of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 517, 1355-1380 (2022)
Advance Access publication 2022 September 26

https://doi.org/10.1093/mnras/stac2712

Cosmic ray interstellar propagation tool using I1to6 Calculus (CRIPTIC):
software for simultaneous calculation of cosmic ray transport and
observational signatures

Mark R. Krumholz “,"* Roland M. Crocker ! and Matt L. Sampson !

L Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601, Australia
2ARC Centre of Excellence for Astronomy in Three Dimensions (ASTRO-3D), Canberra, ACT 2601, Australia

Accepted 2022 September 17. Received 2022 August 28; in original form 2022 July 27

ABSTRACT

We present CRIPTIC, the Cosmic Ray Interstellar Propagation Tool using It6 Calculus, a new open-source software package to
simulate the propagation of cosmic rays through the interstellar medium and to calculate the resulting observable non-thermal
emission. CRIPTIC solves the Fokker—Planck equation describing transport of cosmic rays on scales larger than that on which their
pitch angles become approximately isotropic, and couples this to a rich and accurate treatment of the microphysical processes
by which cosmic rays in the energy range ~MeV to ~PeV lose energy and produce emission. CRIPTIC is deliberately agnostic
as to both the cosmic ray transport model and the state of the background plasma through which cosmic rays travel. It can solve
problems where cosmic rays stream, diffuse, or perform arbitrary combinations of both, and the coefficients describing these
transport processes can be arbitrary functions of the background plasma state, the properties of the cosmic rays themselves, and
local integrals of the cosmic ray field itself (e.g. the local cosmic ray pressure or pressure gradient). The code is parallelized using
a hybrid OpenMP-MPI paradigm, allowing rapid calculations exploiting multiple cores and nodes on modern supercomputers.
Here, we describe the numerical methods used in the code, our treatment of the microphysical processes, and the set of code

tests and validations we have performed.
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1 INTRODUCTION

The last few years have seen an explosion of interest in cosmic
rays (CRs) from two distinct angles. The star- and galaxy-formation
communities have engaged in intense study of CRs as a form of
stellar feedback in star and galaxy formation (e.g. EnBlin et al.
2007; Socrates, Davis & Ramirez-Ruiz 2008; Uhlig et al. 2012;
Salem & Bryan 2014; Girichidis et al. 2016; Wiener, Pfrommer &
Oh2017; Chanetal. 2019; Hopkins et al. 2020; Crocker, Krumholz &
Thompson 2021a, b), while the high-energy astrophysics community
has paid increasing attention to star-forming galaxies and the CRs
within them as important sources at both radio and y -ray wavelengths
(e.g. Thompson et al. 2006; Lacki & Thompson 2010; Lacki,
Thompson & Quataert 2010; Yoast-Hull, Gallagher & Zweibel
2016; Peretti et al. 2019; Krumholz et al. 2020; Roth et al. 2021;
Werhahn et al. 2021a; Werhahn, Pfrommer & Girichidis 2021b;
Hopkins et al. 2022). However, studies in both of these areas are
hampered by our lack of understanding of the fundamental plasma
processes by which CRs couple to the background gas in galaxies
through which they propagate. While most plasma physics models
predict that CRs should be self-confined at relatively low energy
and confined by extrinsic turbulence at high energy (e.g. Zweibel
2017, and references therein), the energy at which this transition
occurs, and the normalization and energy dependence of the rate
of transport in each of these two regimes, remains fundamentally
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uncertain (and likely dependent on the environment), and simple
models have proven challenging to reconcile with observational
constraints (e.g. Hopkins et al. 2021a, b). Until we gain a better
understanding of how CRs couple to the gas in galaxies, it will be
difficult to make definitive statements about either the role of CRs
in regulating galaxy formation or the contribution of star-forming
galaxies to the non-thermal sky.

One promising avenue for progress in this area is making detailed
comparisons between the predictions made by different CR transport
models and observations of galaxies’ non-thermal emission. During
their transport through gas, CRs suffer repeated collisions with the
molecules, atoms, and nuclei they encounter. Low-energy CRs ionize
the gas, altering its chemistry. High-energy CRs collide directly
with gas nuclei, producing sprays of unstable secondary particles
that decay almost immediately into final-state particles, including y -
ray photons, neutrinos, and relativistic electrons and positrons. The
y-rays and neutrinos are (in principle) directly observable, while
the electrons and positrons go on to produce their own radiative
signatures at radio and y-ray wavelengths. These signatures hold
open the possibility of distinguishing between CR transport models,
because different models predict different behaviours as a function
of CR energy and galactic environment, which in turn manifest as
changes in galaxies’ non-thermal spectra (e.g. Krumholz et al. 2020;
Crocker et al. 2021a; Ambrosone et al. 2022).

Our observational knowledge of these signatures will expand
radically in the next few years as new instruments come online.
The Cherenkov Telescope Array (CTA; Cherenkov Telescope Array
Consortium 2019) will be able to see y-ray sources an order of
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magnitude fainter, and with an order of magnitude better resolution,
than current instruments. The radio sky, and the galaxies that populate
it, will be increasingly well revealed by the Square Kilometre Array
(SKA) and its pathfinders. Finally, the upgrade of the South Polar
IceCube neutrino telescope and the commissioning of the KM3NeT
neutrino telescope will significantly improve our knowledge of the
neutrino sky. This overall improvement in instrumentation will grant
us the ability to directly probe the CR populations of star-forming
galaxies with unprecedented depth and precision. This will, in turn,
illuminate our understanding of CR transport.

However, there are a limited range of software tools capable
of predicting the diverse signals that will be observable by the
next generation of telescopes. Until very recently, CR-hydrodyamics
simulations followed only a single CR energy bin; the most recent
generation of simulations include a few distinct CR energies (e.g.
Armillotta, Ostriker & Jiang 2021, 2022; Girichidis et al. 2022;
Hopkins et al. 2022), but the computational cost of following multiple
energies in the context of a fully self-consistent CR-hydrodynamics
calculation means that these simulations achieve very limited spectral
resolution in the observable signatures they predict, and rely on
highly simplified treatments of the microphysical interaction between
CRs and their environment (e.g. treating pp collisional losses as
continuous, ignoring Klein—Nishina effects when calculating inverse
Compton scattering). Fluid treatments that involve integration over
broad bins in CR energy also necessarily have difficulty in treating
sharp spectral features, for example sharp changes between streaming
and diffusion at particular CR energies. Moreover, all of these
methods have thus far proven too expensive to use in carrying out
an extensive parameter study of how emission changes as one makes
differing assumptions about the microphysics of CR interactions with
the background plasma.

Conversely, a range of tools exist to predict CR observables
using detailed microphysics, but generally only for highly simplified,
time-independent background plasma states. The most prominent of
these is GALPROP (Strong & Moskalenko 1998), but other examples
include PICARD (Kissmann 2014), DRAGON (Evoli et al. 2017), and
CRPROPA (Merten et al. 2017). These codes generally offer a much
more detailed treatment of microphysics than is achieved in the
CR-hydrodynamics simulations, and thus a correspondingly better
prediction of observables, but at the price that they are not very
flexible in terms of the assumed model of CR propagation, or in terms
of the way that the background gas is described. Thus for example it
would not be straightforward to use one of these tools to post-process
a full 3D simulation and predict the observable, CR-driven emission
from it. Nor for example can these codes easily handle a situation
where the transport of CRs switches from primarily streaming to
primarily diffusion as a function of CR energy.

This situation motivates us to introduce Cosmic Ray Interstellar
Propagation Tool using Itd Calculus (CRIPTIC), a new software
tool for the purpose of calculating CR transport and observable
emission. CRIPTIC attempts to balance the advantages of the dedicated
CR propagation codes — high-accuracy microphysics, high spectral
resolution, accurate treatment of secondary particles, relatively high
speed — with those of the CR-hydrodynamics codes — complex,
multiphase gas backgrounds, with CR propagation properties that
vary depending on the gas state. Of course it also has disadvantages,
in that its complexity level and computational cost are higher than
for GALPROP and similar software, and it does not achieve the full
consistency between CR propagation and hydrodynamic evolution
that comes from solving CRs and hydrodynamics together. None the
less, CRIPTIC is unique in that it offers the ability to make realis-
tic predictions for CR-driven emission at high spectral resolution
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and high physical accuracy from 3D simulations of a complex,
multiphase galactic gas ecosystem. In this regard the intended use
of CRIPTIC for CRs is analogous to that of tools such as RADMC-
3D (Dullemond 2012) or POWDERDAY (Narayanan et al. 2021) for
photons: while these tools are too expensive to use in real time as part
of a self-consistent radiation-hydrodynamics calculation, they offer
much more realistic predictions of observable emission than would
be possible using radiation-hydrodynamics simulations alone.

The remainder of this paper is laid out as follows. In Section 2,
we describe the basic system of equations that CRIPTIC solves, and
in Section 3 we describe the numerical method by which we solve
them. We present validation tests in Section 4, and summarize and
discuss future prospects in Section 5.

2 PHYSICAL MODEL

2.1 Formulation of the problem

CRIPTIC is intended to simulate the transport of CRs on scales
significantly larger than the CR mean free path to pitch angle
scattering. It therefore solves the Fokker—Planck Equation (FPE) for
the evolution of the pitch angle-averaged CR distribution function
f(x, p) as a function of position x and the (magnitude of the) CR
momentum p; future extensions may also include explicit evolution
of the pitch angle distribution, but are beyond the scope of this
paper. We solve a separate FPE for each species of CR tracked in a
simulation. The equation we solve is (Skilling 1975; Zweibel 2017)

3 af
( Keay)

af _ 8 (K/3f> Lf
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where we have added extra terms describing losses to the original
transport equation derived by Skilling (1975); note that in this
equation, although by assumption f depends only on the magnitude
of CR momentum p, it still describes the number of CRs per unit
volume in momentum space, i.e. the number of CRs with momentum
from p to p + dp is 47 p? f dp rather than f dp. Here and throughout
Section 2, we adopt the convention that italic indices (i, j) go from
1 to 3 and Greek indices («, B8) go from 1 to 4, and we make use
of the Einstein summation convention whereby repeated indicates
are understood to be summed over. The quantities appearing in this
equation are the spatial diffusion tensor K, the momentum diffusion
coefficient' K, the total (streaming plus advection) velocity of
the CRs u, the rate at which the magnitude of the CR momentum
decreases due to continuous processes P (those where the change
in momentum per interaction is small), the catastrophic loss term
L (describing processes that destroy CRs completely or cause large
changes in their momenta), and the source function S. In general
these quantities are functions of the properties of the background
plasma at position x, the CR momentum p, and the CR distribution
f at that point in space — for example, the direction of CR streaming

Note that the subscript pp here indicates diffusion in momentum space, and
should not be confused with proton—proton collisions; to avoid confusion,
we will generically refer to proton interactions in general as nuclear inelastic
collisions, so that pp is used only to indicate the momentum direction in phase
space.
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may depend on the gradient of f— in which case the problem is non-
linear. The background plasma is threaded by a large-scale magnetic
field B, where large scale here means that B is averaged on scales
much larger than the CR isotropization scale.

Before proceeding further, we pause to explain our formulation
of the continuous and catastrophic loss terms. We approximate
continuous loss processes as causing a continuous decrease in the
momentum of each CR particle at a rate ps. This corresponds to
advection in momentum space at a velocity — p.7,, where 7, is a
radial (in momentum space) unit vector. The term we have included in
the equation (1) is simply the divergence of — p f7p. By contrast,
the term —Lf we introduce for catastrophic losses corresponds to
direct removal of CRs from the population, at a rate proportional to
the number density of CRs at a given position; in equation (1), Lis the
probability per unit time of such a loss. If the loss process represents a
discrete jump in momentum rather than complete destruction, there
will also be corresponding source term S o« — Lf. We describe in
Section 2.3 the full set of microphysical processes we include and
their mathematical representation in terms of continuous loss terms,
catastrophic loss terms, and source terms.

2.2 From Fokker-Plank to stochastic differential equation

Our basic approach to solving equation (1) is to transform it from
a PDE to a stochastic differential equation (SDE). This part of our
treatment is similar to the methods proposed by Kopp et al. (2012)
and Merten et al. (2017). To simplify the problem of transforming
the FPE into an SDE, we will always work in a local coordinate
system defined relative to the magnetic field. We therefore set up a
TNB coordinate frame defined by the unit vectors

~ B

=5 )
o (E-V)i

fi= " ©
b=1txh. 4)

Here, t, A, f), and k are the tangent vector, normal vector, binormal
vector, and curvature of the local magnetic field. We therefore adopt
the convention in equation (1) that indices i = (1, 2, 3) correspond to
the (£, A, f)) directions, respectively. In our chosen frame the diffusion
tensor K is diagonal, with elements

K”,i:‘jzl
Kj= K ,i=j=2o0ri=j=3 ®)
0, otherwise.

Note that we explicitly allow for the possibility of diffusion per-
pendicular to field lines, with diffusion coefficient K, and in this
respect our equation differs from that given by Skilling (1975) or
Zweibel (2017). Our reason for including this term is that the scale
on which B is measured is nor assumed to be smaller that the turbulent
dissipation scale, and thus there may be turbulent fluctuations in the
magnetic field on top of the large-scale guide field B; this will often
be the case in galactic or cosmological simulations, for example,
where the simulation resolution is insufficient to resolve the magnetic
dissipation scale. Thus we wish to leave open the possibility that,
while CRs do not diffuse perpendicular to magnetic field lines (to
leading order), the field lines themselves can wander perpendicular to
the large-scale guide field, and this will induce an effective diffusion
in the CRs perpendicular to the large-scale guide field (Beattie et al.
2022; Sampson et al. 2022).
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In order to transform equation (1) into an SDE, we must first recast
it in standard Fokker—Planck form
af ad 1 9

o7 (A, -
o = g, A 25090, |

Dusf), (6)

where A is the drift vector, D is the diffusion tensor (which must be
symmetric), and q is the vector of phase-space variables upon which
fdepends, which we take to be q = (x1, x, x3, p). In order to do so,
we make a change of variables from f(x, p) to

fx, p)=4rnp’f(x, p), (7

ie. f represents the probability density per radial distance in
momentum space, while f'is the probability density per unit volume
in momentum space. The advantage of this change is that, unlike f
itself, f is invariant under a steady flow of CRs in momentum space.’
With this change of variables, and making some further algebraic
simplification, equation (1) becomes
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where § = 47 p?S is the rate per unit volume per unit linear
momentum at which new CRs are injected.> For computational
purposes it is convenient to explicitly write out the total velocity
u = v + wt, where v is the advection velocity of the background gas
and wt is the streaming velocity of the CRs along the field, in the
frame comoving with the gas. Doing so, equation (8) becomes
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Ignoring the catastrophic loss and source terms for the moment,
equation (9) corresponds to equation (6) with drift vector

L+ va w20, a=1
Zfﬂi—{—va, a=2o0r3
Aa = ()Kr,p + ZKpp _ pcm (10)

_g(a? + 3 t,+wa”) a=4

Note that this step is omitted in the derivation given by Kopp et al. (2012)
and Merten et al. (2017), and as a result their equations for the momentum
distribution are not correct. However, since none of the tests reported in their
papers consider CR momentum evolution, the problem does not manifest in
the published results.

3By contrast, S is the injection rate per unit volume in space per unit volume
in momentum space.
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Table 1. Summary of loss processes included. Entries give the process name and the types of particles affected, followed by the equation or
expression we use for the various terms — pes, L, &, ¢, and dW/de — that describe the rate of continuous momentum loss, the rate of catastrophic
loss, the secondary multiplicity, the secondary momentum distribution, and the specific power radiated per CR primary, respectively. For secondary
multiplicities and momentum distributions, we indicate the type of secondary particle in parentheses. A blank entry indicates that the process
does not produce the indicated effect, e.g. nuclear inelastic scattering does not produce continuous momentum loss.

Loss process Affects Dets & de/dp dW/de

Nuclear inelastic scattering P - Equation (17) 1(p) Equation (18) (p) Equation (19)
0% Jonue (€F)  Equation (21) (et, e7)

Ionization p.et,e”  Equation (22) - - -

Coulomb p.e", e Equation (33) - - -

Synchrotron et,e” Equation (39) - - Equation (40)
Bremsstrahlung et,e™ Equation (48) Equation (45) 1(et,e) Equation (46) Equation (49)
Inverse Compton et,e” Equation (59) Equation (61) 1(et,e) Equation (63) Equation (64)
Positron annihilation et - Equation (69) - - Equation (72)

and diffusion tensor

2K||, Ol:,BZI
2K, a =B =2o0r3
2Ky a=p=4
0, a#p

Note that, in writing out the components of the drift vector and
diffusion tensor, we have made use of the fact that Kj; is diagonal in
our chosen coordinate system.

