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Abstract

All stars produce explosive surface events such as flares and coronal mass ejections. These events are driven by the
release of energy stored in coronal magnetic fields, generated by the stellar dynamo. However, it remains unclear if
the energy deposition in the magnetic fields is driven by direct or alternating currents. Recently, we presented
observational measurements of the flare intensity distributions for a sample of ∼105 stars across the main sequence
observed by TESS, all of which exhibited power-law distributions similar to those observed in the Sun, albeit with
varying slopes. Here we investigate the mechanisms required to produce such a distribution of flaring events via
direct current energy deposition, in which coronal magnetic fields braid, reconnect, and produce flares. We adopt a
topological model for this process, which produces a power-law distribution of energetic flaring events. We expand
this model to include the Coriolis effect, which we demonstrate produces a shallower distribution of flare energies
in stars that rotate more rapidly (corresponding to a weaker decline in occurrence rates toward increasing flare
energies). We present tentative evidence for the predicted rotation-power-law index correlation in the observations.
We advocate for future observations of stellar flares that would improve our measurements of the power-law
exponents, and yield key insights into the underlying dynamo mechanisms that underpin the self-similar flare
intensity distributions.

Unified Astronomy Thesaurus concepts: Emerging flux tubes (458); Solar dynamo (2001); Solar magnetic
reconnection (1504); Optical flares (1166)

1. Introduction

Since the first recorded observation of a Solar superflare in
1859 by Carrington (1859), the mechanisms driving explosive
flaring in stars have been the subject of detailed inquiry from
plasma physicists and astronomers alike. The origin of flares is
closely related to the still-open problem of what mechanism is
responsible for heating the Solar corona (Withbroe &
Noyes 1977). In the working picture that has emerged
since 1859, it has become clear that magnetic fields are an
important component of the heating (Parker 1989; Golub &
Pasachoff 1997; Schrijver & Zwaan 2000). The concentration
and twisting of magnetic field lines can lead to the release of
energy via the process of magnetic reconnection in flaring
events (Sturrock et al. 1984; Kulsrud 1998; Priest &
Forbes 2000). In this study, we are interested in understanding
the role of the Coriolis force in the dynamo of other stars, and
to accomplish this we apply theoretical insights about the

heating of the Solar corona and the energy mechanisms driving
Solar flares to other stars.
The role of the Coriolis force in the Solar dynamo produces

observational signatures in the inclination, twist, and location
of coronal loops and active regions. Loops tend to be inclined
with respect to the latitudinal line (Hale et al. 1919; Choudhuri
& Gilman 1987; Choudhuri & D’Silva 1990; D’Silva &
Choudhuri 1993; Howard 1993; Longcope & Fisher 1996;
Longcope et al. 1998; Weber et al. 2011, 2013). Magnetic
fields in active regions tend to twist in the opposite direction in
the Northern and Southern hemispheres (Seehafer 1990;
Pevtsov et al. 1995; Abramenko et al. 1997; Bao & Zhang
1998; Longcope & Welsch 2000; Longcope & Pevtsov 2003;
Seligman et al. 2014; Manek et al. 2018; Manek &
Brummell 2021). Faster rotating sunspots are more likely to
be toward the equator and slower rotating spots toward the pole
(D’Silva & Howard 1995). Stars spin down as they age (Noyes
et al. 1984; Soderblom 2010; Notsu et al. 2013; Candelaresi
et al. 2014; Doyle et al. 2018, 2019; Ilin et al. 2019; Doyle
et al. 2020). Recent work has considered the role of the Coriolis
force in the dynamo of other stars with different rotation
rates (Solanki et al. 2006; Holzwarth 2007; Parker 2009;
Rempel 2011; Kitchatinov & Olemskoy 2015; Browning et al.
2016; Weber & Browning 2016). In this paper we consider an
additional signature of the Coriolis force: its impact on the
distribution of flares.
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Observations at different wavelengths have demonstrated
that the distribution of peak intensity of Solar flares follow
power laws (Drake 1971; Datlowe et al. 1974; Lin et al. 1984;
Dennis 1985), where

~ a- ( )dN

dE
E , 1

and N is the number of flares, E is the total energy released in
the flare (where the flare magnitude µm Elog ), and the
power-law exponent falls roughly in the range of α∼ 1.25–1.5.
Wheatland (2000) found that typical flare frequency distribu-
tion (FFD) indices did not vary for individual active regions on
the Sun. However, it is important to note that converting from
the intensity to energy requires assumptions about the geometry
and physical conditions of the flaring region, the mechanisms
producing extremely energetic photons (Lee et al. 1993; Brown
et al. 1998), and the flare height as a function of amplitude
(Mitra-Kraev & Benz 2001).

A useful parameter to describe the potential mechanisms
driving coronal heating and the coupling of the convective
interior and the corona is the plasma β parameter,

b = ( )c

v
2 , 2s

A

2

2

where cs is the speed of sound and vA is the Alfvén speed.
When β> 1 acoustic modes dominate the dynamics and
transport of energy, and when β< 1 Alfvénic modes dominate.
This is useful for identifying the importance of electrodynamic
coupling relative to mechanical coupling between the inner and
outer atmosphere of the Sun. The electrodynamic coupling will
dominate if β< 1 in the outer atmosphere and β∼ 1 in the
inner atmosphere, where mechanical dynamics such as
convection or differential rotation can couple to Alfvénic
perturbations in the corona and drive the heating (Ionson 1985).
This is generally believed to be the case for the Sun, and
similarly for other stars.

Two broad mechanisms that have been proposed to explain
the heating of the Solar corona (Withbroe & Noyes 1977) are
direct current (DC) and alternating current (AC). Magnetic
stress or DC heating dominates when large scale subsurface
fluid motions have timescales that are much longer than the
Alfvénic coronal crossing timescale, τA= Lc/vA (where Lc is
the radial extent of the corona) (Ionson 1982), while AC
heating dominates in the opposite limit.

The fundamental idea behind DC models originates in the
work of Parker (1972), who demonstrated that a large scale
magnetic field could not be in hydrostatic equilibrium if field
lines were topologically braided or knotted. The nonexistence
of an equilibrium is robust to any pressure perturbations
applied along the field line. Parker concluded that braided or
knotted flux tubes produce rapid dissipation and merging of
field lines into a one-dimensional topology. Parker (1983)
connected this simple model to heating of the Solar corona via
DC currents, whereby slow random walks in the footpoint
positions generate magnetic braids that must reconnect and
release energy. This braiding mechanism for heating of the
Solar corona was extended by many authors (Mikic et al. 1989;
Berger 1993; Longcope & Sudan 1994; Parker 1994; Galsgaard
& Nordlund 1996; Berger & Asgari-Targhi 2009; Berger et al.
2015).

