on H1I
regions in the Milky Way and similar nearby galaxies, and the H11
regions found in a starburst like NGC 6926 may explore ranges of
dust extinction or ionization parameter beyond those where the model
is reliable. Yet a third possibility, which is likely the explanation for
JO206, is that the large-scale non-axisymmetric metallicity structure
to which our correlation length is responding is a result of ongoing
gas exchange between the disc and gas outside the disc. In the case
of JO206, the disc might be blended with the metal-poor gas in
circumgalactic medium (CGM), while in NGC 6926 there may be
gas exchange between the more metal-rich disc gas and the metal-
poor gas in the dwarf with which the disc is starting to merge. These
interactions could easily produce real metallicity structures that are
correlated on > 10-kpc scales.
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Figure 8. Broad-band images (the Digitized Sky Survey Palomar Sky Survey I red) of NGC 6926 (upper left) and JO206 (lower left), Ha line flux maps
(upper middle and lower middle, respectively), and metallicity fluctuation maps (upper right and lower right, respectively). The red boxes illustrate the MUSE
observation coverage. Since all of them are before deprojection, the longer bar in a cross shows the scale in the direction of the major axis (position angle), and

the shorter bar shows the minor axis.

We caution that we have only examined these are two extreme
cases for evidence of interaction, and we selected them only because
they are extreme outliers. There may be other galaxies experiencing
interactions that do not have significantly enhanced correlation
lengths, or where an enhancement exists but is not large enough
to make the galaxy stand out from the remainder of the sample as
much as NGC 6926 and JO206. The AMUSING++- catalogue does
not provide us with a general method of quantifying which galaxies
are interacting, or the strengths of those interactions. We are therefore
not in a position to make a general statement about the relationship
between galaxy interactions and metallicity correlation lengths. We
can only conclude that a high correlation length might indicate the
action of an external process, not that external interactions always
result in high correlation lengths.

4.3 Effect of varying spatial resolution

In Section 2, we mention that the galaxies in our sample have a wide
range of distances and spatial resolutions. It is therefore important
to investigate the effect of varying spatial resolution, both for this
work and for future studies. In Fig. 9 we reproduce Fig. 6, which
shows the relationship between derived correlation length and stellar
mass, star formation rate, and effective radius. Fig. 9 differs from

Fig. 6 only in that we have subdivided the sample: for each panel
we divide the data on the x-axis (stellar mass, SFR, or R,) into eight
logarithmically spaced bins, running from the smallest to the largest
value in the sample. Within each bin, we further subdivide the sample
into galaxies for which the PSF is smaller than the median in that bin
and those for which it is larger than the median. We show in each
bin the medians and 68 per cent range of correlation lengths of the
galaxies with smaller physical resolutions (blue circles) and larger
ones (red circles); medians and confidence intervals are properly
integrated over the full posterior PDF of correlation length for each
galaxy, i.e. the median we plot is the value such that 50 per cent of
the probability mass summed over all of the galaxies in the bin lies
below it.

If there were a significant bias depending on beam size, we would
expect to find a significant offset between the half of the data with
smaller PSFs and those with larger PSFs. While there is some offset
evident in Fig. 9, it is small — in all cases the 68 per cent ranges of the
small-PSF and large-PSF sub-samples overlap, and in most bins the
median of the large-PSF sub-sample falls within the 68 per cent range
of the small-PSF sub-sample, and vice versa. The offsets between
the two halves of the sample are also small compared to the overall
trend with stellar mass, SFR, or R,. From this test we conclude
that including the effects of the beam in our model (equation 8)
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Figure 9. Same as Fig. 6, but adding a series of circles showing the median correlation lengths in each bin. The light blue circles show the median /¢, of the
galaxies in a bin that have smaller beam PSFs than the median PSF of all the galaxies in the bin, and the light red circles show the median /¢ of the galaxies
which have PSFs larger than the median; we omit bins with fewer than five galaxies. The error bars on the circles show the 16th and 84th percentiles. Note

that the bins used to compute the blue and red points are identical, but for clarity we slightly offset the circles from the bin centres so that the error bars do not

overlap.

removes most of the bias due to the range of physical resolutions.
None the less, the fact that there is an offset between the larger
and smaller spatial resolution sub-samples of order half the size
of the 68 per cent confidence interval suggests that biases resulting
from differing spatial resolution may make a sub-dominant but not
negligible contribution to the vertical scatter in Fig. 6.