The It6 SDE corresponding to equation (8) is (section 6.1, Gardiner
2009)

Dos = (11)

dge (1) = Au(q, 1) dt + dep(q, 1) dWp(1), (12)
where
dyedyp = Dayg (13)

and dW(7) is a 4D Wiener process. Since D is diagonal in our chosen
coordinate frame, we trivially have dog = \/Dqg, so d is diagonal
as well. For notational convenience we define the vector of diffusion
coefficients k = (2K, 2K ,2K,,2Kp), i.e. k is just the vector of
diagonal elements of d, so the SDE becomes

dgu(r) = Au(q, 1)d + (w//c(q, z)dW)a . (14)

We refer to k as the diffusion vector from this point forward, keeping
in mind that it in fact just the vector of eigenvalues of a rank-2 tensor.

2.3 Microphysical processes: losses, secondaries, and
observables

2.3.1 Formalism

The continuous and catastrophic loss terms p.s and L f can repre-
sent a range of microphysical interactions between CRs and their
environment. In turn, the catastrophic loss terms generally have
corresponding source terms S that represent either new particles
produced in the interaction, or existing CRs jumping discontinuously
from a higher to a lower momentum; we will generically write these
source terms in the form

- d -
5.0 = Y [ Lotp)6r) <£> P Fphdp, (15)

where S,(p) is the source function for members of species s with
momentum p, the sum runs over all species s, Ly (p') is the
catastrophic loss rate for members of species s with momentum
P, & ¢(p") is the mean multiplicity for production of species s by the
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loss of members of species s with momentum p/,4 d¢/dps ¢ (p') is
the distribution of momenta p for members of species s produced by
the loss of a member of species s with momentum p’ (normalized so
J(d¢/dp)sy(p)dp = 1for allp), and fy (p’)is the CR distribution
function for members of species s evaluated at momentum p’. In
the discussion that follows, we will characterize the source functions
for secondaries in terms of their values for the multiplicity & and
the momentum redistribution function d¢/dp. We generically refer
to members of species s as primaries, even if they were themselves
produced by another, earlier collision. Similarly, we refer to members
of species s — whose appearance is described by S, — as secondaries,
even if they are, in fact, just the initial CR particle after it has been
scattered to lower energy.

In addition to computing the loss and source terms, it is also
of interest to predict the observable emission from CRs. We write
the rate of specific radiative emission per cosmic ray particle as
dW/de, where € is the photon energy. We also calculate the CR
ionization rate via an analogous expression, since this is of interest
for astrochemistry.

Different loss processes apply to different CR species, and neither
our species list nor the set of processes we include are exhaustive;
for example, at present CRIPTIC does not treat heavy CR nuclei or
the spallation losses they suffer. Both the particle and process list
may be expanded in future releases. At present the code tracks CR
protons, electrons, and positrons, and it includes accurate treatments
of all significant loss processes for those species at energies from
~1 MeV to ~1 PeV propagating through typical ISM conditions; on
the low-energy end this limit is imposed by adopting the relativistic
limit when computing electron radiative losses (our treatment of
collisional processes is valid down to ~0.1 MeV), while on the high-
energy side it is limited by the availability of tabulated or analytically
approximated cross sections. Below we describe all the processes we
include, and the methods we use to compute them; we summarize
our final expressions for all processes in Table 1. Note that we do
not require an explicit additional term to represent streaming losses,
as is required in hydrodynamic treatments of CRs, because in the
FPE such losses are automatically included in the V - (wf) term in
the drift vector.

The remainder of this section describes the various loss processes
we include, and how we treat them. To help provide intuition
for this discussion, we plot the various loss rates as a function
of CR proton, electron, and positron energy for three example

4That is, &.¢(p') = 2 means that, on average, a loss of one particle of species
s with momentum p’ leads to the production of two particles of species s.
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Figure 1. Loss rates due to all of the processes included in CRIPTIC, as a function of CR kinetic energy 7. For catastrophic losses (dashed lines) we show the
catastrophic loss rate L, while for continuous processes (solid lines) the loss rate we how is computed as L¢is = Pets/ p. Colours indicate different loss processes,
as shown in the legend. The top row is for protons, the bottom for positrons; electrons are identical to positrons except that positron annihilation (brown dashed
line) does not apply. Columns show, from left to right, loss rates in low-density ionized gas (HT), moderate density atomic gas (H 1), and dense molecular gas

(H»); see main text for exact properties of the gas in each of these regions.

environments in Fig. 1; here, the catastrophic loss rate is L, and
we define the equivalent continuous loss rate as pes/p for a CR
packet of momentum p. Our example environments are representative
of (i) a diffuse ionized region (H', first column), (ii) a medium
density neutral atomic region (H1, second column), and (iii) a dense
molecular region (Hy, third column). These regions are characterized
by, respectively, total densities of H nuclei ny = 1073, 1, and 103
cm 3, magnetic field strengths B = 1, 7, and 20 pG, and dilute
blackbody radiation fields, in addition to the cosmic microwave
background, with temperature 7gg = 5000, 5000, and 10 K, and
dilution factors Wgg = 10713, 10713, and 1; we explain Tgg and
Wpg in more detail below. The H* region is composed of fully
ionized H and singly ionized He with Asplund et al. (2009) protosolar
abundances; if we define X; as the number of members of a
particular species s per H nucleon in the background gas, the H*
region has Xyg+ = 1, Xge+ = 0.0955, and X, = 1.0955; the atomic
region has Xpo = 0.99, Xy+ = 0.01, Xyo0 =0.0955, and X, =
0.01; and the molecular region has Xy, = 0.5, Xy = 0.0955, and
X, =10"".

2.3.2 Nuclear inelastic scattering

CR protons with kinetic energies above a threshold value 7, =
2+ m,,/2mp)m,,c2 can scatter inelastically off nuclei in the ISM,
producing secondary particles, most commonly 77 mesons; here m, =
0.9383 GeV ¢~2 and m, = 0.2797 GeV ¢ 2 are the rest masses of the
proton and 7r°, respectively. In the process, the CR proton retains, on
average, only a fraction n;, ~ 1/2 of its initial energy, which makes
this a catastrophic loss process. We approximate the total cross-
section for nuclear inelastic scattering using the analytical fitting
formula proposed by Kafexhiu et al. (2014), which is well-calibrated
against both collider experiments and particle physics simulations:

()7

T o (Tx
30.7 — 0.96 log I + 0.18 log T mb, (16)

b

Onuc = €nucOpp ~ €nuc

where o, is the inelastic cross-section for pp collisions, T = (y —
1)m,c? is the kinetic energy of the incident proton in the frame of the
ISM, y = (1 4+ p?/m,*c*)'/* is the proton Lorentz factor, and €y, is
the ‘nuclear enhancement factor’ that represents the increase in the
cross-section relative to a pure H gas due to the presence of heavier
nuclei. We compute the €, from Kafexhiu et al.’s equation (24),
evaluated using the ISM elemental abundances provided by Draine
(2011, their table 1.4), and for a beam of CR protons alone. Note that
the cross-section drops to zero nearly discontinuously near 7' = T,
as is clear from the top row of Fig. 1.

For protosolar abundances (Asplund et al. 2009), the mean gas
mass per H nucleon is uymy, where my is the hydrogen mass and
pu = 1.4, and thus we can write the catastrophic loss rate for nuclear
inelastic collisions as
a7

Lye = Onucv s
Humy

where p is the total gas density, my is the hydrogen mass, and
v =cy/1 — y~2 is the proton velocity. Assuming each loss results
in the CR proton surviving but having its kinetic energy reduced by
a factor of n;, = 2, we can write the corresponding source function
(equation 15) for ‘secondary’ protons as having a multiplicity &, , =
1 and a momentum redistribution function

Douc.p—p(PIP) = 8 [T(p) = minT(P))] (18)

where T(p) is the kinetic energy of a proton with momentum p.

Inelastic collisions also produce both y-rays (mainly via the decay
of 7° mesons) and secondary CR positrons and electrons (mainly via
the decays of 7+ and 7~ mesons). We compute the y-ray emission
using the parametrization provided by Kafexhiu et al. (2014), which
gives the differential cross-section for production of photons of
energy € by CR protons of kinetic energy 7. This yields an emitted
specific power per CR proton

di\y _ fl‘ll.lC

0
Amx(T)F(T, €)v
de € Humy
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where € is the photon energy, and A, (7) and F(T, €) are
parametrized functions of the CR kinetic energy 7" given by equa-
tions (11) and (12) of Kafexhiu et al. (2014).

To compute the source functions for CR electrons and positrons,
we neglect the sub-dominant contribution from 7 and more massive
mesons, and focus on that from 7*. We compute the cross-
sections for production of these products following Yang, Kafexhiu &
Aharonian (2018); near the production threshold, and 7" < 2 GeV,
we use an interpolated cross-section taken from the tabulated values
shown in Yang et al.’s fig. 4, while at larger energies we follow them
in adopting’

(nﬂi ) UHUC ’

11
02:(p) = (ngs) = 0.78 w4 (w — 2)¥* — A + 3

(20)

Here, {n,+) is the energy-dependent multiplicity of production of 77 *

and w = ﬁ/mpcz =[2(1 + T/mpcz)]l/2 is the ratio of the centre-

of-mass energy to the proton rest mass. Decays of 7 then produce

final state e*, with the distribution of electron/positron momenta

given by

d¢nuc, p—et dEe
o

dp d /fe(xei)frr(xni)dErri~ 1)

Here, x;+ = E;+/E, is the energy of the pion created in the
collision normalized to the initial proton energy, x.+ = E.x/E =+ is
the energy of the electron or positron normalized to the pion energy,
and f; (x) and f.(x) are the distributions of the normalized energies
given by equations (6) and (36) of Kelner, Aharonian & Bugayov
(2006), respectively. Thus our final expression for the e source
functions, in terms of equation (15), is that the multiplicity function
&t p = Ozt [Opue, and the momentum redistribution function is given
by equation (21). Note that we do not at present follow final state
neutrinos, although it would be a straightforward extension to the
existing code to do so.

2.3.3 lonization

At the energies with which we are concerned, ionization of the
background gas is a continuous loss mechanism for all CR particles.®
We can generically write the resulting rate of momentum loss for a
CR of species s as

Z X ‘Cs ,s5,ions (22)

Dcts,ion =

dT/dp Anmy

SNote that in this expression we use o e, rather that fully adopting Yang
et al.’s approach of using oj, but then separately accounting for the
contribution of heavier nuclei to pion production using the approach of
Kafexhiu (2016); our approach amounts to assuming that heavier nuclei
produce the same ratio of 7+ to 7~ and the same pion energy distribution
as H. The error associated with this approximation is negligible except at
energies 0.1 GeV, where other processes are generally more important in
any event.

®Qur assertion that electron ionization losses can be treated as continuous
differs from the conclusions of Ivlev et al. (2021), who argue that ionization
losses for electrons must be treated as catastrophic. The difference is the
energy range of interest: while their computations follow electrons down
to ~keV energies, we are limited to 21 MeV by our use of relativistic
expressions for radiative loss rates. Calculations using the cross sections given
below show that, for a 1 MeV electron, ionising collisions that change the
energy of a CR electron by more than 10 per cent account for only 2.8 x 1072
of all collisions, and are collectively responsible for only 8.9 per cent of the
total energy loss rate; both these figures decrease as we go to higher electron
energies. For this reason, we treat electron ionization losses as continuous.
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where T and p are the kinetic energy and momentum of the CR
particle undergoing loss, the sum runs over all species s with which
the CR can interact, Xj is the abundance of that species per H nucleon,
and Ly ; is the loss function for that species, given by

WT/ S max dU\ .8, ion
Lx’.x.ion = / (W + I ) ———dW. (23)
0 W

Here, I is the ionization potential of species s, W is the kinetic
energy of the ejected electron, Wy s max is the maximum ejected
electron kinetic energy allowed by kinematics, and doy s ion/dW is
the differential cross-section for ejection of electrons with kinetic
energy W by collisions between CRs of species s and targets of
species s. We include H, H,, and He as target species, since these
overwhelmingly dominate the ionization losses; however, note that it
is trivial to extend the formalism we describe below to include other
targets.

We follow Ivlev et al. (2021) in taking our differential cross-
sections for ionization by CR protons from the semi-analytical model
of Rudd et al. (1992), which gives

(24)

dgl’,s,ion . 5 : Fl,s(Tp) + FZ.S(TP)w
dw o\, (1+w)

where w = W/, oy = 47m(2)NS, agp is the Bohr radius, Ny is the
number of electrons in the outer shell of the target species, R =
13.6 eV is the Rydberg energy, T}, is the proton kinetic energy, and
F, ¢ and F, , are empirical fitting functions given by equations (43)
and (44) of Rudd et al., which depend on T}, and the properties of
the target species, but not on W. The maximum energy allowed by
kinematics is W, s max = 4(m./m,)T, — Iy, and inserting this and
equation (24) into equation (23), the loss function is

R 2
Lp,x,ion = a()[v (T) |:F2.s(t) log (1 + wp,.v,max) +

(Fis(t) = Fos(D)) “}”7‘“] . (25)

1 + wp,s.max
where w5 max = 4t — 1 and t = (me/my)(T/I;). The total ionization

cross-section is

R\? Wy
iom = o F (1 p.s,max
UP,;,lon (e[} (Is> |: 2,A( )2(1 + wp,:,max)z +
Fl,x(t) wp.x.max(2 + wp,s,rznax):|
2(1 + wp.s.max)

(26

Note from Fig. 1 that there is a clear inflection in the proton loss
function near 1 GeV, where protons transition from sub-relativistic
to relativistic.

Similarly, we take our differential cross sections for ejection of
electrons of energy W by CR electrons of energy 7. from the RBEQ
model of Kim, Santos & Parente (2000, their equation 19, modified
as per the description of the BEQ approximation in their text),

4
dae s,ion (04

= X
(B2 + B2 +B)
Qs_z 1+2¢ 4
{ r+1 (1+w sz>(1+t’/2)2

(i

0. 8 )
((1+w)3+< —w>3) o 25 = 2 s | )

1 1;2 N
(t — w)2 (1+1/2)?
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where « is the fine structure constant and Qs and U, are the
dimensionless dipole strength and mean outer shell electron kinetic
energy for the target species; we take these latter two quantities from
table 1 of Kim & Rudd (1994). In the expression above, primes
indicate quantities normalized to the electron rest energy (i.e. f =
To/mec?, i =1 /m.c?), lower case indicates quantities normalized
to the ionization potential (i.e. r = T./I;), and §’s indicate the 8 factor
corresponding to a particular energy (i.e. 8; = [1 — 1/(f + 1)*]"?).
The maximum ejected electron energy normalized to the ionization
potential is we s max = (¢ — 1)/2, and inserting this and equation (27)
into equation (23) gives

L:e,s,ion = IsGO.ﬁon (gion,l + gion,Z) (28)
where
fon = o 29)
10n—2i; (/3[24-/33\4—/%%)’
&ion,1 =
Q,—2 2 2t 1+2¢
log—— +tlog—— | ——
t+1 Ogt+1+ Ogt+1 (1+t’/2)2+
(1+1)? ir? r—1
2—0,) |1 2
( Q)[Og & Taxee\2 )| T
(t—1y7 B} ) .
s 1 — B> —log(2i)] , 30
QoD OB T — A oD (30)
&ion2 =
0, 1 B > y
> 1— = log 1 —[ﬂ? — B2 —log2i)| +
1 Inr 1420 i? -1
2=0) 1=~ ~ e 5 e
t t+1(01+41/2) 1+1/2)? 2
The total ionization cross-section is
O¢ s.ion — UOﬁongion,Z' (32)

At the 21 MeV energies with which we are concerned, positrons
have almost exactly the same total ionization cross-sections as
electrons (e.g. Knudsen et al. 1990), and it is therefore reasonable to
assume similarly identical differential cross-sections. However, there
is one subtlety: for electrons the kinematic limit we s max = (f — 1)/2
is a result of the incident and ejected electrons being identical
particles, so itis not possible to say which is the ‘primary’ CR electron
and which is the ‘secondary’, ejected electron. The value of we s max
for electrons amounts to treating whichever electron has lower energy
as the secondary. For positrons, the incident and ejected particles
are distinguishable, so it is not obvious what to choose for we+ s max-
Fortunately, this choice makes relatively little difference for 2> 1 MeV
energies, since losses are dominated by collisions that eject electrons
with w < wyax; we therefore adopt the same kinematic limit for
positrons as for electrons, and thus the same loss function, but warn
that this approach would not be valid at lower energies.