In the DC regime, a simplified view is that reconnection is
triggered when the angle, θ, between neighboring magnetic
field vectors is greater than a critical angle θc, which may
trigger smaller events in neighboring field lines (Sturrock et al.
1984; Porter et al. 1987; Parker 1988; Sturrock et al. 1990;
Berger 1993; Krucker & Benz 2000), sometimes referred to as
nanoflares. These were recently observed by Antolin et al.
(2021), who verified that these could be explained as
reconnection events at small angles. Parker (1988) conjectured
that θc∼ 30°, although Dahlburg et al. (2005) argued that
θc∼ 45° with a more detailed analysis that included secondary
instability. It is important to note, however, that models of
coronal heating such as that presented by van Ballegooijen
(1986) required reconnection events even at small θc in a
cascade of magnetic energy transport. This model was
furthered by Cargill (1994), who presented a model of an
active region as hundreds of small elemental flux loops
randomly heated by nanoflares. In any case, when θ< θc,
magnetic reconnection proceeds slowly, and magnetic energy
is deposited in the form of braided fields quadratically in time
(Parker 1983; Moffatt & Tsinober 1990; Berger 1993). The
combination of twisting and braiding of field lines could
explain the flare frequency spectrum observed in active regions
(Zirker & Cleveland 1993a, 1993b).
For AC models, the timescale of the footpoint motions is of

order or shorter than the coronal crossing timescale, so
footpoint motions excite Alfvénic modes that travel back and
forth along coronal magnetic field lines (van Ballegooijen et al.
2011; Asgari-Targhi & van Ballegooijen 2012; Asgari-Targhi
et al. 2013; van Ballegooijen et al. 2014). This regime is driven
by smaller scale surface convection mechanisms (Ionson 1985).
Asgari-Targhi et al. (2014) demonstrated that the AC model
was consistent with observations of nonthermal widths of
coronal emission of Fe XII, Fe XIII, Fe XV, and Fe XVI from the
Extreme-ultraviolet Imaging Spectrometer on board the Hinode
spacecraft. However, it is not clear that AC models can explain
the existence of exceptionally hot >5 MK coronal loops
(Asgari-Targhi et al. 2015), and it has been speculated that DC
events are important there.
The heating of the Solar corona has been linked to the theory

of self-organized criticality (Bak et al. 1987, 1988), which
describes dissipative dynamical systems that remain in a critical
state with no intrinsic length or timescale. The theory requires a
local instability mechanism that can trigger neighboring
instabilities. This avalanching mechanism produces energetic
events at all length scales (Kadanoff et al. 1989; Babcock &
Westervelt 1990). Applications of the theory have been
hypothesized in turbulence, percolation systems (Turcotte 1999),
neuroscience (Ribeiro et al. 2010; Hesse & Gross 2014),
landslides (Bak et al. 1990; Turcotte et al. 2002), atmospheric
dynamics (Grieger 1992; Andrade et al. 1998), astrophysical
accretion disks (Dendy et al. 1998), traffic patterns (Nagel &
Herrmann 1993), evolution (Bak & Sneppen 1993), extinction
events (Newman 1996), financial markets (Bak et al. 1997),
earthquakes (Gutenberg & Richter 1956; Bak & Tang 1989;
Carlson & Langer 1989; Sornette & Sornette 1989; Olami et al.
1992), and Conway’s Game of Life (Bak et al. 1989). Lu &
Hamilton (1991) proposed that the Solar coronal magnetic field
is also in a self-organized critical state to explain the power law
observed in the magnitude of Solar flares (Crosby et al. 1993; Lu
et al. 1993; Aschwanden et al. 1998; Charbonneau et al. 2001;
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de Arcangelis et al. 2006). This approach has been powerful in
prediction of extreme flares (Morales & Santos 2020).

In the DC picture of coronal heating, the slow build-up
of braided fields provides all of the requisites for a self-
organized critical system. Twisted coronal fields are
generated via dynamo mechanisms in the fluid-dominated
interior (Charbonneau 2010), via convective and Coriolis-
driven vortical subsurface plasma flows (Parker 1955;
Moffatt 1978; Longcope et al. 1998; Seligman et al. 2014).
Prior & MacTaggart (2016) suggested that active Solar regions
could be formed via the injection of rising magnetic field
topologies that were only braided, and not twisted. MacTaggart
et al. (2021) demonstrated numerically that active regions are
created by the emergence of a large flux tube of pre-twisted
magnetic fields by examining the evolution of the topological
quantity magnetic winding in the emergence of active regions.
Berger & Asgari-Targhi (2009) and Berger et al. (2015)
demonstrated that a topological model that included braiding
and reconnection of coronal fields exhibited power-law
distributions of energetic events.

It is important to note that while there exist physical
connections between DC heating models and self-organized
criticality, the theory is not the only way to create a power-law
distribution of energetic events (Rosner & Vaiana 1978;
Litvinenko 1996). For example, Newman & Sneppen (1996)
demonstrated a dynamical system driven by coherent noise
could arrive at a similar stationary state characterized by
power-law distributions of avalanches, but without maintaining
the critical state. MHD turbulence invoked in the AC regime
can produce flare-like energy occurrence distributions without
relying on the theory of self-organized criticality (Longcope &
Sudan 1994; Einaudi et al. 1996; Galsgaard & Nordlund 1996;
Dmitruk & Gómez 1997; Galtier & Pouquet 1998; Georgoulis
et al. 1998; Einaudi & Velli 1999; Galtier 1999).

To date, most studies of heating and flaring mechanisms
have focused on the Sun. While this is obviously the system for
which we can obtain the richest and highest-quality data, it
remains a sample of one. Studies of flaring in other stars can
therefore offer a unique and valuable perspective. Flare-like
X-ray emissions from other stars exhibit power-law energy
distributions with similar indices to those seen in the Sun
(Shakhovskaia 1989; Osten & Brown 1999; Audard et al.
2000). Aschwanden & Güdel (2021) found a power-law
dependence of energies for optical flares observed with Kepler
(Davenport 2016). The TESS mission provided 2 minute
cadence light curves for ∼200,000 stars, which allowed for the
identification of a statistically significant sample of flaring
events (Günther et al. 2020). Feinstein et al. (2022) demon-
strated that the these flares follow a power-law distribution of
intensity (with slopes α′≈ 0.9–1.5) for all main-sequence
stars.11 These newly measured values are close to the median of
previously measured slopes (Figure 3 in Shibayama et al. 2013;
Howard et al. 2019; Ilin et al. 2019; Lin et al. 2019; Yang &
Liu 2019; Feinstein et al. 2020b; Günther et al. 2020; Raetz
et al. 2020; Aschwanden & Güdel 2021; Feinstein et al. 2022;
Ilin et al. 2021). In this paper, we attempt to interpret these
power-law distributions under the framework of the DC heating
mechanism.