4.4 Injection width

Thanks to the high spatial resolution of MUSE IFS, our data set
allows the first ever measurements of the injection width wj,;, which
is theoretically expected to be of the order of ~70 pc. In the context
of the KT18 model, the injection width is the size of the region
into which SNe deposit metals directly, without them needing to be
carried there by diffusion. Independent of this underlying theoretical
picture, the observational manifestation of w;,; is a change in the
shape of the metallicity correlation function associated with a break
in behaviour at intermediate distances: at separations r >> wjy; this
shape is determined by the interacting, diffusing metal fields from
many sources, while for r <« wjy; the correlation function mostly
reflects the correlation of sources with themselves.

In the upper panel of Fig. 10, we report the posterior PDF of wy;
summed over all galaxies, which each galaxy weighted equally. That
is, to construct this plot we have simply made a histogram of the
MCMC walker values of wjy; (discarding the burn-in phase) over all
galaxies, so a single galaxy can contribute to more than one bin, with
its contribution to each bin proportional to the integral of the PDF
over that bin. In the lower panel of Fig. 10, by contrast, we show the
histogram of median values of wj,; for the sample. In both panels,
we add a grey-dashed line illustrating the flat prior (in linear space),
for the sake of comparison. The fact that our posterior PDFs have a
shape nothing like that of the grey-dashed line shows that our results
are far from a simple reflection of the prior, and instead reflect a real
detection of the injection width, not simply upper limits.

As with Fig. 6, in Fig. 11 we report injection width as a function of
M., SFR, and R,. The is little obvious correlation between wj,; and
any of these quantities, as is confirmed by a quantitative evaluation
of the Pearson correlations; these are 0.18 for M,, 0.17 for SFR,
and 0.28 for R,. The fact that these correlations are non-zero most
likely reflects the clear trend in the figure that large values of wijy
are absent for galaxies with small M,, SFR, and R,, i.e. the upper
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Figure 10. Posterior probability density functions for the injection width
Wipn;. In the upper panel, the distribution shown is the average of the posterior
PDFs derived for all galaxies, weighting each galaxy equally, while in the
lower panel we show the distribution of the median values of wjy; derived for
every galaxy. The grey dashed lines in each panel show the shape of our prior
on wjy; for comparison.

left quadrants of Fig. 11 are empty. However, this most likely just
reflects the physical size of the maps: galaxies with R, ~ 1 kpc have
metallicity maps of comparable size, and thus we are unlikely to
measure Wiy larger than a few hundred pc, simply because the entire
map is not that large. Thus we conclude that even the mild correlation
we do see is likely an artefact of finite sizes of the galaxies, rather
than a true detection.

5 DISCUSSION

5.1 Correlation length, SFR, and turbulence

A range of analysis techniques, including the two-point correlation
function and its correlation length (Paper I and this work), the
30 percent correlation scale (Kreckel et al. 2020; Williams et al.
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Figure 11. Injection width versus stellar mass (left), SFR (middle), and R, (right). The Pearson correlations for the distributions shown in each panel are 0.18
(stellar mass), 0.17 (SFR), and 0.28 (R,). As in Fig. 6, large points mark 50th percentile values, with vertical error bars showing the 16th to 84th percentile
range; small point show 86th percentile upper limits for galaxies were we only derive an upper limit.

2022), and the semivariogram and its homogeneity scale (Metha
et al. 2021), broadly agree that the characteristic scale of metallicity
correlations within massive galaxies is ~1 kpc. This consistency from
multiple independent teams, techniques, and resolutions suggests that
this finding is robust. It is therefore of great interest to understand
why galaxy metal fields are correlated at this scale. We consider a
possible explanation from first principles in this section.

The diffusion process in the ISM is essentially a random walk. In
a random walk, the characteristic distance X that a particular metal
atom should travel over a time 7 obeys

(X*) =6kt o £ (v*) . (12)

For a non-turbulent environment, £ is the mean free path and (v?)
is the mean square velocity of the ensemble of particles, but since
the ISM is turbulent, ¢ is described by the scale height /4, which
is approximately the size of the largest turbulent eddies (and is the
characteristic size scale of the energy source driving the turbulence),
and (v?) is the bulk velocity dispersion o;. Karlsson, Bromm &
Bland-Hawthorn (2013) proposed « A ho,/3 and thus

1
leonwr = gh(rgr.