In addition to the calculating losses, CRIPTIC reports the total
ionization rate for each target species. For a CR packet of species s,
the rate per primary CR at which ionizations of background species s
oceurs is ¢y = oy s jonVcr. Where veg is the CR velocity, and oy jon 1S
the total ionization cross-section, given by equation (26) for protons
and equation (32) for electrons and positrons.
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2.3.4 Coulomb losses

In an ionized medium, all CRs lose energy via Coulomb interactions
with the surrounding electrons. As with ionization, this process is
well-approximated as continuous at the energies with which we are
concerned. We take our loss rates from Gould (1972), interpolating
smoothly between the expressions provided for the classical limit, 8
< o (where B = v/c is the CR velocity normalized to ¢ and « is the
fine structure constant), the non-relativistic limit, « < 8 < 1, and
the ultrarelativistic limit, 1 — 8 < 1; these transitions are visible in
the loss rates plotted in Fig. 1, at least for protons. Our expressions
are generically of the form

. dEC - 62(1) 2

Pets,Coul = ( R) 7szt0p’ (33)
dp v

where Ecy is the CR energy,

4nee?
oy = [0 34

e

is the plasma frequency, m. is the electron mass, 7. is free electron
density, and By is the stopping number, which is a function of Ecg
with a different functional form for different CR particle types. For
protons, interpolating between Gould’s three cases gives

202 2 2
M)+11n 1+(l?3)]—ﬂ (35)

Bso =1 s
pstop n( haop 2 2

where I'c = 0.5615 is a numerical constant. The equivalent expres-

sion for electrons is
V28(y = DBmec? 1 Tep)?
(y )ﬂmc}+—ln1+<6ﬁ)
hey, 2 o
2 ma s+ 0
- n(l — _°
2 y? 1-36
82 [y —1\*
— | — 36
+ 4( , ) , (36)
and for positrons is
Y25y = DBmec?] 1 Tep\?
R e RS N N
hay, 2 o
s /y—1\*[1 1 3 —1\* /28 &
() e () (22
4 \y+1 2y 2p? y 3 2
s (y—1\? y2—1
8\ v 22

8 -1 2 2 —1\?%s2
—7<V ) y+2_ v 5+<V ) 1 @
2\y+1 14

1 v? 3
Here y is the CR Lorentz factor, and § is a fitting parameter for which
we adopt the recommended value § = 1/2.

Be’,slop =1In |:

Be*,slop =1In [

+34

2.3.5 Synchrotron radiation

Synchrotron radiation is a continuous loss mechanism for CR
electrons and positrons.” The rate of energy loss is given by the

In sufficiently strong magnetic fields synchrotron losses can be significant
for protons as well, but at present we do not include these. It would be
straightforward to do so in the future, however.
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usual loss formula for an isotropic distribution of pitch angles (e.g.
Blumenthal & Gould 1970),

dE 4
(—) = —-orcB?y?Us, (38)
dr syne 3

where f = v/c, o is the Thomson cross-section, and Up is the
magnetic energy density. We therefore have

P = *OTC,BI)/ZU (76 ) 1 (39)
CLs,sync N
ts,Sy! 3 B i

The corresponding time- and direction-averaged specific power that
an observer sees per CR electron or positron is

3 b4 o
v _ M/ sina— / KspE)deda,  (40)
0 v

2
de mec Ve, L Jv/(ve) sina)

where v = ¢€/h is the photon frequency and v, | = 3eBy*/4wm.c is
the cut-off frequency for CRs with a pitch angle o = 7/2, and Ks/3(§)
is the modified Bessel function of order 5/3. Note that synchrotron
radiation is not isotropic with respect to the local magnetic field; the
quantity we compute here is the mean power radiated over 47 sr.
Similarly, we do not at present compute the polarised intensity that
would be seen by an observer in a particular direction.

2.3.6 Bremsstrahlung

Bremsstrahlung is a catastrophic loss process for electrons and
positrons, since, at least in the relativistic regime, energy loss is
dominated by photons whose energies are a significant fraction
of the CR energy. We adopt the bremsstrahlung differential cross
sections given by Blumenthal & Gould (1970),

doe: s br are? E.x+ —¢€ 2
= 1 _— A
de € { |: + ( E.+ > P1(8)

_2Ee:t—6 A 41
gTi%( )7} 41)

where € is the energy of the photon, E.+ is the total (rest plus kinetic)
energy of the CR electron or positron, « is the fine structure constant,
re is the classical electron radius,

€nec?

A= — ——— (42)
Ao ZE+(Eex — €)

is the screening factor, Z is the nuclear charge, and ¢, and ¢, are the
screening functions. For species s consisting of unshielded charges
(free protons, electrons, and He nuclei),

O = ¢ = —42> {m QuZA) + ﬂ , (43)

while for shielded nuclei (H, He, and He™"), we use the tabulated
screening functions provided by Blumenthal and Gould.

The functional form of the differential cross-section requires some
care in our numerical treatment; the most obvious approach is to
integrate the differential cross-section to compute a total cross-
section, and set the catastrophic loss rate to be proportional to it.
The problem is that, as a result of the 1/e dependence, the total cross-
section is logarithmically divergent, even though the total energy loss
rate is finite. To handle this situation, we divide bremsstrahlung losses
into a catastrophic component, representing losses due to photons
with energies larger than f.,, = 1/10 of the CR kinetic energy, and a
continuous part, accounting for losses due to lower energy photons.
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For the catastrophic part the cross-section is

T do, s,bi
Oet 5 br—cat — / —on dE, (44)
e

cat Ts:t dE

where T+ = E.+ — m,c? is the CR kinetic energy; the corresponding
catastrophic loss rate

P
Lbr = [ v Z: ngei,s,brfcata (45)

where v is the CR velocity, p is the gas density, and X; is again the
abundance of species s per H nucleon. The momentum distribution
function for the scattered CRs is

depyr dT.=+ doet g br
X | ———
a2 (%

, (46)

dp dp )E:Tc:t(p/)—Tyi(P)

where the differential cross-section doe.= ,p/de is evaluated at a
photon energy € corresponding to the different between the initial,
T.=(p’), and final, T.=(p), CR kinetic energies, and, following our
catastrophic-continuous division, we set the catastrophic loss cross-
section to zero if Te+(p) < fTex(p).

For the continuous part of the losses, we define a loss function by

fcalTei d
£e*,s.br = / € Jetr de, (47)
0

de

analogously to the ionization loss function introduced in Sec-
tion 2.3.3. The corresponding loss rate is
. v P
Pcts,br = dTei/dp - Z Xs['s’,s,br- (48)

We show the continuous and catastrophic loss rates in Fig. 1. Note
that the continuous loss rate drops sharply at energies T.= 2 0.1 GeV
for the H 1- and H,-dominated regions, but that a similar transition
does not occur for the catastrophic loss rate. This is a direct result of
the behaviour of atomic shielding, which is is significant when A <«
1. Examining equation (42), we see that A < 1 when ¢ E¢+ > m.c?
and E.+ > € are both satisfied. The former condition is met only
when 7.+ 2 0.1 GeV, while the latter is met only for the continuous
part of the loss rate, which is why we see shielding effects only for
continuous losses at high energy. Also note that the bremsstrahlung
loss rate, while it drops at T.= 2 0.1 GeV, eventually stabilizes and
becomes constant at yet higher energy. This is as direct result of the
ionization fraction being non-zero even in HI- and H,-dominated
regions; at sufficiently high energy, the continuous loss rate becomes
dominated by the residual population of free protons and electrons,
which are unaffected by shielding.

Finally, the specific power radiated by bremsstrahlung photons per
CR primary is

av.— »p
de  ppmp

daei,s,br
ve Y X, o (49)

Note that this includes photon emission at all energies; we separate
catastrophic and continuous losses for the purposes of calculating CR
propagation, but there is no need to separate them when computing
photon emission.

2.3.7 Inverse Compton scattering

Inverse Compton (IC) scattering of electrons and positrons can be
either a continuous or catastrophic loss process depending on the
initial CR Lorentz factor y and initial photon energy €. In the
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Thomson limit, which applies when

, dye’
I'e',y) = 5
mecC

€

<1, (50)

continuous loss is a good approximation, while in the Klein—
Nishina regime, I' 2 1, the CR typically loses a substantial fraction
of its energy with each scattering (Blumenthal & Gould 1970).
CRIPTIC must be able to operate in both regimes, since, for example,
we wish to be able to model both ~GeV CRs interacting with CMB
photons (I' ~ 107%) and ~10 TeV CRs interacting with visible or
UV photons (I" ~ 10?). We therefore make use of the general Klein-
Nishina expression for the cross-section, rather than the simplified
Thomson cross-section. In this general case, the differential rate at
which IC scattering produces photons of energy € is (Jones 1968;
Blumenthal & Gould 1970)

AN 27mrlc [ 14N
— = —S(e, €, y)de’, (51)
de y2 o € de

where r, is the classical electron radius, dN /de’ is the specific number
density of the photons being scattered, and

2qIng +(1 +2q)(1 —q)+

Se, €', y) = ;l”l:g;ql (1—4q), 0<g<l1 (52)
0, otherwise
where ¢ = €/[[(¢, y)(ymec* — €)]. Here S is a dimensionless

function describing the shape of the Klein—Nishina cross-section.

To proceed further, we assume that the radiation field with which
CRs are interacting can be described as a sum of dilute blackbodies,
characterized by a temperature 7T and a dilution factor Wyg; the
CMB has Wgg = 1, Tgg = 2.73 K, while the starlight field of the
Milky Way is well-approximated by three components with (Wpg,
Tep/K) = (7 x 10713,3000), (1.7 x 10713, 4000), (1 x 10714, 7500)
(Mathis, Mezger & Panagia 1983; Draine 2011). The corresponding
photon number density for each component is

dN’ 8 €?

G = VBB 03 et — 1 (53)

At this point it is convenient to define non-dimensional versions
of the initial photon energy ¢, the final photon energy ¢, and the
blackbody temperature; we therefore define

€ € 4]/](3 TBB

= - Cpp — —+B'BB 54
kg Tgp Y ymec? BB mec? 54

With these definitions, we can rewrite equation (51) for a single
component of the radiation field as

dN _ o c
dy = 8my3 \re

where « is the fine structure constant,

dFIC _ /OO X
dy B Xmin e’ —

describes the differential scattering rate in normalized photon energy
units, Xmin = y/[['gg(1 — y)] is the minimum normalized initial photon
energy that can produce a scattered photon with normalized energy
y (i.e. the minimum value of x for which ¢ < 1), and S(y, x, y) is
given by equation (52), but with the substitution I'(¢', y) — xI'gp
and g — y/[T'ggx(1 — y)]. The total scattering rate and energy loss
rate due to a single radiation field component are then

C(3 C 2 ! dFIC
= s (i) oot [ 0 i

dF
Wepl2, — o < (55)

lS(y,x,)/)dx, (56)
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. o’ < ' dFc
E = Wggmec FE BB y——dy. (58)
8y? 0

In the integrals above, the parts of the integrands at y < 1 are
well-approximated as continuous loss, while those from y near
unity correspond to losses that should be treated catastrophically.
Following our approach with bremmstrahlung, we handle this by
somewhat arbitrarily placing the boundary between the continuous
at catastrophic regimes at y = f.,c = 1/10, and we therefore set the
continuous loss rate to

. dT,+ ol <
Dets,IC = ap 812 mec Z W; 8877 5 Gic(Ti BB).

(59)
where we have defined
. fcul dFIC
Gic(T'i ) = y——dy. (60)
0 dy

The sum in equation (59) runs over all the components of the
radiation field, and I'; gg and W; gp are the values that apply to
the ith component. Similarly, the catastrophic loss rate is

o’
Lic = 87'[)/ ( )ZWIBBFIBBFIC(FLBB) (61)
where
L dFR
Fic(T;pp) = / —dy. (62)
e Ay

In the limit I'gg — 0, the functions Fic and Gic have the property
that Gic — (*/135)['3; and Fic/Gic — 0, so the continuous loss
rate approaches the usual expression for the Thomson limit, and the
catastrophic loss rate becomes negligible in comparison. On the other
hand, in the limit 'gg — 00, we have Gic/Fic — 0, and catastrophic
losses dominate. This behaviour is visible in Fig. 1, where we see
continuous losses being dominant at low CR energy and giving way
to catastrophic losses at higher energy; also note that, in the HY
and HI regions, there are two distinct peaks of catastrophic loss,
one at higher energy arising from the cosmic microwave background
photon field with 7gg = 2.73 K and one at lower energy from the
starlight field with Tgg = 5000 K.

For the part of IC losses that we treat as catastrophic, since
electrons and positrons are conserved, the multiplicity &+ .+ = 1.
Consistent with our division between continuous and catastrophic
losses, the momentum redistribution function is

déic 1 dE.+ > “/"’BBri%BB@(y I sz ic -
ap Ee dp 2 WiBBriz,BBFIC(Fz,BB) '

where y = 1 — Ec+(p’)/Ec(p), and the purpose of the Heaviside
step function ®(y — f,) is to enforce our approach that we only treat
as catastrophic interactions that cause the CR energy to change by
more than f.,, = 10 per cent at a time. Finally, the specific radiated
power per CR primary is

dw o’ dF;c
Wi gsT2 : 64
de 871)/()2 BBy &%)

where in this expression we do not include the step function
because the observable emitted power includes both continuous and
catastrophic losses.
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2.3.8 Positron annihilation

The final (catastrophic) loss process we include is positron annihila-
tion with electrons in the background gas. For the relativistic energies
with which we are concerned, positronium formation is unimportant
compared to direct annihilation, and Coulomb corrections to the
annihilation cross-section are small (see the review by Prantzos et al.
2011), so the catastrophic loss rate is well-approximated by

Lannin = ogv (65)

eIy ’
where v is the CR positron velocity, uemy is the mean mass per
electron (e = 1.17 for Asplund et al. 2009 abundances), and o4 is
the Dirac (1930) cross-section, which for a CR positron with Lorentz
factor y is given by

U_rrre2 y2+4y+1]n( N 2_])_ y+3
TyHr| yi-1 revy V=1

(66)

The energy dependence of the cross-section is visible in Fig. 1.

We obtain the specific radiated power per CR positron by first
transforming to the centre-of-mass frame of the electron—positron
collision, which has Lorentz factor ,/y relative to the lab frame
defined by the background gas. In this frame, the electron and
positron both have energy Ecy = ﬁmecz and momentum pcy =
(y — Dmec, so each annihilation produces two photons with
energy €cy = ﬁmecz, and an angular distribution (equation 5.106,
Peskin & Schroeder 1995)

dp 24y + = Dty =2 [y + (1 = youdy]”

5 (67)
diem Y+ = y)uem

where oy is the cosine of the angle between the direction of collision
and the direction of the emitted photons. The corresponding angle
measured in the lab frame is © = (ucm + Bem)/(1 + Bemiem)s
where ey = /1 — 1/y is the normalized velocity of the centre-of-
mass frame, and the corresponding photon energy measured in the
lab frame is
€CcMm

T A= o)

Thus the energy distribution of the photons produced must be
proportional to (ducm/de)(dp/dicm)-

While this functional form describes the distribution of CR
energies that would be measured by observers in the lab frame
isotropically distributed around the direction of the collision, we
must of course obtain the same energy distribution for the situation
of interest to us, where a single observer at rest measures the photon
energy distribution emitted by an isotropic collection of annihilating
positrons averaged over all 477 sr. We can therefore write the quantity
of interest to us, the rate per unit energy per CR positron emitted by
an isotropic positron population as measured in the observer frame,
as

dN 2L dFp
de ~ mec? dy ’

= [y +Vr (v - 1)MCM] mec’ (68)

(69)
where we have defined y = e/m.c? as the ratio of photon energy
to electron rest energy, the function dFp,/dy describes the energy
distribution of the received photons, and we adopt the normal-
ization [(dFpes/dy)dy =1, so that the total photon production
rate integrated over all energies is 2L, i.e. every positron that
annihilates produces two photons. Since the energy distribution
function dFes/dy o (dpcm/de)(dp/dicn), it is straightforward to
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work out its functional form:
dFpos _ o [y“ =4y’ +2y(14+3y)y* —4y*(L+y)y +2¢°
dy ¥y —2y)?

)

(70)

where dFp./dy is non-zero only for energies y € (y_, y;) with y. =
y + gand g = /y(y — 1). The normalization factor N required to
ensure unit integral over this energy range is

2
N=7(3—§—4y+4g)-
y y

{3g7/—gy2—4gy3—y [+y @y —y-4)]+

[(3—10y)y + g — 68y + 68> + 8gy*] tanh™’ 5 n

.. 8
2y3(1 + 4y)sinh ‘—}. 71
NG

We can now write down our final expression for the specific power
per CR primary,
dv dFpos
dv :zm( >y pos. )
de ey dy

However, we caution that this expression only includes emission from
positron losses ‘in flight’, which likely represent only a minority
of total positron annihilations, with the balance occurring due to
the formation of positronium after positrons have dropped to near-
thermal energies via other loss processes (Prantzos et al. 2011). We
do not include a treatment of positronium formation or the resulting
emission in CRIPTIC, though it would be straightforward to apply such
a model to the output of a CRIPTIC calculation, since CRIPTIC records
the location and time at which each CR packet drops below the
minimum momentum threshold at which we cease to follow it.

3 NUMERICAL METHOD

We can obtain solutions to the FPE, equation (8), by solving the
corresponding SDE, equation (14), to obtain the trajectories through
phase space q(¢) for a large number of sample CR packets, including
extra steps to account for losses and sources. The phase space
distribution of those packets at any time ¢ then provides an estimate
of the phase space density f(q) at that time. Each sample packet is
characterized by a phase-space position (x, p), a weight Y indicating
the number of individual particles it represents, and the mass m and
charge Ze of the particles that comprise it; each packet represents
only a single species, but a computation may include an arbitrary
number of species, each with its own distribution function f and
corresponding sample packets.