This paper is organized as follows. In Section 2, we review
the DC braiding model of reconnection events presented by

Berger & Asgari-Targhi (2009) and Berger et al. (2015). We
expand the braiding model to include a Coriolis-driven bias in
handedness of braids injected, and calculate the resulting
distributions of energetic events. In Section 3, we present
observations of flare frequency distributions (FFDs) for slow
and fast rotating stars, and show that they are consistent with
the analytic predictions. In Section 4, we conclude and outline
future observational and theoretical work.

2. Generalized Topological Braiding Model

Reconnection is at its base a phenomenon whereby
(anomalous) resistivity dissipates the currents that sustain
magnetic fields in a plasma, leading to a violation of flux
freezing and allowing rearrangement of the magnetic topology.
Regions where reconnection occurs must have a current
flowing through them (since otherwise there would be nothing
to dissipate), and thus necessarily have

 
 ´ ¹∣ ∣ ( )B 0. 3

This result follows from consideration of Ampére’s Law,

   
p ´ = +

¶
¶

⎜ ⎟
⎛
⎝

⎞
⎠

( )B
c

J
E

t

1
4 . 4

In a plasma that is overall electrically neutral, the electric field
in the rest frame vanishes,


=∣ ∣E 0, so that


¶ ¶ =E t 0. It is

worth noting that in non-inertial frames,
  
= ´E B V c, where

V is the plasma velocity and c is the speed of light. However,
¶ ¶E t 1, because in a non-relativistic plasma,


∣ ∣V c 1.

The presence of a current,


¹∣ ∣J 0, thus implies a non-
vanishing curl in the magnetic field,

 
 ´ ¹∣ ∣B 0. This

condition, in turn, implies that the reconnection rate—and the
flaring rate—must be connected to the distribution of the curl of
the magnetic field. This insight motivates the analysis that
follows.
In this section, we review the braiding model for DC coronal

heating via reconnection events presented in Berger & Asgari-
Targhi (2009) and further developed in Berger et al. (2015).
We then generalize the braiding model to include a Coriolis-
induced handedness bias. Before we begin, it is worth noting
that other authors have investigated the role of helicity and
braiding in active regions and found that both are important for
supplying energy to the corona (Longcope et al. 2007; Liu et al.
2014).

2.1. Estimate of Free Magnetic Energy

We consider a small patch of a stellar atmosphere. We define
height along the ẑ direction, defined such that z= 0 is the base
of the fields and z= L represents some radial extent into the
corona. At z= 0, which is nominally at the photosphere,
although the exact position is irrelevant, subsurface convection
provides stochastic forcing of the position for the magnetic flux
tubes.
As was introduced in Section 2 of Berger & Asgari-Targhi

(2009), we consider a braid consisting of N flux tubes or
magnetic field lines that permeate the volume. The set of flux
tubes is characterized by the number of crossing points, C, at
which magnetic flux tubes cross. Each flux tube has a number

11 a¢ indicates the slope analogous to α in Equation (1), for the normalized
intensity distribution.
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of crossings, nC, on average, given by

= ⎛
⎝

⎞
⎠

( )n
C

N

2
, 5C

so the typical height between crossing junctures is

d = ( )z
L

n
, 6

C

as was demonstrated in Equation (1) of Berger & Asgari-Targhi
(2009). Let D be the typical diameter of a flux tube. Note that
this quantity is related to typical separations between magnetic
field lines, and is given by the resistivity of the ambient
medium. If two of the tubes wrap around each other between
heights of z and z+ δz, the distance that they travel in the
horizontal direction is roughly δℓ= πD/2. Therefore the ratio
between the perpendicular and parallel components of the
magnetic field with respect to the radial direction, B⊥ and B∥, is
approximately given by



d
d

p
~ ~^

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )ℓ

z

B

B

D

NL
C. 7

This step is important because it demonstrates that the
perpendicular magnetic field is directly proportional to the
number of crossings in a flux tube. Berger (1993) demonstrated
that the free magnetic energy density is proportional to the
square of the perpendicular or transverse magnetic field, so that
the free energy per unit volume of the braided field obeys the
scaling

µ ( )E C , 8Free
2

as given by Equation (5) of Berger & Asgari-Targhi (2009).

2.2. Evolution to Equilibrium

Berger & Asgari-Targhi (2009) considered a topological
model of the braiding of flux tubes to explain the distribution of
energy in reconnection events observed in the Solar corona. In
the model, there are two defining topological quantities for a
nest of individual magnetic flux tubes. The first is the winding
number w of an individual sequence describing the braiding of
two flux tubes around each other. This quantity encodes both
the number of crossings, where |w|= C, and the handedness of
the braiding itself. An interchange represents a region where a
third flux tube crosses one of the two original flux tubes, and is
inserted into the original braiding strand. These interchanges
are the sites of reconnection events.
In Figure 1, we present a schematic diagram of the

topological model, similar to Figure 4 in Berger & Asgari-
Targhi (2009). The left-hand side shows a braid consisting of
two sequences and one interchange. The primary flux tube is
shown in red, and takes part in both of the sequences. The blue
flux tube is braided around the red flux tube from the base
where z= 0, and these two create a sequence with w1=−4, of
negative handedness. Above the sequence, the blue flux tube is
removed from the braid in an interchange with the yellow flux
tube. The yellow flux tube then creates a sequence where
w2=+4 with the red flux tube above the interchange, of
positive handedness.
Berger & Asgari-Targhi (2009) considered a model in which

the coronal magnetic field consisted of many of these types of
braided flux tubes, nested together. The defining feature of the
model is that a reconnection event is modeled as the removal of
an interchange. This process is demonstrated in the middle
portion of Figure 1, where the interchange is removed and the
blue and yellow flux tubes merge on the right-hand side. After
the removal of the interchange, the two sequences above and

Figure 1. Schematic diagram of three braided flux tubes that cause an incoherent reconnection event—resulting in the merging of opposite signed sequences—that
releases energy. In this setup, the two sequences on the left-hand side are braided in opposing directions. After the reconnection event, which removes the interchange,
the two sequences unwind and release the magnetic energy density that was stored in transverse components of the fields. This figure is similar to Figure 4 in Berger &
Asgari-Targhi (2009).
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below the interchange are able to merge. The final winding, wf

of the resulting single sequences is given by wf= w1+ w2. In
the configuration shown in the schematic figure, the equal and
opposite windings above and below the interchange cancel
each other out completely. In other words, the entire braid
completely unwinds itself. This behavior is shown on the right-
hand side of the figure, where the three flux tubes are now
relaxed to an equilibrium where there is no braiding. Because
of the results in the previous subsection, and namely
Equation (8), the free magnetic energy that is released in the
reconnection event encoded by the removal of the interchange
is given by the number of winds that are undone.