(13)

It is clear that equation (13) has the same mathematical format as
equations (11) and (13) in Paper 1. However, there is a subtlety in
that it is not clear what value one should adopt for the characteristic
time-scale t. The KT18 model proposed that 7 should be the entire
disc formation time-scale t,. However, Metha et al. (2021) and Paper
I find that this choice leads to a predicted correlation length that is too
large compared to observations. (Metha et al. 2021 also point out that
setting T & t, yields an overall variance that is too small). Instead, the
data are best fit if 7 is not as long as the age of the galaxy disc and is
instead closer to metallicity gradient equilibration time-scale T gaq, oq
(Sharda et al. 2021) or the gas depletion time-scale T 4p ~ 2 Gyr (e.g.
Bigiel et al. 2008, 2011; Utomo et al. 2017). This discrepancy might
be due to the fact that the KT18 model is essentially a closed-box
model and does not consider metal-poor gas inflow and the resulting
dilution of ISM metallicity, or gas outflow and its effects on ISM
metallicity. By contrast, Sharda et al. (2021) show that the time
Tgrad.eq Tequired for a galaxy to attain a stable metallicity gradient is
dictated by the balance between centrally concentrated star formation
steepening the gradient (tempered by loss of some of the metals
to galactic winds), and radial inflow, turbulent mixing, and metal

dilution caused by gas inflow flattening it; several of these processes
are necessarily absent in a closed-box model.

We can make this discussion more quantitative by attempting
to estimate the time-scale over which we might expect the metal
content in a galaxy to be ‘reset’ by inflow and outflow, and seeing
if this gives a time-scale t in better agreement with observations.
Peng & Maiolino (2014) propose a model to describe the evolution
of galaxies’ mean metallicities considering star formation and gas
inflow/outflow. They conclude that the time over which the mean
metallicity reaches equilibrium T peaneq is less than or equal to 7 gep,
or more specifically, Tmeaneq = Tdep/(1 — R + 1) where R ~ 0.4
is the mass return fraction from stars in the instantaneous recycling
approximation (Tinsley 1980), and 7 is the mass-loading factor that
describes the ratio of the mass outflow rate M and SFR. If we replace
the star formation time-scale #, in the KT18 model with 7 ~ 7.4 S
Taep» and adopt typical galactic scale heights 7 ~ 150 pc, velocity
dispersions o, ~ 10 km s™! (e.g. Leroy et al. 2008; Walter et al.
2008; Kalberla & Kerp 2009; Levy et al. 2018), and time-scales T &
2.2 Gyr estimated from 7, (e.g. Leroy et al. 2013), we find Lo &~
1 kpc. This approach gives a value for metallicity correlation that is
in rough agreement with what is measured from local data sets.

To make the comparison more quantitative, we can apply the
Krumholz et al. (2018) model for the variation of o, with galaxy
star formation rate, which agrees well with observations. Using their
theoretically predicted relation between o, and SFR (equation 60
for the transport + feedback model), while continuing to adopt
h = 150 pc and toq S Tgep & 2 Gyr, yields a predicted relation
between /., and SFR shown in Fig. 12. For reasonable values
of 7.4, this prediction is consistent with the data at high SFR.
However at low SFR, /., deviates from the model prediction. One
possible explanation is that the considerable mass-loss processes
that commonly occur in dwarf galaxies may lead to an equilibrium
time 7.y < Tgep. The outflow processes leave gas little time to
diffuse before being removed from discs. Indeed, several studies
report the mass-loading factor n is negatively correlated with M,
(e.g. Somerville et al. 2008; Muratov et al. 2015; Chisholm et al.
2017). Considering that a typical mass loading n could be ~10 at M,
~ 10° Mg and SFR 0.1 Mg, yr™!, T¢q could be reduced by a factor
n > R compared to 74,. However, this reduction would need to be
very large to explain the extremely low correlation lengths we find
in some dwarfs, since as the figure shows, even 7oy = 0.1 Gyr still
leads to correlation lengths that are too large for those found in the
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Figure 12. Correlation length /.o, versus star formation rate (the middle panel of Fig. 6). Coloured lines show values of /.o predicted using velocity dispersions
computed from model of Krumholz et al. (2018). The blue, green, and red lines show results for equilibrium time-scales teq = 0.1, 0.5, and 2.0 Gyr, respectively.

lowest SFR galaxies in our sample. This inconsistency could result
from either assumptions made here (e.g. scale heights and velocity
dispersions) or in the assumed model.