CRIPTIC advances the sample packets through a series of time-
steps At. The procedure for updating from time * at the end of the
nth time-step to time £ * D = /" 4+ A#" has four parts, which we
describe in detail in the subsequent sections:

() If the diffusion vector, drift vector, or loss rate depends on
the CR distribution function f (i.e. if the problem is non-linear),
estimate the required functions of f at the position of each packet
(Section 3.1).

(ii) If any CR sources are present, inject new packets (Section 3.2).

(iii) Advance all packets to time /" *+ D using an Euler-Maruyama
(EM) update; in the process determine the next time step A"+ D
(Section 3.3).

(iv) Check for production of secondaries during the time step,
which are treated stochastically; if any secondary packets are
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produced during the time step, update them to time "+ as well,
iterating until no packets remain (Section 3.4).

We first describe the operations of each of these steps in serial,
and then how we modify the procedure for parallel computation in
Section 3.5. We describe some general features of the CRIPTIC im-
plementation in Section 3.6.

3.1 Step 1: reconstructing the distribution function

In a non-linear problem, the drift vector A or diffusion vector
depend on the CR distribution function f itself, so the first step in
an advance is to reconstruct the distribution function seen by each
sample packet so that these non-linear dependencies can be evalu-
ated; in a linear problem we skip this step, as it is computationally
expensive. As we discuss below, CRIPTIC is largely agnostic about
the particular form of the non-linearity, and can accommodate a wide
range of CR propagation models. However, it is not computationally
practical to allow arbitrary functional dependence on f. We therefore
limit the type of non-linearity we allow to what is by far the
most common case. This, namely, is that the agent responsible for
generating the non-linearity is resonant interactions between CRs
and waves in the background plasma, and the waves are themselves
generated by the CRs via the streaming instability. This constrains
the functional form of the non-linear dependence on f, because
CRs with a particular momentum p can only resonantly interact
with waves whose wavelength is smaller than the CR gyroradius
re. When dealing with multiple CR species, this condition is most
conveniently expressed in terms of the CR rigidity R = pc/|Z]e,
where Z is the CR charge in units of the elementary charge e. The
gyroradius r, = R/B, where B is the local magnetic field strength and,
since this is fixed at any given position, the condition for resonant
interaction then implies that CRs of rigidity R can experience non-
linear interactions with other CRs whose rigidity satisfies R > R.
Given this consideration, we restrict CRIPTIC to computing non-
linear effects that can be described in terms of a dependence of
the propagation or loss rates for a CR of rigidity R only on integrals
of f over particles with rigidities R > R. Other dependenies will be
considered in future expansions.

With this physical picture in mind, CRIPTIC estimates the CR
number density n g/~ g, pressure Pg- g, and (kinetic) energy density
Uy -, and the gradients of these quantities at the position of each
packet, considering only the contributions from CRs with rigidity
greater than or equal to that of the packet being considered; we
will drop the R > R subscript from this point forward for brevity.
For a packet with momentum p and charge Ze, these quantities are
(Zweibel 2017)

n 0 1
Pl=3[ |uwr]ia 3)
U pZs|Z T,

s

where the sum runs over all CR species, Ze is the charge on species
s, f; is distribution function for species s evaluated at position X,
and v and T are the velocity and kinetic energy of a CR of species
s with momentum p'; note that these functions depend on species s
because they depend on the particle mass. Thus n, P, and U are simply
integrals of f over momentum, evaluated with different weights — 1
for n, vgp for P, and T; for U.® The expressions for the gradients are
completely analogous, simply replacing £ with V £ in equation (73).

8Extensions of CRIPTIC to compute other quantities that are defined by similar
weighted integrals over f are trivial to implement if required, and simply
require supplying the weight function for that quantity.
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We evaluate these integrals by approximating them with Gaussian
kernel density estimates; for each packet we define a bandwidth
tensor H (computed as we describe below), and approximate the
integrals above as

n 1
P = Z KH(X - Xsi)’rxi(asi Usi Psi | » (74)
U .0 T

where the sum runs over all species s and all packets i belonging
to that species, Y, X, Psi> Usi» and Ty; are the weight, position,
momentum, velocity, and kinetic energy of packet i of species s, ®;
is unity for py; > p(Z,/Z) and zero otherwise, and

[ 1 1
Ku(x) = mexp(—EXTH_'x) (75)

is the usual 3D Gaussian kernel. The analogous expression for the
gradients of these quantities are

Vn 1
VP | = —Hg' > (X = X)) Kng (X = X:i) Y5Oy | v5ipsi | -(76)
vU .0 TS,'

Note that the bandwidth Hy used to estimate the gradient is not the
same as that used to estimate the quantities themselves, as discussed
below.

We evaluate the sums in equation (74) using an order Nln N
algorithm based on a kd-tree decomposition. Our procedure is as
follows. First, we sort the packets into a balanced kd-tree, and
for each node in the tree we record the sum of the weights > T
and squared weights YT for all packets contained in that node.
Once the tree has been constructed, the next step is to determine
the bandwidth tensor H for each packet. There is a vast body
of literature on optimal methods for bandwidth selection, but the
overriding constraint for us is that we require a method that operates
quickly and without requiring global communication (for distributed
memory calculations); the latter constraint rules out methods such as
cross-validation or multistage plug-in selectors.

Instead, we make use of the tree structure itself to make an estimate
of the local bandwidth, by choosing the bandwidth that brings a target
number of neighbours Nygb, targer Within the kernel; our default value
for this parameter is 1024, but users can choose alternate values. We
define the effective neighbour number for each node of the tree as
Nagb, node = (3-T)?/3-Y?, and for each packet we start at the leaf of
the tree that contains it, and climb the tree until we reach a node for
which Nygp, node = Nigb, target (Or the root of the tree). At this point,
we set the bandwidths H and Hy for the packet by applying the
optimal normal scale bandwidth selectors (equations 3.17 and 3.18,
Garcia-Portugués 2022),

4N s

H= (§> Nogh node = 77
4N\ 29 oo

Hy = <5) Nogbonode 2> (78)

where ¥ is the covariance matrix for the points in the node.

Once we have selected a bandwidth for each packet, we use the tree
to evaluate equations (74) and (76). We defer details of the algorithm
to Appendix A.

3.2 Step 2: injecting packets

The second step in our algorithm is that each CR source present in the
simulation volume adds new CR packets; in terms of equation (8),
this represents the source term S. A source is characterized by its

MNRAS 517, 1355-1380 (2022)

€20z 11dy Lz Uo Jasn Aysianlun [euoleN uelensny ‘g4 Buipiing ‘Aieiqi seizusi ‘9 AQ €59/ 1 9/GSEL/L/21S/0IME/SEIUW/WOO"dNo"ojwapede//:sdny Wwoly papeojumoq



1366

position x; at the start of the time-step, the first two derivatives of
its position X, and X;, the species of CRs it produces, the total rate
N at which it produces CRs (measured as particles injected per unit
time), and the momentum distribution df/dp of those particles, where
we normalize df/dp to have unit integral. Our current implementation
uses sources with truncated power-law distributions in momentum
df/dp oc p? over the interval (py, p;), but extension to alternative
functional forms of the momentum distribution is trivial.

When we inject packets, we assign each packet an injection
time #; drawn from a uniform distribution from 7™ to ™ + Af™,
and an injection position X; = X, + X,(f; — t™) + %, (t; — t™)?/2.
Assigning packet momenta requires some subtlety, because the naive
approach — drawing momenta from df/dp — is very computationally
inefficient. For most realistic sources the momentum distribution is
very steep, df/dp ~ p~22, and so if every injected packet represents
an equal fraction of the CR population, then a very large number of
packets are needed to capture the behaviour at high momenta.

For this reason, we do not draw momenta from df/dp, but instead
from an alternative distribution dfgmp/dp that is generally flatter;
our default choice is dfsamp/dp o< p~!, corresponding to a uniform
distribution in logp, but users can alter this. To compensate for
undersampling low-p packets compared to their true numbers, we
increase the weight of those packets we do draw. Specifically, during
atime step in which we draw a total of Np,cret CR packets to represent
the CRs injected by the given source, we set the weight of each packet
we inject to

o N At®™ ( df/dp )
dfamp/dp )

where df/dp and dfs,mp/dp are both evaluated at the momentum p of
the newly drawn packet. The factor in parentheses ensures that the
momentum distribution function of the injected packets, weighted
by the packet weights Y, follows df/dp.

The number of packets Npacie injected by each source is set by
a user-specified packet injection rate Npacker» Which specifies the
number of primary CR packets injected per unit time by all sources
in the calculation; this choice determines the trade-off between
computational cost and fidelity in sampling the distribution function,
and the optimal choice is necessarily problem-dependent. When only
a single source is present, we trivially have Npgcker = N dr. In the
more general case where multiple sources are present, we assign
each source a weight

(79)
N, packet

" d sam;
Ts:N/ fsa Pdp, (80)
dp
and then
Y,

Npacket,i = == Npacket A1 81

packet,i Zj Ts,j packet ( )
packets for source i, where the sum runs over all sources present.
This ensures that the total number of packets injected is Npacke[ dr,
and that the total momentum distribution of all packets injected is
distributed as dfsamp/dp.

Once packets have been injected, we reconstruct the number
density n, pressure P, and energy density U at their phase space
locations using the procedure described in Section 3.1, exactly as for
the packets that already exist at the start of the time-step.

3.3 Step 3: advancing packets
Consider a sample CR packet that starts a time step with phase space

position q*) and weight Y™, and let #* be the time at which the
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packet starts the step; for packets that existed at the start of the time
step 1 = 1™ and similarly for ¢*” and weight Y, while for newly
created packets 1) = r;, where ¢, is the time at which that packet was
injected, and the phase space position q and weight Y correspond
to those with which the packet was injected. We must advance the
packet to time "+ through a series of sub-steps. We begin each
sub-step by computing the drift and diffusion vectors A and k, and
the sum of the catastrophic loss rates due to all processes L, given
the current properties and phase space position of the packet; if the
distribution function f or quantities derived from it are required,
we use the reconstructed value obtained in Step 1. From these, we
compute a series of time step constraints associated with spatial
drift, spatial diffusion, momentum drift, momentum diffusion, and
catastrophic loss:

Ax
Al it = — (82)
VAT + A5 + A3
A 2
Atx_gift = — (83)
max(K” s KL)
Aty it = ﬁ (84)
2
P
Aty _giff = — (85)
e KPP
1
Aflgss = —. (86)

L
Here Ax is the smaller of (i) a user-specified length-scale that
describes the structure of the background gas through which the
CR packets move (and thus the size scale on which A and x might
be expected to vary) and (ii) the square root of the geometric mean
of the eigenvalues of the bandwidth tensor H, which describes the
typical size of the kernel used to estimate f. We then set the overall
time step to

At = min (t(”“) — ™)

C
-1 -1 -1 -1 -1 |- (87
AL g+ AL i + ALy grin T Al g + Aljggg
where C is a user-specified tolerance with a default value of 0.25;
note that the sub-step size At < A",

Once the time step has been set, we first update the packet weight
via

T(T) — T(*)e*L At7 (88)

where (") indicates the state after the update, and we next update the
momentum through a standard EM step (Gardiner 2009),

PP = p® + AyAL + 1y /KpAt, (89)

where 7 is a random variable drawn from a distribution with unit
mean and zero variance. At this point we check for creation of
secondaries, a procedure we describe in Section 3.4, and we delete
packets for which p or Y/Y;, where Y; is the packet weight at
injection, fall below user-specified tolerances; this is to limit the use
of computational resources following packets that represent either a
negligible number of particles or that have fallen to energies below
those in which we are interested.

The final step is to compute the new spatial position, which we
also do through an EM update,

5D = x4 A, A+ /b 90)

where n is a vector of three independent random variables with
unit mean and zero variance. However, there is a subtle difficulty
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in implementing this expression: the positions here are written in
the local TNB basis, which is not the same at every position in
space. In principle we could handle this issue simply by evaluating
the TNB basis vectors in our fixed coordinate system at the start of
every sub-step, using the equation above to compute the displacement
of the CR packet along these basis vectors, and then transforming
these displacements into our fixed coordinate system. However, due
to the first-order nature of the EM scheme,’ this approach leads
to considerable numerical drift of packets across field lines. We
therefore follow Merten et al. (2017) in circumventing this problem
by dividing each EM step into a series of sub-steps during each of
which we recompute the TNB basis vectors, carrying out those sub-
steps using an adaptive, higher order method that provides vastly
better field-line tracing.

Specifically, let & be the position in the fixed frame of the
simulations, and define an effective ‘velocity’ in the local TNB frame
by

e = AYOA; 4y [ 91
5y = A8+ [ o1

where the superscript (v = 0) indicates the drift vector A evaluated
with the advection velocity v set to zero; we separate out the advection
velocity because it is not defined relative to the TNB basis. We then
carry out a Runge—Kutta—Fehlberg 4th—5th order (RKF45; Fehlberg
1970) update of the position in the fixed frame & by setting the
derivative at each stage of the RKF45 update to

& = it 4+ of + i3b+ v, (92)

where the basis vectors {, fi, and b are recomputed at every stage,
taking into account how the TNB basis vectors change as the packet
moves. If the field does not vary in space, then the basis does not
change, and equation (92) reduces to the standard EM update. As
is usual with the RKF45 update, at the same time we compute the
update, we can also compute an error estimate; if that error estimate
exceeds some specified tolerance, we divide the RKF45 time step At
into two sub-steps of size A#/2, repeating the subdivision recursively
as necessary until the error estimate drops below a specified tolerance.
In this way we ensure that packets follow field lines accurately.

At this point, we have updated all packet variables for the sub-step
At. We repeat this process until each packet is advanced to the final
time £+ V.

3.4 Step 4: catastrophic losses and secondaries

One of the steps in the advance procedure described in Section 3.3 is
to create secondary packets, where secondary here is used to mean
any packet created from another packet, rather than from a source
or present in the initial conditions. As described in Section 2.3,
the source function describing the secondaries created by some
catastrophic loss process i can be characterized in terms of the loss
rate L; for the process, the multiplicity function &; ; that describes
the multiplicity of secondaries of species s for that process, and the
momentum distribution function ¢; ; for those secondaries. Note that
L;, & 5, and ¢, , are all functions of the momentum p’ of the CRs
undergoing loss, but in the discussion below we do not write out this
functional dependence explicitly for compactness.

9Higher order schemes such as the Milstein algorithm (Gardiner 2009) are
unfortunately not usable for our problem, due to the potentially complex
dependence of the diffusion coefficients on position.
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Now consider a time step of length Az during which a CR packet
of statistical weight Y experiences a total loss rate from all processes
L =Y ;L;. As a result, the weight of the primary packet is reduced
to Ye %4, The total number of secondaries of species s created by
loss process i in the course of this evolution is

Ti,s,sec = gi‘x% (1 - e_LAt) T. (93)

A naive implementation of secondary production would be to
create secondaries with this weight every time step. However, doing
so would quickly make the calculation impossibly expensive due
to the rapid proliferation of packets. We therefore instead set a
probability p; ;. <1 that each packet spawns a secondary of
species s via loss process i during each sub-step of its advance
(Section 3.3), and increase the statistical weight of the secondaries
by a factor 1/p; s sc to compensate, so that the expected statistical
weight has the correct value. To be precise, for any secondaries we
do create, we assign them a weight
Y, = Sis Li (1—e™2)Y (94)

Di.s.sec L
If a secondary is created, we assign its initial position to be the same
as that of its parent at the start of the sub-step, and we assign its initial
momentum by drawing from the momentum redistribution function
®i,s-

We set the secondary creation probability p; .. for each process
and species to a value proportional to the expected secondary creation
rate &; (L;. We then normalise the probability as follows:

Lisi s —LA
i,s,sec — Jsec —_ = 1 - ! )
Pi.s sec f,ec Ej Lj le v‘;:j_s/ ( e )

(95)

where the sums in the denominator run over all processes j and sec-
ondary species s, and f;. is a user-settable dimensionless parameter
that functions analogously to Npacke[ in that it parametrizes the trade-
off between fidelity and computational cost in tracking secondaries.
With this choice, the weight assigned to each secondary created then
reduces to
v, = 2 ki 2wy 96)
jSCC L

To understand the meaning of the parameter f,.., first note that the
expected number of secondaries created during a time-step, summing
over all loss processes and all species, is

(Nsec >l = Zpi,s,sec = fsec (1 - eiLAt) . (97)

i,s

After N such steps the expected number of secondaries created is
(Nsee) = N(Nsee)1, and the weight of the original packet will have
been reduced by a factor e ™A', Thus if we let Y; and Y/ be the
initial and final weights of the packet undergoing losses, and adopt
the limit of small time steps, LAt < 1, then we can write the expected
number of secondaries created as

T;
(Nsec) = fsec In —. (93)
Ty
Thus we see that fi.. determines the mean number of secondary
packets created per e-folding of the primary packet weight; a value
of fe.c = 1 corresponds to creating an average of one secondary per
e-folding, while a value of fi.. = 1/In10 & 0.434 corresponds to
creating one secondary per factor of 10 reduction in the weight of the
primary. We choose the latter as our default, but the optimal choice
likely varies from problem to problem, depending on how much loss
the primary particles suffer.
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3.5 Parallelism

CRIPTIC is parallelized using a hybrid MPI-openMP model. Within a
single MPI rank, it uses openMP threads to carry out the advance for
all the packets owned by that rank. This involves two synchronization
points: one at the end of the step when we compute the next time
step, and one after calculating any non-linear terms in the drift and
diffusion vectors prior, since this calculation must be completed prior
to moving any packets.