Remarkably, Berger & Asgari-Targhi (2009) presented a
method to evolve this simplistic model through time to an
equilibrium state, which we summarize here. At some arbitrary
initial time t= 0, consider a neighborhood in the corona
containing an integer number of braiding sequences, Λ, which
by construction contains Λ− 1 interchanges. The system then
evolves through a series of idealized discrete time steps. During
any given time step,

1. One sequence is added,
2. One interchange is added,
3. One reconnection event occurs, removing one preexisting

interchange. Sequences on either side of the interchange
merge.

Berger and Asgari-Targhi then investigate what steady-state
distribution of windings w such an evolutionary sequence
produces. At any point, the number of sequences where C= w
is given by ξ(w). Therefore,

å xL =
=-¥

¥

( ) ( )w , 9
w

as defined with different notation in Equation (7) of Berger &
Asgari-Targhi (2009). The probability that there will be a
sequence of length w is given by the normalized probability
function, f (w), which is defined in Section 5.2 of Berger &
Asgari-Targhi (2009) as

x
=

L
( ) ( ) ( )f w

w
. 10

Next, the probability of adding a new sequence of w at each
time step is given by a function defined to be p(w). At each
time step in the algorithm, the probability function evolves to a
new value through the mapping

d +( ) ( ) ( ) ( )f w f w f w , 11

defined by the three events that are allowed to happen in each
time step itemized above. Therefore, this process can be
described at each time step by the following equation:

ò ò
d dx

w w w d w w w

L = = -

+ - +
-¥

¥

-¥

¥
( ) ( ) ( ) ( )

( ) ( ) ( ( ))

( )

f w w p w f w

f d f w d

2

.

12

1 1 2 1 2 2

The three terms on the right-hand side denote (in order from
left to right) the addition of a new sequence, the removal of the
surrounding sequences, and the addition of the resulting
merged sequence. In order to evolve this model to an
equilibrium, it is sufficient to set Equation (12) equal to zero
to indicate that a steady state has been reached. When the

equilibrium is reached, the mapping no longer changes the
probability density function and δξ(w)= 0. At this point, the
equation reduces to

= - ( ) ( ) ( )( ) ( )p w f w f f w2 , 13

where the å indicates a convolution, as in Equation (11) of
Berger & Asgari-Targhi (2009). It is straightforward to
demonstrate, as in Section 5.2 of Berger & Asgari-Targhi
(2009), that this can be solved in Fourier space via Fourier
transforms and inverse Fourier transforms. Assuming that the
input of interchanges is a Poisson process such that the
windings inserted in the sequences between interchanges
follow an exponential distribution,

l
= l-( ) ( )∣ ∣p w e

2
, 14w

for some constant λ, then the equilibrium solution exhibits a
probability distribution of windings characterized by the
equation

l
l l= --( ) [ ( ) ( )] ( )f w L w I w

2
, 151 1

where I1 is the Bessel-I function and L−1 is a Struve-L function.
We note that this function is slightly different than Equation
(17) in Berger & Asgari-Targhi (2009), although we have
verified that our solution has the same form as Figure 5 in their
paper. Importantly, for winding numbers with magnitude
greater than unity, |w|> 1, the probability distribution has the
form of a power law where f (w)∼ w−2.

2.3. Energy Distribution of Flares

Consider the distribution of reconnection events in the
previous subsection. Since we know that the magnetic free
energy scales with the square of the crossing number of the set
of flux tubes, this must also correspond to a distribution or
power law of energetic flaring events once the equilibrium state
has been reached, since Efree∼C2 as in Equation (8).
Therefore, the difference in energy before and after a
reconnection event, ΔE, is given by the difference in the
square of the initial and final values of C, i.e.,

D ~ - ( )E C C . 16F0
2 2

Berger & Asgari-Targhi (2009) assumed that the reconnec-
tion occurs after the winding is greater than some critical value,
Ccrit. They assumed the interchange removal merged two
sequences with twist numbers ω1 and ω2, where by convention
|ω2|> |ω1|. Critically, they assume that the merged sequences
have opposite sign, on the basis that mergers of sequences with
the same winding direction will not create a release of energy in
a flaring event. The merging after interchange produces a single
sequence with ωf= |ω2|− |ω1|, and energy

wD ~ - -( ∣ ∣) ( )E C C 2 . 17crit
2

crit 1
2

If ω1= Ccrit, then to first order we have

w~ ∣ ∣ ( )E C4 , 18crit 1

and we can deduce the distribution of flare energies, F(E) from
the relationship between energies before and after reconnection
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and the distribution of winding numbers w:

~ a-( ) ( )F E E , 19

where α= 2γ− 1, and γ is the exponent of the winding
distribution f (w)∼ |w|−γ, as demonstrated in Section 5.3 of
Berger & Asgari-Targhi (2009).

2.4. Expansion of Braiding Model

The Berger & Asgari-Targhi (2009) model assumes that
injection of braids with positive and negative winding are
equally probable, which is a reasonable approach for a slowly
rotating star like the Sun, where the Rossby number in the
subsurface convection zone is relatively large (Greer et al.
2016). However, this assumption must begin to fail in more
rapidly rotating stars with smaller Rossby numbers, and we
must therefore generalize the model to include a bias in the sign
of w.

To generalize this (but keeping the same distribution on the
overall amplitude of w in the injected sequences) we just adjust
the prefactor. We define a parameter ηä [0, 1] to be the
probability that a sequence has a positive handed winding
number. The probability distribution function for the input of
sequences can be written as

hl
h l

=
>

- <

l

l

-

+
⎧
⎨⎩

( )
( )

( )p w
e w

e w

if 0

1 if 0.
20

w

w

In Equation (20), the value of η determines the percentage of
sequences that are locally injected into the corona with the
same sign or handedness in the twist. If there is a bias toward
more sequences with the same sign, then one would expect that
there should be a bias toward more coherent interchange
removals, where the surrounding sequences add constructively.