5.2 Injection width

We find that typical values of wj, are a few tens of pc (Fig. 10),
consistent with the observed sizes of typical SN remnants (SNRs),
and with the theoretical predictions of KT18. Given that wj,; has
dependencies on the gas velocity dispersion and the number density
of neutral hydrogen in ISM, it is not surprising that the observed
injection width is not a fixed value at ~70 pc. However, there is
a tail of galaxies for which wj,; is one to a few hundred pc, more
characteristic of the sizes of superbubbles (e.g. Tomisaka, Habe &
Ikeuchi 1981) than of individual SNRs (Draine 2011). There is no
obvious difference in bulk properties between these galaxies and
those for which wyy,; is smaller, but given the small total number of
measurements, this could simply be a result of our sample size being
too small to detect correlations.

We find no significant correlation between wj,; and M,, SFR, or
R.. This is perhaps not unexpected since wj,; is a local parameter and
our derived wj,; should only be an estimated ‘overall-averaged’ local
fade-away radius of SNe. In the KT 18 model wj,; should anticorrelate
with atomic hydrogen number density. However, we have no direct
measurements or indirect proxy for such a parameter in this work and
since our sample includes no starbursts, with the possible exception
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of NGC 6926 (M, = 1.63 x 10'"' Mg, SFR = 10.8 Mg, yr™!), the
range of ISM densities spanned by the sample is likely small; this
precludes drawing strong conclusions regarding the injection width.

6 CONCLUSIONS

We apply the two-point correlation function to the maps of galaxy
gas-phase metallicities from the AMUSING++ compilation, a
sample of 532 galaxies observed with MUSE on the VLT. The
combination of instrument and catalogue yields both better spatial
resolution and a much larger sample than previous studies of galactic
metal distributions. We develop a new technique to enhance the S/N
ratio in the data by adaptively binning, in order to compensate for the
large areas of galactic discs where weak emission lines (S II] AA6717,
31) cannot be detected with acceptable S/N in individual pixels. We
then apply the basic analysis pipeline proposed in Paper I and show
that the metallicity correlations are well described using a simple
injection—diffusion model as proposed by KT18.

One key parameter we derive from the model is the correlation
length (/corr), Which describes the characteristic ISM mixing length-
scale. We confirm a correlation between /. and stellar mass, SFR,
and effective radius, first identified in Paper I, and are able to
characterize this correlation with much better statistics thanks to the
improved data quality and data set size available in AMUSING++-.
We also find find a weak trend of increasing /.., with Hubble type.
‘We show that the trends in /.o, With SFR at high SFR can plausibly be
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explained in terms of the Krumholz et al. (2018) transport + feedback
model, with predicts an increase in galaxy velocity dispersion with
SFR. Extending this explanation to the low-SFR regime requires
large mass-loading factors in dwarf galaxies, which are plausible
but not independently predicted by the model. We also identify two
cases in our sample that show very large /.o, and find that in both of
these cases the galaxy in question is interacting or experiencing gas
exchange (e.g. caused from ram pressure). This hints that interactions
may increase l.oy, but determining whether this is true in general
would require a systematic study comparing a sample of interacting
galaxies to a control sample of isolated galaxies; since the selection
function of AMUSING++ is not well-characterized, it is not suitable
for this purpose.

Thanks to the high spatial resolution of MUSE, we are also for the
first time able to constrain the injection width (w;,;), which represents
the size of the initial bubble radius of an SN explosion (since oxygen
is almost purely enriched by type II SNe). A typical wyy, value is
~30 pc, but the distribution ranges broadly from several pc to over a
hundred pc. We find no significant correlation of wj,; with any global
galaxy property. We note that future instruments will allow further
measurements of the metallicity correlations and injection sites for a
wider range of galaxies (e.g. MAVIS: Rigaut et al. 2020; GMTIFS:
McGregor et al. 2012).

In future work we intend to apply this statistical tool to simulated
galaxies. This will help address the question of how two-point
correlation functions evolve with cosmic time, and whether they
are equilibrium or non-equilibrium characteristics of galaxies. We
will compare the predicted correlation functions to measured ones,
and thereby ask how well simulations are describing the processes
of metal transport.