The MPI parallelism has two parts. The first is a step to distribute
the packets across ranks to maintain load balance. For this purpose
we use the PANDA algorithm described by Patwary et al. (2016);
briefly summarizing here, the algorithm constructs a global kd-tree
and uses it to partition packets between ranks based on their spatial
position. Construction of a kd-tree requires two steps at each level of
partition: choosing a dimension along which to divide the packets,
and then choosing a point in that dimension to partition the data.
The first step is straightforward to carry out in parallel: the ranks
compute the variance of positions in each dimension, and since this
involves only summation operations, parallelizing is straightforward.
We choose to split along the dimension of maximum variance. The
second step, choosing a partition point, requires more care, since
it is expensive to find the median point — the traditional choice
for the partition — in a distributed memory parallel calculation.
Instead, we find the median approximately by selecting a set of
sample points from all ranks to mark the edges of a histogram,
and counting how many points on each rank fall into the various
histogram bins. The counts can then be reduced in parallel, allowing
us to approximate the value of the median. This process repeats
recursively at each level of the tree, until the desired level of leaves
are created. Each leaf is assigned to an MPI rank, and the packets
within each leaf are then sent to that rank. In practice, since the
tree changes little from time step to time step, during most time
steps the boundaries of leaves move little, and thus little data need
be communicated to maintain load balance. Once the leaves of the
global tree have been assigned to MPI ranks, we construct local
kd-trees below those leaves, exactly as we do in a non-parallel
calculation.

The second part of MPI parallelism is to carry out kernel density
estimation in parallel when packets are distributed across ranks. As
with the remainder of the tree algorithm we use for the kernel density
computation, we defer details to Appendix A.

3.6 Implementation notes

CRIPTIC is written in C++, based on the C++17 standard; we have
avoided C++ 20 features to ensure compatibility with somewhat
older compilers. A key aspect of the design is to maximize user
flexibility in specifying (1) the initial conditions, (2) the properties of
the background gas and radiation field through which CRs propagate,
and (3) the underlying plasma physical model that describes CR
propagation. While flexibility in initial conditions is standard in sim-
ulation codes, flexibility in the background gas state and propagation
model is more challenging.

In CRIPTIC, we achieve this using C++ classes. The state of the
background gas is defined by a pure virtual interface class, which
can be specialized by a user to describe an arbitrary gas distribution.
We provide specializations for some standard cases, for example
where the gas distribution is specified in terms of an analytical
function, a static Cartesian grid, or a series of snapshots in time
that are each stored on Cartesian grids but, given this flexibility,
users can implement their own classes to describe arbitrary time- and
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position-dependent magnetic fields, gas densities, ionization states,
compositions, and background radiation fields.

We take a similar approach to CR propagation. In practice, CR
propagation in CRIPTIC is defined using a pure virtual interface
class Propagation, which defines the call operator Propaga-
tion:: () as a pure virtual function that takes as input the spatial
position X, the time #, the properties of the CR packet (type of particle,
momentum, etc.), the properties of the background gas (total density,
ion density, composition, magnetic field, etc.), and the CR field
quantities n, P, and U and their gradients. This function must return all
of the quantities that appear in the drift vector A (equation 10) and the
diffusion tensor D (equation 11): the parallel diffusion coefficient K|
and its spatial gradient VK, the perpendicular diffusion coefficient
K and its spatial gradient VK | , the momentum diffusion coefficient
K,, and its derivative with respect to momentum 0K,,/dp, and the
streaming speed w and its spatial gradient Vw and derivative with
respect to momentum o w/dp.

To define a CR propagation model, the user defines a class derived
from Propagation that provides an implementation of the call
operator and computes the required outputs from the provided inputs;
the implementation of this function is entirely up to the user, and thus,
for example, CR propagation can include arbitrary combinations of
streaming and diffusion, which can depend in arbitrary ways on
position, time, CR properties, gas properties, and the field quantities
n, P, and U and their gradients. As with the gas properties, we provide
implementations for some standard cases — for example, a model
where the CR diffusion coefficient is a power-law function of CR
momentum, and where CRs stream down field lines at the ion Alfvén
speed —but users are not limited to these choices. The only restrictions
are that, in its current form, CRIPTIC cannot capture CR propagation
coefficients that depend on something other than the provided inputs
listed above, or where CR propagation is not describable by the pitch
angle-averaged Fokker—Planck equation (e.g. because the pitch angle
distribution is not close to isotropic).

One implication of this flexibility is that CRIPTIC can be run using
exactly the same interstellar gas and radiation field distributions, and
CR propagation models, as standard CR propagation codes such as
GALPROP (Strong, Moskalenko & Ptuskin 2007).

4 CODE TESTS

Here, we describe the various validation tests to which we have
subjected CRIPTIC.

4.1 Transport tests

Our first batch of tests evaluates CRIPTIC’s performance in simulating
CR transport, including the step of reconstructing the CR field where
necessary because transport rates depend non-linearly on it. For all
the tests in this section, we disable all catastrophic and continuous
loss terms, so we are testing the transport parts of the code only.
In these tests we will characterize the performance of the code in
terms of its L' error; we do not experiment with varying the number
of packets explicitly, but below we show that the errors we obtain
are generally consistent with Poisson noise, and thus in general we
expect the error to depend on number of packets used in a given

. . 1 —-1/2
simulation as L ¢ Nyycier-

4.1.1 Anisotropic diffusion

Our first test is to validate CRIPTIC’s treatment of diffusion, including
anistropy and momentum-dependence of the diffusion coefficients.

€20z 11dy Lz Uo Jasn Aysianlun [euoleN uelensny ‘g4 Buipiing ‘Aieiqi seizusi ‘9 AQ €59/ 1 9/GSEL/L/21S/0IME/SEIUW/WOO"dNo"ojwapede//:sdny Wwoly papeojumoq



We consider a uniform region containing gas at rest, threaded by
a uniform magnetic field in the % direction. The CR diffusion
coefficients parallel and perpendicular to the field have a fixed ratio
x and vary as power laws in the CR momentum, i.e.

P q
Kg.n =, 1Ko (—) , (99)
Po

where x, Ko, po, and g are constants. There is no momentum diffusion
or streaming. The domain is initially empty of CRs, but at = 0 a
point source of CR protons turns on at the origin. The source is
monochromatic, and is characterized by its luminosity £ and by the
momentum p, of the protons it injects. For this problem setup, the
Fokker—Planck equation reduces to

0F (0 F 0 0
E_K(Xﬁ_’_ay +32) *5(1')5(17 Po) ©(1),
(100)

where r = (x, y, 2), K = Ko(p/mpc)?, ©(x) is the Heaviside step
function, and

2
T = myc? 1+(ﬂ) —1 (101)

mpc

is the kinetic energy of the injected protons.

Making the change of variable x = ./ x' reduces this problem to
a constant-coefficient diffusion equation
af 2f 9 f 9 f 1 L
— =K — — =4 8(p — po)O(1),
ot (8x’2+8y+82 TAT () 8Cp = p0)©@)

(102)

where r' = (x/, y, z); note the extra factor of 1/ ./« in the final term,
which arises from the change of variable. The Green’s function for
the spatial distribution of the CRs is then

G(r' 1) = e K (103)

1
(4m K1)

where ' = |r’|, so for the case our case of a source that turns on at
t = 0, the solution for the spatial distribution for 7 > 0 is

for ) / ——a(p PG 1) dr

E 1 ”
eric
ﬁT4nKrf

(2¢rﬁ> 5(p— po). (104)
The corresponding CR energy density is
T [ f@', t)dp.

We test CRIPTIC by simulating this problem using K, =
102 (p/myc)? ecm? s™' and x = 4, with three sources producing
CRs with kinetic energy 7' = 1, 10, and 100 GeV; each source has
luminosity £ = 10 erg s~!; since the CRs from the different sources
do not interact, the solution equation (104) applies independently to
the CRs produced by each source. We run the simulation for r =
2 x 10° s using a packet injection rate 103 s~!, so that there are
2 x 10° CR packets at the end of the simulation. We show the results
in Figs 2 and 3.

As the plots show, CRIPTIC recovers the exact solution to very high
precision, covering ~8 orders of magnitude in CR energy density;
errors in the solution are consistent with expectations from Poisson
statistics given the finite number of CR packets used in the simulation.
The L' error, defined by

31mply UCR =

4
L;rr = E / |Ucr,exact — UCR,siml",2 dr', (105)
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Figure 2. Energy density Ucr as a function of effective radius ¥ in the
anisotropic diffusion test (Section 4.1.1). Solid lines show the exact solution
computed from equation (104) for the three sources producing CRs of energy
(T =1, 10, and 100 GeV; blue, orange, and green), while circles show the
CRIPTIC result; for clarity we plot only every other bin. Error bars indicate the
90 per cent confidence interval derived from the number of CRs in the bin,
assuming the CRs number counts are Poisson-distributed.
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Figure 3. Projected energy density [ Ucg dz in the anisotropic diffusion test
(Section 4.1.1), where energy density is computed only for CRs with energies
T = 1 GeV. Colour shows the projected energy density from 10~'-10% eV
em™3 pe, and white points show the positions of individual CR packets in
regions where the CR energy density falls below this level.

where Ucg_ exact and Ucg, sim correspond to the exact and simulation
solutions shown in Fig. 2 (using the bins shown to compute Ucg_ sim),
is below 1 percent for all three sources. Visual inspection of the
projected CR distribution also demonstrates that it is anistropic by a
4:1 ratio, exactly as expected.

4.1.2 Variable diffusion

Our next test investigates CRIPTIC’s performance when the diffusion
coefficient is non-constant. We simulate the transport of CRs with an
isotropic diffusion coefficient, but one that varies as a power law in
both space and time:

r\ 7 t qr
0 0
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Figure 4. Results of the variable diffusion coefficient test described in
Section 4.1.2. We show the CR energy density Ucr in the initial condition
(blue) at t = o and in the final simulation snapshots at r = 21y (orange). Solid
lines show the exact solution given by equation (108), while circles show the
CRIPTIC results, with error bars to indicate the 90 per cent confidence interval
assuming the number of CR packets in each radial bin is Poisson-distributed.

There is no streaming in this test, and the background gas is at rest.
No sources are present, and all CRs have momentum py. For this
setup the FPE is

(P2

- 107
ot axz  9yr 972 (107)

and one can verify by substitution that the system admits a similarity
solution for the spatial distribution

32— g

3 qr=5
4yl (q,72>
34t

t "q,-—lz (g +Dn [ r 224 g\ o
(5) e et () () ] (1o

where T'(x) is the T' function, n = r2/Koty, and Ncg is the total
number of CRs. The energy density Ucg = T [ f dp, where Tis the
kinetic energy corresponding to CR momentum py.

For our test we set Ky = 4 x 10% cm? s™!, ry = 108 cm, 7, =
108 s, qr = —1/2, and g, = 1. We initialize the simulation with
2.5 x 10° CR packets with a total energy of Ey = NcgT = 108 erg;
the initial radial distribution of the packets follow the exact solution,
equation (108), evaluated at r = ;. We then use CRIPTIC to advance
the system to time ¢ = 2.

We show the results in Fig. 4. The figure shows that CRIPTIC re-
covers the exact solution to very high accuracy; errors are consistent
with Poisson sampling, and are no larger in the final time step than
in the initial setup. The L' error at the final time, defined by

f(r, t) = NcrS(p — po) [(g: + l)n]3/(2—¢1r)

4
= £ [ 1Uckexaet = Uc.siml ridr, (109)
0

is below 1 per cent.

4.1.3 Oscillating field loop

Our next test checks the ability of the code to trace diffusion along
curved, moving field lines. In this test, we place a single CR source
with CR luminosity £ =10® s atx =rp =1 pc,y =z =0 at
time ¢+ = 0. The magnetic field consists of loops around the z-axis,
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Figure 5. Results for the oscillating loop diffusion test (Section 4.1.3). The
figure shows the CR energy density per unit angle dEcr/d¢, normalized by
the total CR energy injected L. The solid line is the exact solution, and
points show the numerical solution computed with CRIPTIC; as in previous
tests, the points include error bars showing the 90 per cent confidence interval
from Poisson statistics, but for this test the error bars are for the most part
comparable to the sizes of the plot markers and thus are hidden.

so B = By, where ¢ is the ¢ unit vector in an (r, ¢, 6) cylindrical
coordinate system. CRs diffuse with zero perpendicular diffusion,
and parallel diffusion described by a coefficient K = 10% ¢cm? s 1.
The FPE governing the system then reduces to

0 KL L st — po (110)
at g as? 7o T P,

where T=1 GeV is the energy of a single CR, py is the corresponding
CR momentum, and s = 27 ry¢ is the position along the current loop,
with the source located at s = ¢ = 0.

The FPE in this case is equivalent to 1D diffusion in a periodic
domain (—mry, ry). This problem may be solved by standard Fourier
methods, and the exact solution for a point source located at ¢ = 0
that begins injecting CRs at r = 0 is that the CR energy per unit angle
along the loop is

dEck Lt taitr o= COS(ngh) —n?t /1
= S (128 SRR (e 1) | a1

dp ~— 27 1=
where t4ir = r3/K) = 9.55 x 10% s is the characteristic diffusion
time-scale. To add a complication to this test, both the source and
the background gas perform simple harmonic oscillation in the x
direction, with amplitude r( and angular frequency @ = 47 /t4i; this
allows us to test how well CRs follow field lines when the field lines
are attached to a fluid that is accelerating, and where the direction of
the acceleration can be both perpendicular and parallel to the field
line. The exact solution is still given by equation (111), provided that
we define ¢ relative to the time-dependent centre of the loop, since
advection should move all the CR packets together.

We simulate the system for a time f = 4#4;¢ using a packet injection
rate 3 x 10~* s~', so over the course of the simulation 3.81 x 10°
packets are injected into the domain, and the loop performs eight full
periods of oscillation. This test therefore evaluates not only how well
CRs follow curved field lines, but how well they do so when the field
lines and the gas to which they are anchored are moving at arbitrary,
time-variable angles relative to the field direction.

Fig. 5 shows the comparison between the CRIPTIC numerical
solution and the exact solution given by equation (111). Clearly
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the agreement is very good. Defining the L' error by

Lén. — i / ‘dECR,exact _ dECR,sim d¢, (112)
Lt d¢ do

we find that the error is < 1 per cent. We also check quantitatively
how well the CR packets remain confined to the field line to which
they are attached, by examining the standard deviation of CR packet
radial coordinates at the end of the simulation, o ,. We find that o,/r
5.7 x 1079, so over 4 diffusion times and 8 oscillations periods,
numerical diffusion causes CR packets to drift across field lines by
less than 1 part in 10°.

4.1.4 Momentum diffusion

Our next test evaluates the ability of the code to handle momentum
diffusion, or, equivalently, second-order Fermi acceleration. For this
test we turn on a single source of CRs at r = 0 at the origin, which
injects CRs with luminosity £ = 10%® erg s~!. All injected CRs
have a momentum of exactly pp = 1 GeV/c. There is no spatial
diffusion or streaming, but CRs diffuse in momentum with a diffusion
coefficient Ky, which we set implicitly by setting the diffusion
time at momentum py to t4 = 1 Myr. The corresponding diffusion
coefficient is Ky, = pg /tgite, and the corresponding FPE is
- )

Y K B—Ij; - (%fﬂ FEsoap—p. (13
where 7 'is the kinetic energy corresponding to momentum py. Using
the change of variables f’ = pf reduces the problem to a 1D
diffusion equation, subject to the boundary condition f' = 0 atp =
0, which can be solved by standard Green’s function methods. The
exact solution for the CR momentum distribution is

dncg Lt p

dp _Tappo

{ 2(6—(”20';0)2e—(';tg°)2)+p+poerfc<p+po> .

T (7p ﬁUP

|P—Po|erfc<|P—Po|>_1], 1)
Op V20 p
where 0,2 = 2Kpt.