In Figure 2, we show a schematic in which the two
sequences have the same sign and number of windings. After

the interchange is removed, only one braid remains, but it has
twice the number of windings as the original two braids, so no
energy is released from the unwinding of braids. It is natural to
expect that as η increases or decreases away from 1/2 (which
represents an equal injection of positive and negative
sequences), the steady-state winding distribution will be
skewed toward higher numbers. We can demonstrate this trend
analytically by taking the Fourier transform of Equation (20),
which takes the form

l l h
l

=
- -

+
⎜ ⎟
⎛
⎝

⎞
⎠

˜ ( ) ( ) ( )p k
i k

k

2 1
. 21

2

2 2

Using this result in Equation (13), the solution for the steady-
state winding distribution function in Fourier space is

l h
l

= -
+ -

+
˜ ( ) ( ) ( )f k

k i k

k
1

2 1
, 22

2

2 2

and the corresponding real-space distribution is

òp
l h

l
= -

+ -
+-¥

¥ ⎡

⎣
⎢

⎤

⎦
⎥( ) ( ) ( )f w

k i k

k
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2
1

2 1
. 23ikw

2
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We verified analytically that Equation (23) is symmetric for
positive and negative w, such that fη(w)= f1−η(− w), and that it
is independent of rescaling of λ, such that for x= λw,
f (x)= f (w)/λ. In order to compute this numerically, we
decompose Equation (22) into real and imaginary components,

Re
f

l
= -

+
+

[ ˜ ( )] ( )
( )

( )f k
k

k
1

2
24

2

2 2

and

Im
l h

l f
= -

-

+ +
[ ˜ ( )] ( )

( )( )
( )f k

k

k k

2 1

2
, 25

2 2 2

where

f l h= + -( ( ) ) ( )k k 2 1 . 264 2 2 2 1 2

It is important to note that f in Equation (26) is an even
function of k. Therefore, Re[ ˜ ( )]f k (Equation (24)) is an even
function of k and Im[ ˜ ( )]f k (Equation (25)) is an odd function
of k. Equation (23) then becomes,

Re

Im

ò

ò
p

p

=

-

-¥

¥

-¥

¥

( ) ( [ ˜ ( )] ( ))

( [ ˜ ( )] ( )) ( )

f w f k kw dk

f k kw dk

1

2
cos

1

2
sin , 27

since the imaginary component is an odd function of k and
integrates to 0.
We evaluate Equation (27) numerically and show the

resulting distributions in Figure 3 for η= 1/2, 3/4, and 1.
For the case of η= 1/2, the problem reduces to the analytic
solution presented in the previous section and in Berger &
Asgari-Targhi (2009). As η approaches 1 (or 0), and more
coherent braids are injected into the corona, the FFD becomes
shallower. This result is consistent with the findings of Berger
& Asgari-Targhi (2009), who performed Monte Carlo realiza-
tions of the problem with an asymmetric injection of positive to
negative handed sequences.

Figure 2. Schematic diagram of a coherent reconnection event. In this setup,
the two sequences on the left-hand side both have positive winding. After the
reconnection event that removes the interchange, the resulting braid on the left-
hand side has a winding of w = +8.
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The distributions of f (w) in Figure 3 are symmetric about the
y-axis for positive and negative winding numbers when η= 1/
2. In Figure 4, we show the equilibrium distributions for
positive and negative winding numbers for a range of ηä [0,
1]. When η≠ 1/2, the resulting equilibrium distribution is
asymmetric about w= 0 and contains more sequences with the
same sign that is preferentially input. As expected, the
equilibrium distributions for η and 1− η (shown with solid
and dashed lines) are symmetric about w= 0 ∀ηä [0, 1]. We
note that the end-member case, where η= 1 or 0, is formally
not a physically plausible scenario. This is because, as shown

in Figure 4, the distribution functions for these cases only have
sequences with a single sign, which means the star would not
be able to produce any energetic flares.

2.5. Generalized Energy Distribution

It is important to note that the transformation from the
distribution of winding to energy given by Equation (19) is no
longer valid for asymmetric distributions where η≠ 1/2.
Following the notation in Section 2.3, assuming that
|w2|> |w1| and allowing for two cases where w2< 0, w1> 0,
and w2> 0, w1< 0, the energy distribution, denoted by capital
F(E), presented in Equation (20) in Berger & Asgari-Targhi
(2009) can be generalized,

ò ò

ò ò

d

d
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¥
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-¥

¥
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( ( ) ( ) ( ∣ ∣ ))
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f w f w E w C dw dw

f w f w E w C dw dw

4

4 . 28

w

w

0
1 2 1 crit 2 1

0

1 2 1 crit 2 1

1

1

In this equation, the first term on the right-hand side
corresponds to the reconnection events where w1> 0. Simi-
larly, the second term on the right corresponds to reconnection
events where w1< 0. Note that the δ function in both
integrands has an absolute value sign because of the form of
Equation (18), where E∼ |w1|. From Figures 3 and 4, the
distribution for w can be approximated as a power law times a
negative exponential. The approximate distribution function is
given by

~
>
<

h b

h y

- - -

- -

+

-

⎧
⎨⎩

( ) ∣ ∣
∣ ∣

( )
( )

( )f w
e w w

e w w

if 0

if 0,
29

w w

w w

2 1
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Figure 3. Distribution function for winding of sequences in an equilibrium
state. We calculate these distributions by numerically performing the inverse
Fourier transform defined by Equation (23) for η = 1/2, 3/4, and 1. The purple
line shows the solution when η = 1/2 for an equal probability of positive and
negative twists, which has a power-law slope of γ = 2, consistent with the
findings of Berger & Asgari-Targhi (2009). As η increases, and more coherent
and same signed braids are injected into the corona, the slopes of the
distribution functions get shallower and approach γ = 3/2. This is plotted
using λ = 1, where |w| = 1/λ is the mean winding magnitude per injected
sequence. Changing λ simply rescales w, leaving the power-law dependencies
unchanged.

Figure 4. Distribution function for the winding of sequences in equilibrium.
This is calculated in the same way as in Figure 3, and we show the distribution
for positive and negative winding numbers with η = 0, 1/4, 4/10, 1/2, 6/10,
3/4, and 1. The distributions for η and 1 − η are symmetric about w = 0. The
equilibrium state reflects the same sign bias as the input of sequences in
Equation (20).
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for some truncation winding numbers and power-law expo-
nents for the positive and negative cases, w+ and w−, and
power-law exponents β and ψ. All four of these parameters
depend on the value of η, and generally w+? w− and β> ψ

for ηä [1/2, 1]. Equation (29) was constructed to be symmetric
for η and 1− η. For the remainder of this subsection, we solve
for the energy distribution for the case of ηä [1/2, 1], since the
resulting distribution is the same for η and 1− η. By
substituting Equation (29) into Equation (28), the distribution
is given by
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This can be solved analytically, by recalling the definition of
the incomplete gamma function,

òG =
¥

- -( ) ( )a x t e dt, . 31
x

a t1

We perform two change of variables to integrate Equation (30).
For the first term on the right-hand side, we define the variable
v=−(2η− 1)w2/w−, such that dw2=−w−/(2η− 1)dv. Simi-
larly, for the second term on the right-hand side, we define the
variable u= (2η− 1)w2/w+, such that dw2= w+/(2η− 1)du.
After evaluating the first integral of the double integral in each
term, Equation (30) reduces to
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Using the composition properties of the Dirac delta function,
the coefficient δ(E− 4|w1|Ccrit) can be written as

d

d d

-

= - + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠

( ∣ ∣ )