Another potential application of our technique is to compare the
two-point correlation functions of nitrogen and oxygen, and in par-
ticular to examine their injection widths. Since these elements have
different nucleosynthetic sources, they should have substantially
different correlation functions, at least at the small scales that are
sensitive to the injection width. Nitrogen enhancement is due to
deaths of both low-mass stars and SNe, whereas oxygen is purely
enriched by the latter. Since nitrogen and oxygen are embedded
in the same ISM but have different enrichment sources, nitrogen
distributions are expected to possess different two-point correlations
with smaller injection widths. Performing this experiment requires
access to lines that make it possible to measure N and O abundances
independently. The SIGNALS survey (Rousseau-Nepton et al. 2019)
is a good candidate for this purpose thanks to its spatial resolution
and wavelength coverage.
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APPENDIX A: IMAGE QUALITY OF
AMUSING++ GALAXIES

An accurate estimate of the observational PSF is required for
our analysis pipeline to derive an accurate estimate of the metal
injection width. Such an estimate is not immediately available for
the AMUSING++ compilation, which is assembled from hetero-
geneous observations made under a range of observing conditions
(sometimes including multiple observations of the same field made
with very different seeing), and does not provide overall image
quality estimate based on fits to point sources in the FoV; indeed,
many of the FoVs lack suitable sources.

To estimate the PSF for our pipeline, we start by retrieving the
slow-guiding-system (SGS) FWHM and linear fit-delivered seeing
FWHM from the telescope image analysis (TEL IA FWHMLI-
NOBS), for every observation of every target in the sample. Of
these two, the SGS FWHM is the more accurate estimate of the
seeing for MUSE, since this system observes the PSF as the science
instrument in essentially the same part of the sky. In contrast, TEL
IA FWHMLINOBS reflects measurements made by the active optics
system, and thus derives from the PSF seen by the telescope but
not the telescope+instrument. However, SGS measurements are not
available for all AMUSING++ science observations, because not
all FoVs contain a bright star suitable for SGS PSF measurement.
We therefore use SGS FWHM measurements where available, and
those from TEL IA FWHMLINOBS otherwise. When we must rely
on the latter source, we correct for systematic offsets between it and
the more accurate SGS measurement. Fig. A1 shows SGS FWHM
versus TEL IA FWHMLINOBS measurements for each frame in
AMUSING++. We perform a basic linear least-squares fit between
the two sets of measurements, the results of which are shown in
the figure, and use this fit to convert the TEL IA FWHMLINOBS
measurements to SGS FWHM.

There remains the question of how to assign an overall FWHM
to the PSF of an observation that is a sum of multiple independent
MUSE data frames, all of the same depth, but taken with different
PSFs. For this purpose, we note that the dispersions of normal
distributions average in quadrature, i.e. given a series of / normal dis-
tributions N(x, o) centred on x = 0 but with different dispersions o,
then the function F = 1! Zi’:l N (0, 0;) that is the average of these
distributions has a variance given by 02 = "' (62 + 0 +...07).
For this reason, we take the FWHM of an AMUSING++ image
to be the root mean square of the FWHMs of the individual data
frames from which it is assembled. Our pipeline also requires an
uncertainty on this estimate, for the purposes of defining a prior
on the PSF FWHM. We take this to be the standard deviation of
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Figure A1. SGS FWHM versus TEL IA FWHMLINOBS for each frame
in the AMUSING++ compilation. The black solid line is the linear least
squares fit to the data, the functional form for which is shown in the legend,
while the grey dashed line is the 1—1 line.

the individual frame estimates. Thus, our final expression for the

probability distribution of the FWHM for an AMUSING++ galaxy
image is p(FWHM) = N(FWHM,, FWHMyy), where

FWHM,

1< )
7 > FWHM;
i=1

1 I
FWHMqq = 4| Z(FWHM,- — FWHM,)2 (AD)

i=1

are the root mean square and standard deviation of the PSF measure-
ments FWHM,; for the / individual frames from which it is assembled.

APPENDIX B: IONIZATION PARAMETERS IN
THE D16 METALLICITY DIAGNOSTIC

As discussed in the main text and suggested by Kewley et al.
(2019), in principle our metallicities derived from the D16 di-
agnostic could be improved by making an independent estimate
of the ionization parameter log (U) using strong emission lines
in MUSE. For optical data, the two diagnostics O32 and S32
are commonly used for this purpose. However, O32 uses the line
ratio [O 1] A5007/[O 1] AA3727, 9, and the lines appearing in the
denominator are outside MUSE’s wavelength coverage for nearby
galaxies. S32 stands for ([S 111] A9069 + [S111] A9531)/[S 1] AA6717,
31, and [Sur] 19531 is also outside MUSE’s wavelength range.
However, it could be estimated using a constant ratio 2.47 between
[S 1] 29531 and [S 111] 19069 (which is within the MUSE window)
as suggested both theoretically (Vilchez & Esteban 1996; Hudson,
Ramsbottom & Scott 2012) and implemented in PYNEB (Luridiana,
Morisset & Shaw 2015). By adopting this ratio, one could estimate
both metallicity and ionization parameter at the same time using
an iterative process (e.g. Kewley & Dopita 2002). However, after
experimenting with this approach using both S32 maps or a single
median value for each galactic field, we find that the typical S32
value is below 0. This finding is consistent with fig. 3 of Kreckel et al.