We simulate this problem with CRIPTIC using a packet injection rate
of 1077 s~!, running to time ¢ = t4ir = 1 Myr, so there are 3.16 x 10°
CR packets present at the end of the simulation. We compare the
exact and numerical solutions in Fig. 6. The figure shows very good
agreement between the exact and numerical results. Quantitatively,
the L' error, defined for this problem as

L = ! /
err ([,/T)I

is < 1 per cent.

dn CR,exact dn CR,sim

dp dp

dp, (115)

4.1.5 Non-linear diffusion

All of our tests thus far have been for problems where the diffusion
coefficient does not depend on the CR field, and thus which can
be solved without the reconstruction step in our algorithm. We now
consider a problem where reconstruction is required. We consider a
system where diffusion is isotropic, and the diffusion coefficient is a
power-law function of the CR energy density:

Ucr \?
Ky =K, =K =Ko . (116)
Ucr,o
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Figure 6. Results for the momentum diffusion test (Section 4.1.4). The plot
shows the CR momentum distribution dncr/dp at the end of the simulation.
The solid line shows the exact solution, equation (114), while points show
the CRIPTIC result. Error bars on the points show the 90 per cent confidence
interval, computed assuming the number of CRs in each bin is Poisson-
distributed.

No sources are present. Such a system admits a similarity solution

(Pattle 1959)
r 2 t —3/(3q+2)
1— - . (117)
Tout fo

1,5
_ Ecrjo r (E + 5)
where Ecr. (o 1s the total CR energy in the system,

Ucr

B VIR (L)

£\ V/Ga+2)
Fout = 10 (7> 5 (118)
To
and ry and £, are given by
(i)
pd = Eoruo g \a 72 (119)
Ucr.o r (é + 1)
2
o= —20___ (120)
2(3q + 2)K,

Note that the system has the property that Ucg = 0 exactly at » >
Tout> SO this problem represents a severe test of our method, since the
exact solution has a sharp cutoff in the CR energy density.

For our test with CRIPTIC, we set the total CR energy to Ecg, o =
10* erg, adopt index ¢ = 1, and specify Ucg o and K, implicitly
by setting o = 1 pc and £, = 107 s. We initialize the distribution of
CR packets to the analytic solution at ¢ = f,, using a total of 103 CR
packets, and evolve the system to t = 3fy. We show the results of
this test in Fig. 7. We find that the agreement between the numerical
and exact solutions is very good. At smaller radii the match is almost
perfect, and CRIPTIC recovers the location of the sharp edge of the
exact solution with only a very small amount of numerical blurring.
Defining the L' error for this test as

4

EcR ot

Loy = / |Ucr exacet = Ucrosimlr dr’, (121)
we find L] = 2.4 per cent.

To understand the quality of the solution, it is helpful to examine
the reconstructed CR energy density and its derivative, which are
used to construct the diffusion coefficient and its spatial derivative.
We show these reconstructions for the initial time in Fig. 8; results
are qualitatively similar at later times. We see that our kernel density
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Figure 7. Results for the non-linear diffusion test (Section 4.1.5). The plot
shows the CR energy density Ucr at times ¢ = #y (‘Initial’, blue) and t =
31y (‘Final’, orange). Lines show the exact solution given by equation (117),
while circles with error bars show the solution computed by CRIPTIC; errors
indicate the 90 per cent confidence interval derived by assuming the number
of CR packets in each bin is drawn from a Poisson distribution.
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Figure 8. Reconstruction of the CR energy density Ucr (top) and its radial
derivative dUcgr/dr (bottom) at the initial time in the non-linear diffusion test
(Section 4.1.5). Black lines show the exact solution as a function of radius r,
solid blue lines show the median value of the CRIPTIC CR packets, computed
in 30 radial radial bins, and blue and orange bands show the 25th—75th
percentile range (50 per cent confidence interval) and 5th-95th percentile
range (90 per cent CI), respectively, in the same bins.

estimation algorithm reconstructs the CR energy density with very
high accuracy; the median is so close to the exact solution that the
line showing it is nearly invisible in the figure, hidden behind the
exact solution, and the 50th and 90th percentile ranges lie within
~ 10 per cent and ~ 20 per cent of the exact solution except at large
radii.

The derivative, which is inherently harder to reconstruct, shows a
larger range, and deviates from the exact solution at both small radii,
where the number of CR packets is small due to the small volume,
and at the edge of the distribution; none the less, the median agrees
very well with the exact value over most of the radial range. Errors
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are most significant at the largest radii, where the exact solution
goes to zero exactly, a feature that is necessarily blurred somewhat
in CRIPTIC’s reconstruction due to the finite size of the kernel. It is
this effect that is responsible for the sharp edge of the exact solution
expanding very slightly too quickly in the CRIPTIC simulation. None
the less, the overall error is very small.

4.1.6 Streaming and streaming losses

Our next test checks the ability of the code to handle streaming down
CR pressure gradients, together with the associated adiabatic changes
in CR momentum when the divergence of the streaming velocity is
non-zero. For this test we consider a fully ionized medium at rest with
a power-law distribution of density and a ‘split monopole’ magnetic
field. The density and magnetic field as a function of position are

A\
P = Po (*) (122)

B = B, (%")2 sgn(z)F, (123)

where r is the distance from the origin. For this test we use ry =
1 pe, po = 234 x 1072 gem™3, k, = —2, and By = 10 uG. The
simulation begins with no CRs, but we place a point source of CRs
with luminosity £ = 10°® erg s~! at the origin, where it injects CRs
with initial energy 7 = 1 GeV.'? For the CR transport model in this
set, we let CRs stream down the CR pressure gradient at the ion
Alfvén velocity,

W= sgn(—VPcr -B). (124)

B
Jarp

In this test the CR pressure gradient always points to the origin,
and thus CRs should always stream away from the origin at the
streaming speed

F\ "2 ke/2
W = Vap (*) ) (125)

o

where vq0 = Bo//4mpo. Individual CRs therefore obey an equa-
tion of motion dr/dt = w which, for a CR injected at ¢ = f;,;, has the
solution

k £ 71/B+o/2)
F(t — tg) = T Ks + 7") —”;‘;’ ] (126)

for times t > t;,;. Moreover, the momentum of individual CRs evolves
with radius due to adiabatic cooling as

dp dr\ ! dp P
L_ () Lo Py, 127
dr (dr) a - 3wV (127)

which has the solution that a CR injected with momentum p;,; at
radius rj,j has momentum

o\ ol
P = Pinj (*) (128)
j

inj

once it reaches radius r.

0Ty avoid CRs near the origin requiring infinitely small time steps, we
flatten the density and magnetic field profiles at very small radii, and make
the CR source slightly extended. Specifically, we adopt a flattening radius
riac = 10731 and evaluate the density and magnetic field using max (r, rqat)
rather than simply r; we likewise inject CRs at a random radius uniformly
distributed from O to rg,, rather than exactly at r = 0.
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Figure 9. Solutions for the streaming problem (Section 4.1.6). In the top
panel, we show CR packet radial position r versus packet age fpacket = ¢ —
tinj» and in the bottom we show CR packet momentum p as a function of radius.
In both panels, solid lines are the exact solutions given by equations (126)
and (128), respectively, and circles with error bars are the numerical solutions
computed by CRIPTIC, averaged over bins in age (top) and radius (bottom).
Error bars show the 5th to 95th percentile range in each bin.

We simulate the system for 10° s using a packet injection rate of
10~* 57!, so that by the end of the simulation there are 10° packets.
We show the CRIPTIC results in comparison to the exact solutions
for CR packet position versus age and momentum versus radius
in Fig. 9. We again see excellent agreement between CRIPTIC and
the exact solution, indicating the code successfully reconstructs the
direction of the CR pressure gradient and correctly computes the rate
of adiabatic cooling caused by the non-uniform streaming speed.
Quantitatively, we define the radial position and momentum error for
each CR packet by

r p

—1 ep, = -1,
rexact pexact

e = (129)
where 7exact and pexact are the exact solutions given by equations (126)
and 128). We find that the mean values of e, and e, are 0.37
and 0.40 per cent, respectively, with variances 1.5 and 4.6 per cent;
the errors are therefore small, and in fact the variance in e, is an
overestimate of the true error because it is mostly a result of the
dependence of p on the initial injection radius 7;,j, which is randomly
varied by a small amount for numerical reasons as discussed above.
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Figure 10. Number density of CRs with momentum >p in the reconstruction
test described in Section 4.1.7. Solid lines show the median value of ncr(>
p) computed by CRIPTIC in 25 logarithmically-spaced bins of p, evaluated at 5
different radii (as indicated by the colours). Shaded bands around the medians
show the ranges within which 50 and 90 per cent of the reconstructed values
fall. Dashed lines show the exact solution (equation 130).

4.1.7 Number density computation

Our final transport test evaluates CRIPTIC’s ability to reconstruct the
CR field in a more realistic problem where there is a continuous
distribution of CR positions and momenta. In this problem we place a
source of CR protons at the origin, which injects CRs at a specific rate
drg./dp o p? over a momentum range from py to p;. The CRs then
diffuse isotropically away from the source with a constant diffusion
coefficient K. The exact solution for the CR distribution is then
just given by equation (104) with the (£/T)8(p — po) replaced by
drg./dp, and we can immediately write down the expected number
density of CRs at any given radius r and time ¢ with momentum >p
for any p € (po, p1),

ner(> p) = : erfc( d )n L= /po™!
¢ 4w Kr 2/Kt) 1= (po/ )it

where 714, is the total CR injection rate integrated over all momenta.
The test is to compare this exact value for the CR number density to
the value reconstructed by CRIPTIC, given by equation (74). We run
the test using a diffusion coefficient K = 10?® cm? s~ and a source
with total energy injection rate £ = 10% erg s~!, with py = 1 GeV/c,
p1=10° GeVl/c, and g = —2.2, for atime, t = 10° s. We use a packet
injection rate 10~ s~! for the test.

We compare the exact and reconstructed CR number densities
in Fig. 10, which shows ncr(> p) computed in 25 logarithmically
spaced bins in p, evaluated at radii #/rgr = 0.2, 0.5, 1.0, 2.0, and 3.5,
where rgi = /K1, and for each radial bin we consider CR packets
whose radii are within 5 per cent of the target value. Solid lines show
the median reconstructed value of ncr(> p) for packets in that bin,
and shaded bands show the ranges within which 50 and 90 per cent
of the packet values fall. We see that the median reconstructed value
of ncr(> p) is in almost perfect agreement with the exact result
except at the highest values of p, where the finite number of sample
packets causes deviation, and at r/rgg = 0.2, where the simulation
median is ~ 10 per cent below the true value due to the finite size
of the smoothing kernel, which blurs out the sharp peak at small
radii visible in, e.g. Fig. 2. The other clear trend is that the 50 and
90 per cent ranges expand at larger radii, simply because our finite
number of packets leads to larger Poisson errors.

(130)
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Figure 11. Distribution of exact (horizontal axis) and CRIPTIC-computed
(vertical axis) values of ncr (> p), the number density of CRs with momentum
>p. The blue solid line shows the median, while shaded regions indicate the
range into which 50 and 90 per cent of the reconstructed values fall; the black
dashed line is the 1:1 line, corresponding to perfect agreement.

To make a quantitative analysis of the error, for each CR packet
we evaluate the exact value of ncr exact(> p) at its position from
equation (130), and we place the packets in 40 bins of 1R, exact (> P)-
For each bin, we examine the distribution of CRIPTIC-reconstructed
number densities, ncg, sim(> p), in that bin, and compute the median
and the 50 and 90 per cent confidence intervals of this distribution.
We plot the median and confidence intervals as a function of
NeR, exact(> p) in Fig. 11. We see the same patterns that were visible
in Fig. 10, i.e. agreement is excellent over most of the range of
NCR, exact(> p), but there are deviations at both the highest values,
where the smoothing kernel blurs out the very sharp peak around
the source, and the lowest values, where the finite number of CR
packets in the simulation leads to errors in reconstructing very low
density regions. However, over 5 decades in ncr(> p), from 10713
to 1078 cm™3, the error is very small: averaged over this range, the
median value differs from the exact one by only 0.005 dex, and the
50 per cent range is only 0.16 dex wide.

4.2 Microphysics tests

Our second set of tests evaluates the performance of our code in
simulating the microphysical processes that govern CR loss and
secondary production, and the radiation spectra produced thereby.
In only some of these cases is an exact analytical solution available,
and, where it is not, we compare to expected physical behaviour and
limiting cases.

4.2.1 Proton diffusion with collisional loss

Our first test of microphysics evaluates our treatment of proton
catastrophic losses, and the coupling between them and transport. To
this end, we repeat the anisotropic diffusion experiment described
in Section 4.1.1, but including losses due to CR proton inelastic
scattering due to a background gas of constant density p, and using
a source that injects a continuous momentum distribution of CR
protons at a rate per unit momentum dng./dp; we disable all other
loss mechanisms for the purposes of this test. Considering only
primary protons (i.e. those that have not yet been scattered), the

MNRAS 517, 1355-1380 (2022)

M. R. Krumholz, R. M. Crocker and M. L. Sampson

FPE that governs this system is

af 2f  92f  9f drgre P
— =K _— o —_— —35 — Onuc s
at <X ox2 * dy? * 9z2 * ®—o UuHm

where K is the perpendicular diffusion coefficient, x is the ratio
of parallel and perpendicular coefficients (with the magnetic field
oriented in the % direction), and o, and v are the nuclear inelastic
cross-section and particle velocity as a function of particle momen-
tum p. The system can be solved exactly by making the same change
of variable x = ,/xx’ and r? = x* + y? + z? as in Section 4.1.1 to
transform the problem to a standard diffusion equation with a loss
term, and then writing down the Green’s function including the loss
term. Since the loss rate is independent of position and time, this is
simply

1 r? t
Gr'i=———exp (- — — ), 132
0= Gknn ex"( 4K1 z.oss> (132

where fioss = ump/o v p is the loss time-scale. The exact solution
(again, considering only the primary proton population), is

s ! thTC Y /
f(r,p,t)z/ Vg G e
0 p

_ e 1 [e”’/""“e o ( o Vdiff) +
dp 8m./xKr 2rdife - Toss

e,n/r.(,sserfc( oy ’diff>], (133)
27 i Toss

where we have defined 1, = Kfioss and ri; = Kt.

‘We run the test using a momentum-dependent diffusion coefficient
K = 108(p/myc)'® ecm® s7' and anisotropy parameter x = 4.
The central CR source produces CR protons with a momentum
distribution drig./dp o p? with ¢ = —2.2 over a momentum range
from po = 0.1 GeV/c to p; = 10° GeV/c, with a total luminosity L =
108 erg s~!. The CRs propagate through a uniform background gas
of density p = 2.34 x 107! gcm ™, and we run the simulation for
t=2 x 10'% s, using a packet injection rate I' = 10~ s ™!, so there are
2 x 10° packets present at the end of the simulation. Given this setup,
we have rgi = 45.8([J/m[,c)”2 pc, and rioss/raigr & 0.5 at momenta far
above the pion production threshold, py, = 0.78 GeV/c; thus we have
selected parameters so that losses are relatively important over most
of the momentum range of the test, but become unimportant (75 —
00) at the lowest CR momenta.

We show the radial distribution of CR number density for a range
of sample momenta in Fig. 12, comparing the simulation results to
the exact solution given by equation (133); for comparison we also
show the solution that would be expected in the absence of losses, i.e.
setting rjoss = 00 in equation (133). We find that CRIPTIC recovers the
correct exact solution, including momentum-dependent loss rates,
to the level expected from Poisson statistics. We define the L' error
norm for this problem by

— fooo ;:)] If;im - fCXact| 47Tr’2p‘1 dp dr’

1
L. =
err P1dige g
! n dp P dp

, (134)

where fim are the simulation results and fiyae is the exact solution.
Note the weight factor of p? in this integral is included to ensure that
all momenta are weighted equally in computing the error estimate,
so the integrand in the denominator is independent of p. Defined this
way, we find that the L! error in our CRIPTIC solution is 2.0 per cent.

€20z 11dy Lz Uo Jasn Aysianlun [euoleN uelensny ‘g4 Buipiing ‘Aieiqi seizusi ‘9 AQ €59/ 1 9/GSEL/L/21S/0IME/SEIUW/WOO"dNo"ojwapede//:sdny Wwoly papeojumoq


art/stac2712_f11.eps

p [GeV/d]

E 10713 | ’ 10—0.9i0.1
3 . 1005:&0‘1
~ 1.94+0.1
) @ 10
g 10715 4 3.340.1
= ® 10
o . 104A9j:041
= 10717

10! 102 103 10*

=2 /x+y*+ 2 [pc]

Figure 12. CR proton number density per unit momentum, dncr/dp, as
a function of effective radius r in the anisotropic diffusion with loss
test problem (Section 4.2.1). We show dncr/dp evaluated in five sample
momentum bins, each 0.2 dex wide, spanning from the minimum to the
maximum momenta present in the problem; note that our plotted values
of dncr/dp have been scaled by p* in order to make it easier to display
such a wide range of momenta on the same plot. Points with error bars
show CRIPTIC simulation results, with the error bar indicating the Poisson
uncertainty on the mean value in each bin due to the finite number of packets.
Solid lines show the exact solutions given by equation (133), while dashed
lines show the solutions we would expect to find if we were to disable losses
(equation 133 with rjpss — 00).