( )

E w C

C
w

E

C
w

E

C

4

1

4 4 4
. 33

1 crit

crit
1

crit
1

crit

By substituting Equation (33) into Equation (32) and perform-
ing the integral, Equation (21) in Berger & Asgari-Targhi
(2009) generalizes to the following energy distribution

function:
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By substituting Equation (29) into Equation (34), the final
energy distribution is given by
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For large x, the incomplete Gamma function can be
approximated as the asymptotic series (Temme 1975),
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,

1 1 1 2 ... , 36

a x1
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for x? |a− n|, where n is the index of the term number in the
series, or for a series truncated at the point where (a− n)/x∼ 1.
Therefore, Equation (35) has the form of a sum of power laws
times a negative exponential for large flare energies. We
verified numerically that Equation (35) has the form of a power
law with an exponent α≈ β+ ψ− 1 and an exponential cutoff
set by w− (where w−< w+), analogous to the simpler case
found in Berger & Asgari-Targhi (2009), where β= ψ and
α= 2β− 1. For example, for w−= 10, the inertial range
extends from 0<w< 100, while for w−= 1, it extends from
0<w< 10. As can be seen in Figure 4, although the negative
exponential dominates for most of the domain for negative
winding numbers, ψ slightly decreases as η increases. There-
fore, as η changes, α scales primarily with β.
To validate this analytic calculation, we computed the

energy distribution ( ˜)F E for a proxy for the flare energy,
~Ẽ w C4 crit. We computed this by performing a numerical

integration of Equation (28) directly, for the distribution
functions presented in Figure 4. We show the energy
distributions in Figure 5, for a range of η. As expected, the
energy distribution becomes shallower as winding parity
violation is increased.
Our main conclusion is that the slope decreases as η→ 1.

This result can be interpreted physically as follows. As more
coherent sequences are injected into the corona, the removal of
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interchanges yields a larger number of coherent additions of
sequences, as shown in Figure 2. Compared to the symmetric
case (η= 1/2), this has the effect of allowing larger values of
w| to build up, since the injection of a new braid is now more
likely to increase |w| than to decrease it. The winding
distribution f (w) thus becomes flatter. Since the flare energy
index α is directly related to the winding number index, a
flatter distribution of winding numbers immediately produces a
flatter energy distribution. This change in slope is compensated
for by a reduction in the overall number of flaring events at
η→ 1, so that the total amount of energy dissipated remains
the same.

3. Connection with TESS Observations

Studying stellar activity on a statistical level requires the
observation and identification of a large number of flaring
events. Historically, such a catalog has been difficult to compile
due to the long observational baselines with high temporal
cadences required for each star to capture short-lived events. It
is also a nontrivial task to identify and characterize flares.
Recently, surveys designed to discover extrasolar planets such
as Kepler/K2 (Borucki et al. 2010; Howell et al. 2014) and the
Transiting Exoplanet Survey Satellite (TESS; Ricker et al.
2015) have provided a wealth of observations that can be used
for compiling a catalog of flares (see also Section 1).

3.1. Sample and Flare Identification

Our calculations suggest that stars with strong Coriolis
forces should exhibit a higher proportion of high-energy flares
relative to low-energy ones. To verify this empirically, we
consider the subset of stars that were observed by TESS at 2
minutes cadence, are included in our sample from Feinstein
et al. (2022), and which have rotation periods available in the
literature. The rotation periods used here were measured from
TESS and Evryscope light curves, and were taken directly from
Feinstein et al. (2020b) and Howard et al. (2020), which yields
a sample of 1380 stars ranging from Teff= 2300–9300 K.

A summary of this subsample is presented in Figure 6.
Although requiring a measured period significantly decreases
the number of stars in our sample, we still have enough stars to
check for signatures of the Coriolis force.
The flares were detected using the convolutional neural

network models (CNNs) presented in Feinstein et al. (2020b).
These models were specifically designed to find flares in TESS
2 minute cadence light curves and assign a probability to each
flare of being real (1) or not (0). We run the 10 CNNs
recommended by Feinstein et al. (2020b) and average the
prediction outputs for each light curve. The average prediction
is used as our probability that each flare is real.
Feinstein et al. (2020b) included all flares with a threshold of

�0.5 to be potential true flares, meaning the flares in their
sample have a 50% probability of being a true flare. However,
we adopt a more conservative threshold of 0.9 to ensure that at
least 90% of the samples are classified as true flares.
Given the limited size of the training set for the Feinstein

et al. (2020b) CNNs, we applied additional false-positive filters
from (M. N. Günther et al. 2022, in preparation), which are
summarized in Feinstein et al. (2022). The filters remove flares
with peak intensities that are within 3× rms of the light curve,
flares with equivalent durations of �4 minutes, and flares that
are associated with periodic events (e.g., eclipsing binaries or
variable stars). Once these filters are applied, we are left with a
sample of 16,184 flares with true-flare probabilities �0.9 from
869 stars.

3.2. Observational Results

In Figure 7, we show the intensity distributions of flaring
events for stars that we identify as fast (Prot< 3 days) and slow
rotators (Prot� 3 days). In these plots, the flare amplitude, A
(expressed as a percentage of the star’s normalized flux), is
divided into bins of equal width in log-space from
-  ( )A2.0 log 110 (with 5 bins per dex, and 30 bins in
total), and the vertical axis shows the number of flares,
weighted by their true-flare probability, observed per star per
day within each bin. The bins represent the flare rate for all
flares with a threshold of �0.9. The error bars on the flare rate

Figure 5. Energy distribution of flaring events for a range of η. These
distributions were computed by performing numerical integrations of
Equation (28) for the distributions presented in Figure 4. The energy
distribution becomes shallower as η increases.

Figure 6. Gaia DR2 Bp − Rp color of every star in our sample vs. the measured
rotation periods from the literature (Feinstein et al. 2020b; Howard et al. 2020).
Each point is colored by the flare rate, taken from (M. N. Günther et al. 2022, in
preparation). All of these stars were observed by TESS at a 2 minute cadence.
Our sample is biased toward stars with rotation periods of <13 days due to the
observing strategy of TESS.
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in each bin are defined as follows. Our upper estimate for the
flare rate includes all flares with a threshold �0.5. Our lower
estimate is for all flares with a threshold �0.99. We have
visually verified that even the very large amplitude flares we
measure are real, and not the result of a failure in the detection
algorithm. In Figure 8, we show the light curves of five of the
highest amplitude flares in the fast rotators to reinforce this
conclusion.