(2019). Such a value corresponds to an unphysically low log (U) <
—3.5 and suggests that either the S32 diagnostic is failing for some
reason, or that the assumed ratio of 2.47 for [S 1] A9531/[S 111] 29069
is not correct. Given the lines available in the MUSE wavelength
range, it is not possible to decide between these possibilities, and
other strong line calibrations of log (U) that can be computed from
MUSE-accessible lines disagree with one another at the order of
magnitude level (Dors et al. 2011). For this reason, in this work we
do not report any ionization parameters, and adopt the original D16
metallicity diagnostic without ionization parameter corrections.

APPENDIX C: PIPELINE VALIDATION TESTS

In this appendix, we describe a series of validation tests we have
performed on our pipeline. These tests are to verify that our results are
not sensitive to the parameter choices that must be made, to search for
spurious correlations that might indicate artificial resolution effects,
and to check that our results are reproducible when details of the
observations themselves are changed. We describe each of these
tests below.

C1 Choice of metallicity diagnostic

Our first test, repeating one performed in Paper I, is to compare
our results derived using the D16 diagnostic to those derived
from two other diagnostics, PPN2 and PPO3N2 (Pettini & Pagel
2004), in order to ensure that are results are not dominated by
systematic errors induced by the diagnostic. We derive metallicities
from these two diagnostics and the rerun our full pipeline on the
resulting metallicity maps. The results are shown in Fig. C1. The
corresponding Pearson correlation values for the diagnostic pairs
PPN2-PPO3N2 (0.65), PPN2-D16 (0.78), and PPO3N2-D16 (0.62)
confirm that the correlation lengths derived from different diagnostics
show reasonable consistency.

Pearson correlation is 0.65 .~

leorr [PPO3N2] (kpc)

107t 10° 10!

Pearson correlation is 0.62

10t

10°

leorr [D16] (kpc)

107t

107t 10° 10! 107t 10° 10!
lcorr [PPN2] (kpc) lcorr [PPO3N2] (kpc)

Figure C1. Comparison of correlation length derived using three possible
pairs of diagnostics: D16 (our fiducial choice), PPN2, and PPO3N2. Circles
show the 50th percentile values for each galaxy, and error bars show the
16th—84th percentile range.
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Figure C2. Comparison of correlation length derived using S/N = 3 versus
S/N = 2. Circles show the 50th percentile values for each galaxy, and error
bars show the 16th—-84th percentile range. The diagonal grey dashed line
shows the 1-1 line.
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Figure C3. Comparison of correlation length derived using gop = 0.13
(moderately thick discs) versus go = 0.35 (very thick discs). Circles show
the 50th percentile values for each galaxy, and error bars show the 16th—84th
percentile range.
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Figure C4. The two-point correlation functions of an original noise map (the
blue band) and a binned noise map (the red band) for NGC 7674.
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Figure CS5. The angular correlation length as a function of the angular
semimajor axis of the telescope beam projected on to the face of the galaxy.
The grey dashed line is the 1—1 line.

C2 Signal-to-noise ratio

As discussed in Section 3.1, our adaptive binning reconstruction
method requires that we choose a target S/N ratio and we adopt a
minimum S/N of 3 for all analysis presented in the main text. This is
a natural choice given that the S/N is not a significant bottleneck in
recovering the low quality data using the adaptive binning algorithm.
To verify that our results are not sensitive to this choice, we rerun our
analysis pipeline using a target S/N ratio of 2 instead. Fig. C2 shows
a comparison of /., derived using the two different S/N values.
The results derived using the two S/N cuts cluster tightly around the
1—1 line. Quantitatively, the Pearson correlation between the 50th
percentile values for the two sets of results is 0.98. This shows that
changing the target S/N does not significantly influence the value of
leorr We derive.