4.2.2 Electron streaming with synchrotron and inverse Compton
loss

Our second test evaluates our implementation of synchrotron and
inverse Compton losses for electrons. We place a point source of
CR electrons with a powerlaw momentum distribution drg./dp =
(110/ po)(p/mec)? over the range (po, p1) in a medium with a uniform
magnetic field B = BX and a uniform radiation field with dilution
factor Wpp and blackbody temperature Tpg. The electrons stream in
the +x direction at constant speed w, while suffering synchrotron
and inverse Compton losses. All other loss processes are disabled, as
is diffusion. The Fokker—Planck equation for this system is

af 0
a ax

. a ~
(wf) + % (pctsf) +

e (135)
dp
where p.s is the rate of momentum loss due to synchrotron and
inverse Compton radiation. Since the loss rate is independent of
position, the spatial and momentum parts of the system are separable,
and there is a one-to-one relationship between the position x and the
time t+ = x/w for which CRs have been subject to loss processes.
Over this time, a CR injected with momentum p; will have been
reduced to momentum p given implicitly by t = — [ ; dp'/pes(p)-
If we further adopt the ultrarelativistic limit y >> 1 and p ~ ym.c and
assume that we are far from the Klein-Nishina regime, then p. o< p?,
and we can evaluate the integral analytically; from equation (39) and
equation (59), we have

S (R
1+ yi(t/tloss)’

where for convenience we have expressed the momentum in terms
of the Lorentz factor y, and

14 (136)

3mec

—_—, (137)
4o7 (Up + Ug)

Tloss =

CRIPTIC 1375
where Ug and Uy are the energy densities of the magnetic field and
radiation field, respectively. This in turn allows us to write down the
solution to the Fokker—Planck equation,

aor=® (1Y (12 Y
U= T =gy 1—¢&y

for & < t/toss and y € [yo/(1 + &Eyo), y1/(1 + £y )], and O otherwise,
where here y = p/mec is the Lorentz factor in the ultrarelativistic
limit and & = x/wt), is the dimensionless distance. Integrating over
x, the momentum distribution of all electrons with y > y is

d”CR flotloss yq—l —g—1
= 1 — =11,
i ” (q i [(1 = &maxy) ]

(138)

(139)

where & = min(t/figes, ¥~ — yl’l); forl K y < y,andt— oo,
this gives the classical ‘cooled synchrotron’ dn/dp o p?~1, i.e. the
spectral index is the injection index minus one.

We carry out this test with a source with total luminosity 103
erg s~!, which injects CR electrons with a power-law momentum
distribution characterized by ¢ = —2.2 at momenta from py = 1072
GeV/c to p; = 10° GeV/c. The electrons stream at w = 100 km s~!,
and we set the energy densities in the background magnetic field
and radiation field to Uz = Uz = 50 eV cm™; this corresponds to
a magnetic field B = 44.87 uG, a blackbody radiation temperature
Tgg = 10.144 K (for dilution factor Wgg = 1), and a loss time
toss = 6.09 Gyr. We run the simulation for 10734, using a packet
injection rate 1078 s~'. We show the results in Fig. 13; the upper
panel shows the CR spectrum integrated over all positions compared
to the analytical solution given by equation (139), while the lower
panel shows the distribution function evaluated at selected positions,
compared to the analytical solution given by equation (138).

As Fig. 13 shows, CRIPTIC reproduces the exact solutions very well.
Quantitatively, we define the L' error for the integrated spectrum for
this problem by

= og
ll’l()/] /7/0) Inyp 10 (dnCR/dy)exact

so the error is the mean logarithmic deviation between the exact
and simulated spectra; note that we use this definition because the
steep nature of the spectrum means that, if we do not measure
the deviation logarithmically, the error norm is dominated by the
parts of the spectrum at low y, where we simply have the original
spectrum. Using this definition, we find L}, = 0.012 dex for the
solution shown in Fig. 13. We can also define the L' error at a given
dimensionless position & analogously, simply by replacing drncr/dy
by £, and replacing y, with y /(1 + £y,) in the upper integration
limit; doing so we find L., = 0.026 dex at & = 107 to 0.01 dex
at £ = 1073; the error is largest at 1073 because this is sampled by
the fewest packets. Nonetheless, even at this small value of &, the
agreement with the exact solution is clearly very good.

Although we do not have exact solution for it, we can also
slightly modify this test to verify that CRIPTIC behaves as expected
qualitatively in the Klein—Nishina regime. To do so, we change
the background magnetic field to B = 4.487 x 107° uG and the
radiation field to Tgg = 1.0144 x 10° K with Wgg = 2 x 10~'°; this
has the effect of setting Ugr = 100 and Ug =5 x 107 eVem 3 =~ 0.
Thus the total magnetic plus radiation energy density is unchanged
from the original version of the test, and in the Thomson limit we
should recover exactly the same solution. However, while for our
previous value of Tgg the momentum range (py, p;) for the injected
CRs corresponded to log I'gg = —6.9 to —1.9, with the higher value
of Tgg we now have log 'gg = —2.9 to 2.1. Consequently ['gg =
1 occurs in the middle of the injected momentum range, at p = 7.5

dlny, (140)

err
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Figure 13. Results of the electron streaming with losses test. In the top
panel, we show the compensated CR spectrum integrated over all space,
yz(dnCR/dy) at the end of the simulation. Filled circles show the numerical
results evaluated in 30 logarithmically spaced bins of Lorentz factor y, the
solid line shows the exact solution (equation 139), the dashed grey line shows
the distribution of CRs injected by the source, and the open circles are the
results of our test in the Klein—Nishina regime (see main text). In the lower
panel, we show momentum distributions evaluated at five sample positions
given by the dimensionless position variable & indicated in the legend. As in
the top panel, filled circles are the CRIPTIC numerical solution, solid lines are
exact solutions (equation 138), the grey dashed line is the injected spectrum,
and the open circles are the results of running the simulation in the Klein—
Nishina regime rather than the Thomson regime.

GeV/c (y = 1.5 x 10%), and we therefore expect Klein—Nishina
effects to become significant at momenta approaching this value.

The open circles in Fig. 13 show the results of the test in the
Klein—Nishina regime. The qualitative result is as expected: for y <
1.5 x 10*, we are in the limit I'gg < 1, and the solution matches
the Thomson case. For y > 1.5 x 10*, on the other hand, the rate of
energy loss scales as dE/df o< Iny (Blumenthal & Gould 1970), so
the loss time-scale obeys fio5s ¢ y/In y, rather than #,, o 1/y as in
the Thomson regime. Thus losses become increasingly unimportant
at high y, and the spectrum approaches the injected spectrum rather
than the Thomson limit solution.

4.2.3 A thick target

Our final microphysical test is to simulate a thick target with all
microphysical processes enabled, and with a source injecting both
primary protons and electrons. In this test CRIPTIC is performing a
calculation similar to that carried out by other authors who treat
CR microphysics but do not include transport, or include it only in
a simplified parametrized way such as by analytically specifying a
loss time or calorimetry fraction (e.g. Yoast-Hull et al. 2014; Peretti
et al. 2019; Roth et al. 2021). Our goal is to show that CRIPTIC,
though not optimized for this type of calculation (since it is possible
to obtain the answer much more efficiently if one is uninterested in
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Figure 14. Steady-state CR spectra in the thick target problem. For each
species we plot T2 dncr/dT, where dncr/dT is the number of individual
CR particles in a particular energy bin. Different colours indicate primary
protons, primary electrons, secondary electrons, and (secondary) positrons,
as indicated in the legend. The dashed black line labelled 7-%>? shows the
shape of the injection spectrum.

a detailed treatment of spatial transport), none the less recovers CR
and emitted y-ray spectra similar to those that have been reported in
the literature.

For this test we disable spatial transport and momentum diffusion,
and we consider an environment such as might be found in a starburst
galaxy: a uniform medium of molecular hydrogen characterized by
number density ny = 10° H nuclei cm™>, an ionization fraction by
mass x = 107%, a magnetic field strength B = 0.3 mG, and two
radiation fields both with Wgg = 1, one with Tgg = 2.73 K (the
CMB) and one with Tgg = 20 K (representing a reprocessed dust
radiation field). We place two sources in the medium. One injects
protons with a momentum distribution dn/dp oc p~>? over a range in
kinetic energy 7 = [1073, 10°] GeV, and has total luminosity L =
3 x 10* erg s~!, corresponding roughly to the luminosity expected
for a galaxy with a star formation rate of 2100 M, yr~!, assuming
1 SN per 100 M, of stars formed, a total energy of 10! erg per SN,
with ~ 10 per cent of that taking the form of CRs. The other source
injects electrons with the same spectrum, but a total luminosity a
factor of 10 smaller. We run the simulation for 0.5 Myr using a
primary packet injection rate I'yy; = 2 x 1077 s71; this is longer
than the loss time at all energies for the background environment,
so by this time the system settles to steady state. At the end of the
simulation, there are approximately 4.3 x 10° CR packets present.

We show the resulting steady-state CR spectra in Fig. 14. The
result is in accord with what we would expect: the proton spectrum
has a slope that is very slightly shallower than the injection spectrum
at high energies, reflecting the slight increase in pp cross-section with
energy. This continues to ~1 GeV, and below this energy the
spectrum dies off quickly, reflecting the strong ionization losses that
low-energy CRs suffer in a starburst environment (c.f. Fig. 1); indeed,
each second the CR protons ionize a total of 6.0 x 10°° H, molecules
and 7.2 x 10* He atoms.!! The primary electron spectrum is both
lower in absolute value and substantially steeper, with a slope closer
to —3.2 at high energy, as a result of the quadratic dependence of

Note that these should be understood as primary ionizations, since we do
not track electrons with energies <1 MeV, which overwhelmingly dominate
secondary ionizations.
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Figure 15. Emitted y-ray spectra produced in the thick target test. The black solid line shows the total spectrum produced by all particles and processes, and
the blue solid line shows the contribution from nuclear inelastic scattering. Dashed and dot—dashed lines in different colours show emission by primary and
secondary electrons and positrons, respectively, with the colour indicating the emission process — bremsstrahlung, inverse Compton, and synchrotron.

synchrotron and inverse Compton losses on CR energy. It too falls
off below &1 GeV due to ionization losses — the total ionization rate
produced by electrons and positrons is 6.8 x 10°° and 8.7 x 10%
s~! for H, and He, respectively. Finally, the secondary electron and
positron spectra are nearly identical, and are lower still, reflecting the
relatively large value we have chosen for the primary electron/proton
ratio in this test.

We show the y-ray emission that CRIPTIC predicts for this system
in Fig. 15. We find that nuclear inelastic scattering dominates at
high energies, with a sharp cutoff just below 10® GeV reflecting the
cutoff in the injection spectrum that we apply there. This gives rise
to the usual bump at &1 GeV in the spectral energy distribution.
Bremsstrahlung and inverse Compton emission from primary elec-
trons significantly contribute to the total emission at energies below
~1 GeV. In the radio, we see a dominant contribution from primary
electron synchrotron, with a & 10 per cent additional contribution
from secondary electrons. All other processes are subdominant. Note
that the wavy structure in the inverse Compton and bremmstrahlung
spectra at high energy is real, and reflects the modulation imposed
by the fact that we have two blackbody radiation fields at different
temperatures present. On the other hand, the somewhat spiky contri-
bution from positron annihilation (which includes only the Doppler-
boosted 511 keV photons, not the inverse Compton, bremmstrahlung,
or synchrotron contributions from positrons) is a result of the
relatively small number of positron packets present in the calculation,
which causes some numerical noise. However, since this component
is subdominant by A2 dex, this has no noticeable effect on the total
spectrum. In general, our result is qualitatively consistent with the
results of other thick target calculations of starburst y-ray and radio
spectra.

5 DISCUSSION AND CONCLUSION

We conclude by discussing applications of CRIPTIC, as well as the
limitations of the current code and our plans for future expansions.

5.1 Applications

CRIPTIC can be used to solve a wide range of problems in CR trans-
port. In Sampson et al. (2022), we have already applied it to the prob-
lem of determining an effective transport theory for CRs that stream
through a turbulent plasma. This application exploits CRIPTIC’s ability
to model transport through an arbitrary, time-dependent background
—in this case the output of an MHD turbulence simulation.

In future work we intend to use CRIPTIC to post-process MHD
simulations of Milky Way-like galactic discs (e.g. Wibking &
Krumholz 2022), in order to compare the results produced by
different CR transport models with observable quantities such as
the y-ray spectral index as a function of height above the galactic
plane. We also intend to post-process CR hydrodynamics simulations
in order to predict detailed observables from them.

Astrochemistry and the link between it and high-energy phe-
nomena represents another immediate application. There has been
considerable debate about the CR ionization rate in starburst galax-
ies (e.g. Papadopoulos 2010; Bisbas, Papadopoulos & Viti 2015;
Narayanan & Krumholz 2017) and in the Milky Way Central
Molecular Zone (Ginsburg et al. 2016; Oka et al. 2019; Tanaka,
Nagai & Kamegai 2021), but thus far this discussion has focused
on molecular indicators, and has not taken advantage of constraints
offered by high-energy tracers such as y-ray emission. However, the
CRs that drive ionization and those that produce y -rays are ultimately
part of the same population, albeit at somewhat different energies.
Efforts to combine constraints on the low-energy population that
drives ionization and the high-energy population that drives y-ray
emission have thus far been very limited (e.g. Armillotta et al. 2022),
but CRIPTIC’s ability to simulate the full CR energy range should
greatly facilitate these efforts.

5.2 Limitations and expansion plans

No simulation code can ever capture all of physics, and that is
certainly true of CRIPTIC. It is therefore worth concluding pointing
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out some limitations of the current code, and some plans for future
expansion to remedy at least some of these limitations. One limitation
is that CRIPTIC is a post-processing code, and therefore does not allow
for calculation of the backreaction on the flow due to CR pressure
forces or heating. In this regard, it is analogous to Monte Carlo post-
processing radiative transfer codes, which can be used to predict
detailed spectra, but do not allow self-consistent calculation of how
a flow reacts to radiation forces. To the extent that a calculation
using criptic predicts a CR field where CR forces are important
(or, analogously, a Monte Carlo calculation predicts a dynamically
important radiation pressure force), the correct way to proceed is to
evolve the system with a code that self-consistently includes those
forces, and then use a post-processing tool like CRIPTIC to calculate
the observable emission at much higher resolution that would be
possible from the self-consistent calculation alone. Beyond this limit
to the overall CRIPTIC methodology, though, we here identify three
other limitations that are ripe for improvement in future releases.

First, CRIPTIC does not yet include all of the CR species or loss
processes for which observational constraints exist. Since we have
focused on radiative and astrochemical signatures from galaxies,
and particularly radiative signatures that are observable from beyond
the Milky way, in this first release we have included the species
that dominate these. However, direct in sifu measurements exist
for a range of heavier CR nuclei, most prominently He, B, and
C. We intend to include these species in a future release. We will
also add antiprotons and the process of positron annihilation via
positronium formation, which do produce radiative signatures that
are observable in the Galaxy, if not from external galaxies. Finally, we
have focused on CRs in the ~1 MeV — 1 PeV range in typical galactic
environments, and have not included loss processes that become
dominant outside this range or in highly magnetized environments
such as around active galactic nuclei. At low energies the main
omitted process is charge exchange (e.g. Schultz et al. 2008), while at
the high energy end it is photohadronic interactions (e.g. Miicke et al.
1999); photon—photon scattering can also become a significant loss
process for high-energy photons in strong radiation environments,
and is not yet included. In highly magnetized environment, we should
also include synchrotron losses for protons. The modular nature of
the code makes addition of such processes straightforward, and these
too may be included in future releases.

Secondly, at present CRIPTIC solves the Fokker—Planck equation in
the spatial and momentum directions, but not in pitch angle; it
is therefore valid only on scales large enough that the local CR
pitch angle distribution has become approximately isotropic. This
limits applications to ultrahigh energy CRs, and potentially to
environments where CR scattering is very strongly suppressed since,
in both these regimes, the mean free path that CRs travel before
becoming isotropised can be large. Fortunately our It6 calculus-
based formulation of the problem is readily extensible to include the
pitch angle dimension as well, and we intend to include an option to
solve problems in the anisotropic regime in future releases.

Third, CRIPTIC does not yet predict neutrino emission. This is
a straightforward extension to the existing code, since the main
process responsible for producing neutrinos — nuclear inelastic
collisions leading to charged pion production — is already included
via calculation of secondary electrons and positrons. The limitation
is rather that existing neutrino observatories are limited to very high
energy neutrinos, where the point raised above applies, i.e. it is
unclear that one can assume pitch angle isotropisation for the CRs
that drive the observable neutrino emission. Extension to neutrinos
is therefore likely to wait until after the extension to follow diffusion
in pitch angle is complete.