In order to evaluate the slope of the distribution of flare
amplitudes, and test whether there is a significant difference
between these two samples, we fit a truncated power-law
distribution µ a- ¢ - *dp dA A e A A for amplitudes >A Amin,
where = -A 10min

2.0 is the smallest amplitude flare for which
our data are complete—there is a visible turn-down in the flare
frequency distribution below this limit. We perform this fit
separately to each of the two subsamples (fast and slow
rotators). Note that the form of this equation is similar to
Equation (1), although we include the possibility of a
truncation at high amplitude, and denote the slope here a¢
rather than α to indicate that we are fitting the index for flare
amplitude, not energy. We fit the slopes using a Markov chain
Monte Carlo (MCMC) method implemented with the emcee
package (Goodman & Weare 2010; Foreman-Mackey et al.
2013), using the log-likelihood function

å= a- ¢ - * ( ) ( )A elog log , 37
i

i
A A

where Ai is the amplitude of the ith flare in the sample, A* is a flare
amplitude cutoff parameter to be fit, and  is a normalization
factor chosen to ensure that /ò =

¥
( )dp dA dA 1

Amin
. The MCMC fit

has two free parameters—A* and a¢—and we adopt priors that are
flat in *Alog and a¢.

We initialized our MCMC fit with 100 walkers and iterated for
2500 steps; we discard the first 1000 steps for burn-in, and verify
visually that the chains are well converged. We show the median
fits obtained by this method, as well as the confidence intervals
around them, overlaid on the data in Figures 7; we show the joint
and marginal posterior probability distribution functions (PDFs) for
the slope a¢ and cutoff parameter A* in Figure 9. As the plots
show, there is a marginally significant difference in the posterior
PDFs for the short- and long-period samples the 2σ regions do not
overlap, but are close, and the marginal parameter values do
overlap at the 2σ level. Repeating the fits using different breaks
between fast and slow rotators of 1 day or 2 days yields
qualitatively similar results. Formally, we find a¢ = 1.866
0.035 and = -

+
*Alog 0.004 0.106

0.131 for the short-period sample, and
a¢ = -

+1.967 0.070
0.068 and = - -

+
*Alog 0.017 0.223

0.336 for the long-period
sample; the quoted uncertainties here indicate the 5th–95th
percentile range. To the extent that the differences are real, and
not simply statistical noise, we find the fast rotators showing a
flatter slope but with a cutoff at somewhat smaller amplitude, and
the slow rotators showing a steeper slope but more gradual cutoff.
A shallower slope for fast rotators would be consistent with that
seen in the literature (Hartmann & Noyes 1987; Maggio et al.
1987; Doyle et al. 2020), but we emphasize that our present sample
does not provide a statistically significant detection.
It has been established that stellar properties other than

rotation period, such as mass and surface temperature, affect

Figure 7. FFDs for the flares in our sample, binned by the intensity of the flare
in percentage of the star’s normalized flux. The flare amplitude, A, is divided
into bins of equal width in log-space (with 5 bins per dex) ranging from
-  ( )A2.0 log 110 , and the vertical axis plots the number of flares observed
per star per day in each amplitude bin. The top panel shows the distribution of
flares on stars with rotation periods, Prot, of <3 days (522 stars with
11,614 flares total), and the bottom shows the distribution of flares on stars with
Prot � 3 days (347 stars with 4570 flares total). While our sample of slower
rotators is incomplete, there is evidence that the more rapidly rotating objects
have shallower slopes characterized by more energetic events, which implies
stronger winding parity violation.

Figure 8. Five of the highest amplitude flares (highlighted in blue) from five
different stars in our sample. The inset panels are of the full light curve,
displaying various forms of starspot driven modulation, used to measure the
rotation periods of these stars. Each of these stars are fast rotators, and
contribute to the top panel of Figure 7.
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the dynamo. The Rossby number, Ro, incorporates the
rotational period, mass, and temperature, and is defined as
Ro= P/τ, where τ is the convective turnover time (Noyes et al.
1984). For a given stellar type and τ, the Rossby number is a
direct proxy for rotational period. X-ray luminosity and overall
activity increases with rotational period for a range of stellar
types, including Sun-like stars (Pallavicini et al. 1981; Wright
et al. 2011; Candelaresi et al. 2014) and low mass, fully
convective stars (Wright & Drake 2016). However, this
relationship does not apply for very fast rotators, and the
X-ray luminosity saturates for Ro< 0.13, independent of
spectral type (Vilhu 1984; Wright & Drake 2016).

Motivated by this work, we repeat the same analysis but
group both subsamples based on the Rossby number instead of
just the rotational period. We convert stellar mass to the
convective turnover time, τ, using Equation (11) in Wright
et al. (2011),
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By binning the stars based on the saturation break of Rossby
number, the two resulting subsamples include 458 stars with
11,148 flares total where Ro< 0.13, and 349 stars with
3,507 flares total with Ro� 0.13. The resulting distributions
are shown in Figure 10, with the best-fit distributions
overplotted. The fits were calculated in the same manner as
the fits for subsamples grouped by rotational period. In
Figure 11, we show the joint and marginal posterior probability
distributions functions for slope a¢ and cutoff parameter A*,
with the two subsamples binned by Rossby number. We
find that for Ro< 0.13, a¢ = -

+1.847 0.033
0.032 and log(A*)=

- -
+0.012 0.102

0.117. For Ro> 0.13, a¢ = -
+2.155 0.115

0.112 and log(A*)=
- -

+0.111 0.348
1.996. The results of all fits are presented in Table 1. It

appears that the differences in the distributions are more
pronounced when grouped by Rossby number. Since the

Rossby number scales with the rotational period, it is plausible
that the Coriolis effect investigated in this paper is responsible
for the differences in the slopes of these FFDs.

Figure 9. Distributions of the best-fitting power-law exponent and amplitude
cutoff parameter for the slow and fast rotators, from the MCMC fitting process
described in Section 3.2. This shows the full 2D posterior PDF, including both
slopes and cutoffs, with histograms showing the marginal 1D PDFs. In the
central panel showing the 2D PDF, the shaded regions are the 68%, 90%, and
95% CIs, which visually demonstrate that the CIs are overlapping at 68%
confidence. This suggests that the distributions of flares are marginally different
for fast and slow rotators.

Figure 10. Same as Figure 7, with the two subsamples grouped by Rossby
number. The top panel shows the distribution of flares on stars with Rossby
number, Ro, of <0.13 (458 stars with 11,1148 flares total), and the bottom
panel shows the distribution of flares on stars with Ro � 0.13 (349 stars with
3,507 flares total).