C3 Intrinsic galaxy aspect ratio g,

As discussed in Section 3.2, deprojecting galaxy images requires
an estimate of the intrinsic axial ratio ¢ in the original image. For
all the analyses presented in the main text, we adopt go = 0.13, a
generally adopted value of moderate disc thickness. Given that our
samples include various Hubble types (from SO to I); however, it is
important that we check if our derived values of /., depend on g,
since it is possible that the intrinsic thicknesses of the galaxies in our
sample vary systematically. Fig. C3 shows the comparison of /o
derived using our fiducial choice gy = 0.13, and values derived from
the same pipeline but assuming gy = 0.35, corresponding to a much
thicker disc. The figure shows that changing g, does not significantly
influence I, ; the Pearson correlation between the data sets derived
using the two different gy values is 0.96. Thus, we adopt a fixed gy =
0.13 in our analysis.

C4 Effect of adaptive binning on the two-point correlation
function

As discussed in Paper I and KTI8, the finite resolution of an
observation will induce an apparent correlation even in a completely
uncorrelated map of noise. Measured two-point correlations are
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Figure C6. He line flux maps of IC5179 (Observation 1: IC + 5179, upper left; Observation 2: target_S_centre, lower left), NGC 2466 (Observation 1:
SN2016iye, upper middle; Observation 2: ASASSN14dd_1, lower middle), and NGC 3318 (Observation 1: SN2000cl, upper right; Observation 2: SN2017ahn,
lower right). In all panels, x =y = 0 corresponds to the centre of the galaxy. The full coverage of Observation 1 is indicated using a red box and Observation 2
a blue box. The red boxes in the lower panels are identical to those in the upper panels, and for the purpose of illuminating the intersection regions. The cross
scales are the same as Fig. 8. The PSF of each observation is indicated in each panel.

significant only to the extent that they are well above the floor induced
by this effect. Our adaptive binning algorithm could in principle
introduce additional spurious correlations on top of the telescope
beam effect, and it is therefore important to characterize the extent
to which it does so.

We perform this test on NGC 7674, which is fairly typical in terms
of mass [log (M,/My) = 11.39] and SFR [log (SFR/M,, yr~!) =
1.14] in our sample, but is one of the more distant galaxies (D =
117.93 Mpc) and thus the most strongly affected by beam smearing.
For this galaxy, we construct a pure, uncorrelated noise map with the
same resolution as the real map, and set the metallicity fluctuation
in each pixel to a Gaussian random value with zero mean and unit
variance. We then convolve the noise map with a Gaussian beam with
the same FWHM that NGC 7674 has and apply the same pixel mask
as for the original map. We then compute the two-point correlation
function of the noise map using the same pipeline we apply to the real
map, but without the adaptive binning step. We repeat this procedure
50 times and measure the mean and standard deviation of the resulting
correlations. We plot the mean and a range of one standard deviation
around it as the blue band in Fig. C4. This represents the noise
imposed simply by the telescope beam.

To check the effects of the adaptive binning algorithm, we use
the same procedure, except that after convolution of the noise map
with the telescope beam, we adaptively bin the map. We do so using
the same adaptive binning as we used for the actual NGC 7674
observations, and apply the same pixel mask as for the binned map.
Thus, we have a reconstructed noise map. We then derive the two-

point correlation function as before, again repeating the procedure
50 times and computing the mean and standard deviation. We plot
these as the red band in Fig. C4.

Comparison of the red and blue bands clearly indicates that
adaptive binning only very slightly increases the correlation floor.
Quantitatively, applying our parametric fitting pipeline to the data
shown by the red and blue bands results in values of /.o and wjy; that
are both close to zero, and with means that differ between the two
cases by <25 pc. For comparison, our best-fitting values of /.. are
almost always much larger than 25 pc, which suggests that adaptive
binning has no significant effects on our estimates of it. By contrast,
our estimates of wj,; are not necessarily very large compared to this
value, which is why we derive wj,;j from maps that is original and
have not been adaptively binned.