MNRAS 517, 1355-1380 (2022)

Finally, we note that CRIPTIC is released under an open source
license. Users are encouraged to contribute their own expansions,
which can be incorporated into future releases.
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CRIPTIC is available from https://bitbucket.org/krumholz/criptic/src
/master/ under an open source license. The setup files and analysis
scripts required to reproduce all the test problems described in this
paper are included in the repository. An introduction and users’ guide
is available at https://criptic.readthedocs.io/.

REFERENCES

Ambrosone A., Chianese M., Fiorillo D. F. G., Marinelli A., Miele G., 2022,
MNRAS, 515, 5389

Armillotta L., Ostriker E. C., Jiang Y.-F., 2021, ApJ, 922, 11

Armillotta L., Ostriker E. C., Jiang Y.-F., 2022, ApJ, 929, 170

Asplund M., Grevesse N., Sauval A. J., Scott P, 2009, ARA&A, 47, 481

Astropy Collaboration, 2013, A&A, 558, A33

Astropy Collaboration, 2018, AJ, 156, 123

Beattie J. R., Krumholz M. R., Federrath C., Sampson M., Crocker R. M.,
2022, preprint (arXiv:2203.13952)

Bisbas T. G., Papadopoulos P. P, Viti S., 2015, ApJ, 803, 37

Blumenthal G. R., Gould R. J., 1970, Rev. Mod. Phys., 42, 237

Chan T. K., Keres D., Hopkins P. F., Quataert E., Su K. Y., Hayward C. C.,
Faucher-Giguere C. A., 2019, MNRAS, 488, 3716

Cherenkov Telescope Array Consortium, 2019, Science with the Cherenkov
Telescope Array. World Scientific Publishing, Signapore

Crocker R. M., Krumholz M. R., Thompson T. A., 2021a, MNRAS, 502,
1312

Crocker R. M., Krumholz M. R., Thompson T. A., 2021b, MNRAS, 503,
2651

Dirac P. A. M., 1930, Math. Proc. Camb. Phil. Soc., 26, 361

Draine B. T., 2011, Physics of the Interstellar and Intergalactic Medium.
Princeton University Press, Princeton, NJ

Dullemond C. P, 2012, Astrophysics Source Code Library, record
ascl:1202.015

EnBlin T. A., Pfrommer C., Springel V., Jubelgas M., 2007, A&A, 473, 41

Evoli C., Gaggero D., Vittino A., Di Bernardo G., Di Mauro M., Ligorini A.,
Ullio P, Grasso D., 2017, J. Cosmol. Astropart. Phys., 2017, 015

Fehlberg E., 1970, Computing, 6, 61

Galassi M., Davies J., Theiler J., Gough B., Jungman G., Alken P., Booth M.,
Rossi ., 2009, GNU Scientific Library Reference Manual. 3rd edn

Garcia-Portugués E., 2022, Notes for Nonparametric Statistics. Available at:
https://bookdown.org/egarpor/NP-UC3M/

R2http://www.astropy.org

€20z 11dy Lz Uo Jasn Aysianlun [euoleN uelensny ‘g4 Buipiing ‘Aieiqi seizusi ‘9 AQ €59/ 1 9/GSEL/L/21S/0IME/SEIUW/WOO"dNo"ojwapede//:sdny Wwoly papeojumoq


https://bitbucket.org/krumholz/criptic/src/master/
https://criptic.readthedocs.io/
http://dx.doi.org/10.1093/mnras/stac2133
http://dx.doi.org/10.3847/1538-4357/ac1db2
http://dx.doi.org/10.3847/1538-4357/ac5fa9
http://dx.doi.org/10.1146/annurev.astro.46.060407.145222
http://dx.doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.3847/1538-3881/aabc4f
http://arxiv.org/abs/2203.13952
http://dx.doi.org/10.1088/0004-637X/803/1/37
http://dx.doi.org/10.1103/RevModPhys.42.237
http://dx.doi.org/10.1093/mnras/stz1895
http://dx.doi.org/10.1093/mnras/stab148
http://dx.doi.org/10.1093/mnras/stab502
http://dx.doi.org/10.1017/S0305004100016091
http://dx.doi.org/10.1051/0004-6361:20065294
http://dx.doi.org/10.1088/1475-7516/2017/02/015
http://dx.doi.org/10.1007/BF02241732
https://bookdown.org/egarpor/NP-UC3M/
http://www.astropy.org

Gardiner C., 2009, Stochastic Methods: A Handbook for the Natural and
Physical Sciences, 4 edn. Springer, Berlin

Ginsburg A. et al., 2016, A&A, 586, A50

Girichidis P. et al., 2016, ApJ, 816, L19

Girichidis P., Pfrommer C., Pakmor R., Springel V., 2022, MNRAS, 510,
3917

Gould R. J., 1972, Physica, 60, 145

Harris C. R. et al., 2020, Nature, 585, 357

Hopkins P. F. et al., 2020, MNRAS, 492, 3465

Hopkins P. F., Squire J., Butsky I. S.,Ji S., 202 1a, preprint (arXiv:2112.02153)

Hopkins P. F,, Chan T. K., Squire J., Quataert E., Ji S., Kere$ D., Faucher-
Giguere C.-A., 2021b, MNRAS, 501, 3663

Hopkins P. E, Butsky I. S., Panopoulou G. V., Ji S., Quataert E., Faucher-
Giguere C.-A., Keres D., 2022, MNRAS, 516, 3470

Hunter J. D., 2007, Comput. Sci. Eng., 9, 90

Ivlev A. V., Silsbee K., Padovani M., Galli D., 2021, ApJ, 909, 107

Jones F. C., 1968, Phys. Rev., 167, 1159

Kafexhiu E., 2016, Phys. Rev. C, 94, 064603

Kafexhiu E., Aharonian F., Taylor A. M., Vila G. S., 2014, Phys. Rev. D, 90,
123014

Kelner S. R., Aharonian F. A., Bugayov V. V., 2006, Phys. Rev. D, 74, 034018

Kim Y.-K., Rudd M. E., 1994, Phys. Rev. A, 50, 3954

Kim Y.-K., Santos J. P., Parente F., 2000, Phys. Rev. A, 62, 052710

Kissmann R., 2014, Astropart. Phys., 55, 37

Knudsen H., Brun-Nielsen L., Charlton M., Poulsen M. R., 1990, J. Phys. B
At. Mol. Phys., 23, 3955

Kopp A., Biisching L., Strauss R. D., Potgieter M. S., 2012, Comput. Phys.
Commun., 183, 530

Krumholz M. R., Crocker R. M., Xu S., Lazarian A., Rosevear M. T., Bedwell-
Wilson J., 2020, MNRAS, 493, 2817

Lacki B. C., Thompson T. A., 2010, ApJ, 717, 196

Lacki B. C., Thompson T. A., Quataert E., 2010, ApJ, 717, 1

Mathis J. S., Mezger P. G., Panagia N., 1983, A&A, 128, 212

Merten L., Becker Tjus J., Fichtner H., Eichmann B., Sigl G., 2017, J. Cosmol.
Astropart. Phys., 2017, 046

Miicke A., Rachen J. P, Engel R., Protheroe R. J., Stanev T., 1999, PASA,
16, 160

Narayanan D., Krumholz M. R., 2017, MNRAS, 467, 50

Narayanan D. et al., 2021, ApJS, 252, 12

O’Neill M. E., 2014, Technical Report HMC-CS-2014-0905, PCG:
A Family of Simple Fast Space-Efficient Statistically Good Al-
gorithms for Random Number Generation. Harvey Mudd College,
Claremont, CA

Oka T., Geballe T. R., Goto M., Usuda T., Benjamin M. J., Indriolo N., 2019,
AplJ, 883, 54

Papadopoulos P. P, 2010, ApJ, 720, 226

Pattle R. E., 1959, Q. J. Mech. App. Math., 12, 407

Patwary M. M. A. et al., 2016, preprint (arXiv:1607.08220)

Peretti E., Blasi P., Aharonian F., Morlino G., 2019, MNRAS, 487, 168

Peskin M. E., Schroeder D. V., 1995, An Introduction to Quantum Field
Theory. Addison-Wesley, Boston

Prantzos N. et al., 2011, Rev. Mod. Phys., 83, 1001

Roth M. A., Krumholz M. R., Crocker R. M., Celli S., 2021, Nature, 597,
341

Rudd M. E., Kim Y. K., Madison D. H., Gay T. J., 1992, Rev. Mod. Phys.,
64, 441

Salem M., Bryan G. L., 2014, MNRAS, 437, 3312

Sampson M. L., Beattie J. R., Krumholz M. R., Crocker R. M., Federrath C.,
Seta A., 2022, preprint (arXiv:2205.08174)

Schultz D. R., Krstic P. S., Lee T. G., Raymond J. C., 2008, ApJ, 678, 950

Skilling J., 1975, MNRAS, 172, 557

Socrates A., Davis S. W., Ramirez-Ruiz E., 2008, ApJ, 687, 202

Strong A. W., Moskalenko I. V., 1998, ApJ, 509, 212

Strong A. W., Moskalenko I. V., Ptuskin V. S., 2007, Ann. Rev. Nucl. Part.
Sci., 57, 285

Tanaka K., Nagai M., Kamegai K., 2021, ApJ, 915, 79

Thompson T. A., Quataert E., Waxman E., Murray N., Martin C. L., 2006,
Apl, 645, 186

CRIPTIC 1379

Uhlig M., Pfrommer C., Sharma M., Nath B. B., Enflin T. A., Springel V.,
2012, MNRAS, 423, 2374

Werhahn M., Pfrommer C., Girichidis P., Winner G., 2021a, MNRAS, 505,
3295

Werhahn M., Pfrommer C., Girichidis P., 2021b, MNRAS, 508, 4072

Wibking B. D., Krumholz M. R., 2022, MNRAS, in press

Wiener J., Pfrommer C., Oh S. P, 2017, MNRAS, 467, 906

Yang R.-z., Kafexhiu E., Aharonian F., 2018, A&A, 615, A108

Yoast-Hull T. M., Gallagher J. S. 1., Zweibel E. G., Everett J. E., 2014, ApJ,
780, 137

Yoast-Hull T. M., Gallagher J. S., Zweibel E. G., 2016, MNRAS, 457, L29

Zweibel E. G., 2017, Phys. Plasmas, 24, 055402

APPENDIX A: DETAILS OF THE TREE
ALGORITHM

Here, we describe the algorithm we use to evaluate equation (74)
to reconstruct integrals over the CR distribution function and their
gradients. For convenience, we rewrite this equation here as

q=> 8Xi)OyTsw, (A1)

s,i

where ¢ is one of the quantities — n, P, or U — on the left-hand
side of equation (74), w is a corresponding quantity computed from
the properties of each CR packet — 1, vgpy;, and Ty, and g(xy;) =
Kn (x — x;). We shall refer to the quantities ¢ appearing on the
left hand as field quantities, and the quantities w appearing on the
right-hand side as field weights. Note that the contribution from
each packet is therefore the product of a purely geometric term
g(x;) that depends only on packet position, a step indicator ®y; that
depends only on the relative rigidities of the packet for which the field
quantity is being computed and the packets contributing to it, and a
term Y ;w,; that depends only on other properties of the contributing
packet. Our algorithm is based on this decomposition. Further note
that equation (76), describing the gradients of field quantities, can be
written in a completely analogous fashion, simply by changing the
geometric term to g(X;;) = —H;l (X — X,;) Kn, (X —X,;). We can
therefore apply the same algorithm to gradients of field quantities,
with only very minor modifications that we discuss below.

Given this discussion, we first describe how we construct the kd-
tree in Appendix A1, the algorithm we use to evaluate equation (74)
in non-distributed memory calculations in Appendix A2, and then
the extension to the distributed memory case in Appendix A3.

A1 Building the kd-tree

We construct a balanced kd-tree by standard methods, and assign
each leaf a bandwidth tensor H as described in Section 3.1. We
then carry out an additional step: for each leaf L in the tree, we
compute gg, = ZweL O(R,; — Ry)Ys;wy; for a series of rigidities
R, uniformly spaced in logarithm from the largest to the smallest
packet rigidity present in the volume. In words, this sum represents
the total maximum possible contribution that the packets in the leaf
could make to a field quantity ¢ for a CR with rigidity R,,.

Once we have evaluated these sums for every leaf, we recursively
compute the corresponding sums for every other node in the tree, by
simply summing the results from that node’s two children. In this
way, for every node in the tree we record the maximum possible
contribution gg, that packets contained in that node could make to
the field quantities of packets with rigidities >R,,.
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A2 Shared memory

We evaluate equation (A1) for all packets in the tree by processing
one leaf at a time, using a separate OpenMP thread for each leaf. For
each CR packet in the leaf, we compute its rigidity R and find the
corresponding rigidities R, that bracket it, i.e. we find n such that
R, <R <R, ;. The algorithm we apply relies on the nodeList:
a list of all the non-leaf nodes of the tree we have examined so far,
along with, for each node a central estimate ¢,oge and an error epoqe
for the contribution that packets contained in that node make to the
field quantities. The central estimates and errors have the property
that the true contribution of the packets in each tree node, defined by
equation (A1) evaluated for the packets within the node, lies strictly
in the range (Qnode — €node> Ynode + enode)~

(1) Start the algorithm by adding the root node of the tree to
nodeList. For each CR packet in the leaf whose field quantities
are being computed, evaluate the minimum and maximum possible
contributions gmi, and gmax to the field quantities made by packets
contained within the root node; the minimum is simply given by
Gmin = Min(g(X))qr,.,,> and the maximum by gm.x = max(g(x))gr,,
where here the minimum and maximum of g are evaluated over the
bounding box of the node. In words, we find the minimum possible
contribution gn;, by assuming that all the packets in the node are
at the location x that makes the geometric factor g(x) as small as
possible, and that the target packet is at the largest possible rigidity,
R, 4+ 1; similarly, the maximum possible contribution arises if all the
packets in the node are at the location where g(x) has its maximum,
and the target packet is at its smallest possible rigidity, R,. We can
then take dnode = (qmin + qmax)/2 and €node = (qmax - qmin)/z- We
add these quantities to nodeList.

(2) Evaluate the sum of gy and enoqe Over all the nodes in
nodeList and all packets in the leaf we are processing. Define
the maximum possible relative error for each packet in the leaf by
RE = > €node/(Q Gnode — D _€node)> Where the maximum is over all
packets; the true value of ¢ is guaranteed to differ from Y gnode by
at most a factor of RE for the packet with the largest error. If RE is
below a user-specified tolerance for all packets in the leaf, terminate
iteration and set ¢ = > Gnode-

(3) If the RE exceeds the tolerance for any packet in the leaf,
search through nodeList and find the node that makes the largest
contribution to RE for the packet with the largest total RE. We then
‘open’ this node by removing it from nodeList, and replacing it
with its two children. If those children are not leaves, we compute
Gnode and epoge for them exactly as for the root node in step 1. If
they are leaves, we compute gnoe for them by evaluating the sum
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in equation (A1) directly for the packets those leaves contain, and
setting the corresponding error epqge to zero.

(4) Go back to step 2, and repeat until RE is below the tolerance
for all packets.

When applying this algorithm to the gradients of field quantities,
in nodeList we have not only estimates of field quantities gyode,
but estimates of their gradients Vgpe, and the corresponding
uncertainties epoqe and Vepege. Since Vg is a vector quantity, we
define the relative error as RE = | > Venode [tmax/(O_Gnode — D €node)s
where /i, is the largest eigenvalue of the bandwidth tensor H.

A3 Distributed memory

As described in Section 3.5, in a distributed memory parallel
calculation, on each rank we have a tree, some of whose nodes
may have children that reside on a different MPI rank. It is therefore

possible that, finding the node that makes the largest contribution
to the relative errors (step 3 in Appendix A2), we will find that

node cannot be opened because its children are only available on
another MPI rank. If this occurs, we remove the node from the node
list and do not add any children, but we record the MPI rank on
which those children live, and we keep track of the total central
estimate ¢ex and uncertainty e contributed by such ‘external’
nodes, and we define the relative error to include their contributions:
RE = (Zenode + eexl)/(ZQnode - Eenode - eext)s and Simi]aﬂy for
gradients. We distinguish this from the ‘local’ relative error RE;,. =
Zenode/(ZCInode - Zenode)-

If at any point while iterating, we reach a state where REj,
is below our target tolerance for all packets, but RE exceeds our
tolerance for at least some of them, we conclude that we cannot
complete those packets without access to the information contained
on other MPI ranks. We therefore send an MPI request to all the
ranks that contribute to ey, and request that they evaluate their
contribution to the target packets; they do so using the same algorithm
as given in Appendix A2, but rather than starting from the root node
of the tree, they start from the roots of their own local trees, i.e.
evaluating only their own contributions. Once they have computed
these contributions with sufficient accuracy that the total estimate will
be below the tolerance, they send these estimates back to the rank
that made the request. This rank then sums the contributions from all
external ranks to arrive at a final estimate for the field quantities.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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