Figure 11. Same as Figure 9, with the two subsamples grouped by Rossby
number. For Ro < 0.13, the fits produced a slope a¢ = -

+1.847 0.033
0.032 and log

(A*) =- -
+0.012 0.102

0.117. For Ro > 0.13 the fits produced a¢ = -
+2.155 0.115

0.112 and
log(A*) =- -

+0.111 0.348
1.996.

Table 1
Summary of the Parameter Fits for the Flare Frequency Distributions Binned

by Rotation Period and Rossby Number

Sample Slope, a¢ log(A*)

Prot < 3 days 1.866 ± 0.035 -
+0.004 0.106

0.131

Prot � 3 days -
+1.967 0.070

0.068 - -
+0.017 0.223

0.336

Ro < 0.13 -
+1.847 0.033

0.032 - -
+0.012 0.102

0.117

Ro � 0.13 -
+2.155 0.115

0.112 - -
+0.111 0.348

1.996
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There are four potential confounding factors that might
influence our results. First and most obviously, the sample is
relatively small: only ≈3000 flares in total with amplitude
A> 10−0.5 where we are reasonably complete. It may simply
be that the sample is too small to yield statistically significant
results. Second, the measured rotation periods are biased
toward <12.5 days due to the observing strategy of TESS.
Thus our sample of slow rotators is perhaps better described as
a sample of moderator rotators; truly slow rotators like the Sun
are largely excluded. Third, our sample has not been corrected
for detection biases. Methods such as injection-recovery tests
have been used to adjust observed flare rates in previous
studies, as in Figure 11 in Kővári et al. (2020). We do not
perform injection-recovery tests on this sample for two reasons.
For one, Feinstein et al. (2020b) demonstrated that injection-
recovery tests did not produce accurate results for their CNN,
due to the differences in the shape of the flares themselves.
Additionally, we only start at 0.32% amplitudes here and
therefore ignore the smallest flares (which are most affected by
this bias). A final confounding factor is that, while rotation
period is a reasonable proxy for the importance of Coriolis
forces in the dynamo, it is certainly not the only factor that
might affect flare distributions. In particular, stars of different
ages and effective temperature almost certainly have different
surface magnetic field strengths, and our fast and slow rotator
samples mix together a wide range of stellar age and effective
temperature. Similar to our marginal agreement here, Feinstein
et al. (2020b) measured the FFD slope for stars with age
�50 and >50Myr and found they were in a 1σ agreement with
each other. For the specific details of this analysis, we refer the
reader to Figures 13–14 and Section 4.1 in Feinstein et al.
(2020b). While the results from our analysis incorporating the
Rossby number are highly suggestive, it is possible that an
analysis that separates all of these contributing factors—age,
rotation period, and effective temperature—might yield
stronger results.

4. Conclusions

In this paper, we have investigated the role of the Coriolis
force in stellar dynamos. More specifically, we considered the
DC model of coronal heating (Parker 1972) along with the
model of magnetic braiding and reconnection (proposed by
Berger & Asgari-Targhi 2009; see also Berger et al. 2015). We
expanded the braiding model to incorporate the effects of the
Coriolis force, which should be more dominant in faster
rotating stars. Specifically, we incorporated a bias in handed-
ness of injected braids, which should be present in stars with
dynamos that are strongly affected by the Coriolis force. As
increasingly coherent braids are injected into the corona, the
slopes of the resulting power-law distributions of energetic
flaring events decreases in magnitude (corresponding to a
weaker decline in occurrence rates toward increasing flare
energies). We search for this effect in the flare frequency
distributions for stars observed by TESS that have measured
rotation periods; however, while the results are suggestively
consistent with the theoretical prediction, the sample is too
small to yield a definitive statistical conclusion.

While the results presented in this study are suggestive, there
are many opportunities for future theoretical work. It would be
informative to perform numerical experiments of reconnection
events for both the DC and AC regimes of coronal heating.
Specifically, numerical simulations of avalanching reconnection

events similar to those presented by Lu & Hamilton (1991) may
also exhibit shallower slopes with driving that mimics effects of
the Coriolis force. Being able to directly probe the relation
between the magnitude of the Coriolis force and the η
(handedness) parameter would be an invaluable measurement
to test the role of rotation on the topology of the flux tubes and
hence the energy of the flaring events. This type of calculation
would also yield insights into the connection between the theory
of self-organized criticality and the DC braiding and reconnec-
tion picture of coronal heating.
Alternatively, it is possible that the power-law distributions

of stellar flares are simply realizations of forced MHD
turbulence, along the framework of the AC regime. Therefore,
numerical simulations of forced coronal plasmas that track
reconnection events may reveal an alternative explanation for
the differences in the observed slopes.
Several possible adjustments to the observational data could

further validate the hypothesis presented here. We have
included a relatively small (≈3000 stars) sample of stars with
measured rotation periods. However, there are 105 stars with
high-cadence observations from TESS. By measuring the
rotation periods for more stars with known flaring events, we
would be able to vastly increase the statistical sample in this
study. This analysis would also be improved by the proposed
increase from a 10–3 minute cadence of TESS Full-Frame
Images for the second extended mission. This improvement
would increase our sample of stars by an order of magnitude,
which would improve the slope measurements.
It will also be necessary to develop a reliable method for

measuring long rotation periods (P> 13 days) in TESS (e.g.,
Lu et al. 2020; Breton et al. 2021; Claytor et al. 2022). In the
current state, we are limited both in the baseline for the TESS
sector observing strategy (∼27 days) and the orbital gap
halfway through each sector. Traditional methods of measuring
rotation periods often identify the systematics that are
associated with the beginning or end of each orbit. We are
thus limited to only reliably being able to measure short
rotation periods. Alternatively, indirect estimates of stellar
rotation periods may be useful for expanding our sample
(Mamajek & Hillenbrand 2008).
It would also be useful to improve the convolutional neural

networks presented in Feinstein et al. (2020b) to detect flares
on rapid rotating stars (P< 1 day). When these methods were
developed, there were relatively few examples of these light
curves, so that the original models were trained on a limited
number of high-energy events on rapidly rotating stars. As a
result, the sharp rotational features are often confused for flare
events. Now that more high-energy events have been observed,
we have the opportunity to improve our method for flare
identification using machine learning.
Finally, it would be of significant interest to test the impact

of stellar age versus rotation period on the flare rates. We were
not able to do this analysis with our relatively small sample.
However, populations within young stellar clusters, such as
Pleiades, Hyades, or Praesepe, have well constrained masses
and ages. The activity in young clusters has already been
examined using K2 long-cadence data (Ilin et al. 2019, 2021),
although this cadence is inadequate for detecting low-
amplitude flares. Examining activity in young stellar clusters
using new high-cadence TESS data may yield key insights into
the relationship between rotation, dynamo, and spin-down.
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