CS5 Artificial correlations due to distance-dependent spatial
resolution

Our next test, which we reproduce from Paper I, checks for spurious
correlations induced by the fact that the physical size of the
telescope beam, projected on the galaxy, is a function of galactic
distance. This provides an additional check, supplementary to that in
Section 4.3, as to whether the correlation lengths we are measuring
are robust as opposed to being an artefact of the finite resolution
of the observations: if they are real, there should be no systematic
relationship between beam size and measured correlation length,
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Figure C7. Comparison of correlation lengths of the same galaxy derived
using two separate observations. Triangles, squares, and pentagons show
IC5179, NGC 2466, and NGC 3318, respectively. Open markers show the
50th percentile values of /.o for the original FoV, and closed markers show
the overlapped FoV. The grey and light grey bands show the 25 and 50 per cent
difference range from the dashed 1—1 line. In some cases, the common area
between two observations is Observation 1 itself (see Fig. C6), so loorr does
not move horizontally along the x-axis. Error bars showing the 16th—84th
percentile range are not included, since they are smaller than the plot symbols
and will not be visible.

while if they are spurious there should be such a correlation. For the
purpose of this test, we define the projection-corrected angular beam
size to be

Abeam = 222 (@)
cosi
and the angular correlation length to be
lCOIT
Acorr = ——, C2
D (C2)

where o peam . 1 the angular beam size from the posteriors and cos i
is computed from equation (4). We show Ao as a function of
Abeam 10 Fig. C5. Visual inspection shows no evidence of significant
correlation, and the Pearson correlation of —0.17 that we find from
the data is consistent with this visual impression. This test suggests
that the correlations lengths we measure are real measurements, and
are not simply artefacts of the spatial resolution of the maps.

C6 Repeated observations

Our final test of the robustness of our pipeline is to take advantage of
the AMUSING++ compilation, which collects all the galaxies ob-
served by MUSE. As aresult, it contains three galaxies that were ob-
served twice and tagged with different names. They are IC5179 (Ob-
servation 1: IC + 5179, Observation 2: target_5_centre), NGC 2466
(Observation 1: SN2016iye, Observation 2: ASASSN14dd_1), and
NGC 3318 (Observation 1: SN2000cl, Observation 2: SN2017ahn).
Their H o« maps are shown in Fig. C6.
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Because the motivations for the two observations were different,
the two observations differ not just in the orientation of the galaxy
in the field of view, but also in which part of the galaxy is captured
within the FoV (in some cases the full coverage is segmented by

multiple FoVs), in the depth of the observation, and in the seeing
conditions. This provides a unique opportunity to test the robustness

of our analysis. We do so by processing the paired observations
independently through our pipeline. We do this in two ways. First,
we simply analyse each observation separately, as if it were not part
of a pair. The advantage of this is that, since the fields of view are
not exactly the same, this tests the robustness of our analysis against
differences in what part of the target galaxy is captured within the
field of view. The disadvantage of this approach is that it is possible
that there is a real difference in correlation lengths between the parts
of the galaxy captured by the two fields, and thus even if our pipeline
produces different answers for the two fields, it might be detecting a
real difference. For this reason, we also perform a second comparison
in which we crop the fields of view of both observations to include
only the region where they overlap, and we are therefore analysing
images of the same patch of the galaxy, but observed with different
depth and seeing.

We show a scatter plot of [y versus I, in Fig. C7, taking
Observation 1 as x-axis and Observation 2 y-axis; open symbols show
the analysis using the original field of view, while filled symbols show
the results using only the overlapping parts of the field of view. We
find good agreement, with all three cases using overlapping fields
of view falling within & 25 per cent of the 1—1 line. As expected,
comparison between open (original FoV) and closed (overlapped
FoV) markers demonstrates that /.., from the overlapping fields is
closer to the 1—1 line than in the cases when the fields differ, but
the difference is relatively small. In either case, this test provides
confidence regarding our whole pipeline.

These data also provide an opportunity to explore the importance
of our adaptive binning algorithm to increase spatial coverage.
To demonstrate this, we focus on the comparison of IC + 5179
and target_5_centre (left-hand panel of Fig. C6), since these two
observations have relatively similar fields of view, and differ mainly
in their depth and thus the amount of binning required for them.
Due to the greater depth of the IC+5179, we find that applying
our adaptive binning algorithm to it increase the number of usable
pixels (i.e. those with SNR above 3) by only 6 per cent, while for
target_5_centre the increase is 40 per cent. If we calculate correlation
lengths on the binned and un-binned versions of the IC + 5179
map, we recover 50th percentile correlation lengths of 2.9 and
2.6 kpc, while doing the same for target_S_centre yields values of
2.4 and 1.3 kpc for the binned and un-binned maps. Thus, we see
that binning does not substantially change the correlation length
when the data are of high quality, and that the results for binned
lower quality data are also consistent with those derived from the
higher quality data (= 10 per cent difference). By contrast, if we
do not bin the lower quality data, the results differ by a factor of
~2.
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