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ABSTRACT
Star formation has long been known to be an inefficient process, in the sense that only a small fraction εff of the mass of
any given gas cloud is converted to stars per cloud free-fall time. However, developing a successful theory of star formation
will require measurements of both the mean value of εff and its scatter from one molecular cloud to another. Because εff is
measured relative to the free-fall time, such measurements require accurate determinations of cloud volume densities. Efforts to
measure the volume density from two-dimensional projected data, however, have thus far relied on treating molecular clouds as
simple uniform spheres, while their real shapes are likely to be filamentary and their density distributions far from uniform. The
resulting uncertainty in the true volume density is likely to be one of the major sources of error in observational estimates of
εff. In this paper, we use a suite of simulations of turbulent, magnetized, radiative, self-gravitating star-forming clouds in order
to examine whether it is possible to obtain more accurate volume density estimates and thereby reduce this error. We create
mock observations from the simulations, and show that current analysis methods relying on the spherical assumption likely yield
∼0.26 dex underestimations and ∼0.51 dex errors in volume density estimates, corresponding to a ∼0.13 dex overestimation and
a ∼0.25 dex scatter in εff, comparable to the scatter in observed cloud samples. We build a predictive model that uses information
accessible in two-dimensional measurements – most significantly, the Gini coefficient of the surface density distribution – to
produce estimates of the volume density with ∼0.3 dex less scatter. We test our method on a recent observation of the Ophiuchus
cloud, and show that it successfully reduces the εff scatter.

Key words: stars: formation – ISM: structure.

1 IN T RO D U C T I O N

Because of the wide range of physical processes involved, star
formation is one of the least understood phenomena in the universe.
However, it is also one of the most important, because star formation
plays a key role in the evolution of galaxies and sets the initial
conditions for planet formation. One major unsolved problem in this
field is why star formation is such an inefficient process. For a star-
forming region, the depletion time tdep = Mgas/Ṁ∗ is the ratio of
the gas mass and the star formation rate (SFR). It is a characteristic
time-scale of star formation. By contrast, the natural time-scale for
a cloud collapsing under its own gravity is the free-fall time

tff =
√

3π

32Gρ
, (1)

where G is the gravitational constant and ρ is the volume density.
The star formation efficiency (SFE), defined as (Krumholz &
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McKee 2005)

εff = tff

tdep
=

√
3π

32Gρ

Ṁ∗
Mgas

, (2)

characterizes the efficiency of the star formation process. A value of
εff ∼ 1 for a given star-forming region indicates that the region is
giving birth to stars with little resistance to self-gravity, i.e. all the
gas collapses into stars in a single free-fall time. On the contrary, if
εff is low, this implies that some other process, for example magnetic
or turbulent pressure, is obstructing free-fall collapse and impeding
star formation (Federrath & Banerjee 2015; Federrath 2018b).

Zuckerman & Evans (1974) were the first to point out that
comparing the Milky Way’s star formation rate (∼1 M� yr−1), total
mass of molecular clouds (∼109 M�), and typical molecular cloud
free-fall time (∼10 Myr) implies that molecular clouds have εff

� 1, and Krumholz & Tan (2007) extended this conclusion to
the denser parts of molecular clouds traced by molecules such
as HCN. Krumholz, McKee & Bland-Hawthorn (2019) summa-
rize more recent observations on both sub-galactic and whole-
galaxy scales, and show that these yield εff estimates consistent
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with a near universal value εff ∼ 0.01 (e.g. Heyer et al. 2016;
Ochsendorf et al. 2017; Onus, Krumholz & Federrath 2018; Utomo
et al. 2018). These results have a study-to-study dispersion of
≈0.3 dex, and a dispersion of about 0.3–0.5 dex within any single
study.

The origin of the low observed value of εff is one of the major
puzzles in star formation theory. To explain it, different groups have
built models that can be classified into two main types. One group
of theorists explain this phenomenon by focusing on galactic scale
physical processes (e.g. Kim, Kim & Ostriker 2011; Ostriker &
Shetty 2011; Faucher-Giguère, Quataert & Hopkins 2013), while
others construct their models by summing up star formation in
individual molecular clouds, each of which has a small value of
εff due to some internal regulation process (e.g. Elmegreen &
Parravano 1994; Krumholz, Leroy & McKee 2011; Federrath &
Klessen 2012). Both classes of models predict similarly low εff values
on average, but they differ substantially in their predictions for the
dispersion of εff on sub-galactic scales – models where star formation
is regulated only on galactic scales generally predict much larger
dispersions than those where it is regulated on the cloud scale (Lee,
Miville-Deschênes & Murray 2016; Krumholz & McKee 2020).
This provides a strong motivation for measuring the cloud-scale
distribution of εff values with enough fidelity that we can determine
not just its mean value, but also its dispersion. Such measurements
also offer an invaluable opportunity to test prescriptions for star
formation and feedback in large-scale galaxy and cosmological
simulations, since different prescriptions for these processes yield
differing distributions of εff (e.g. Semenov, Kravtsov & Gnedin (e.g.
Semenov, Kravtsov & Gnedin 2016; Fujimoto et al. 2019; Grisdale
et al. 2019; Grudić et al. 2019). In order to take advantage of this
opportunity, however, we must be able to separate true dispersion
from observational errors; the more we can decrease observational
errors in measurements of εff, the more we can constrain theoretical
models.

Examining equation (2), we can see that the value of εff is related
to the SFR, gas mass, and volume density. All three parameters carry
observational uncertainties, but the volume density is the dominant
one. While the other two parameters can be obtained from two-
dimensional (2D) surface density maps, the volume density is an
inherently 3D property, estimates of which are inevitably subject
to projection effects. The scale of volume density uncertainties
depends on the measurement method. One method is to estimate ρ

with density-sensitive multiline spectroscopy (Gao & Solomon 2004;
Ginsburg, Federrath & Darling 2013; Leroy et al. 2017; Onus et al.
2018), but this is observationally expensive, and requires significant
calibration with uncertain theoretical models. A more direct approach
is to derive ρ from the column density � of observed star-forming
gas, relying on assumptions about the line-of-sight (los) depth. For
extragalactic observations on scales �100 pc, one can estimate the
depth from consideration of hydrostatic balance within a galactic disc
(e.g. Utomo et al. 2018), but this approach is not available for surveys
focusing on nearby molecular clouds on smaller scales, which are
the measurements that are most valuable for testing theoretical
models.

Instead, the most common approach in the literature is to assume
the cloud being observed is approximately spherical, so its depth
along the line sight is comparable to its size in the plane of the
sky. Heyer et al. (2016), for example, identify dense clumps in
ATLASGAL dust maps, and for each clump they measure the
total area A and total mass Mcloud. From these two, they compute
the mean surface density �̄ = Mcloud/A and assign a mean ra-
dius Reff = √

A/π. Therefore, under the spherical assumption the

spherical volume density ρsph is simply

ρsph = 3Mcloud

4πR3
eff

= 3�̄

4
√

A/π
. (3)

A number of other authors have used the same basic approach in
the Milky Way (e.g. Krumholz, Dekel & McKee 2012; Lada et al.
2013; Evans, Heiderman & Vutisalchavakul 2014; Pokhrel et al., in
preparation) and in the Large Magellanic Cloud (Ochsendorf et al.
2017).

However, the errors and biases that result from the spherical
assumption are at present poorly understood. For decades, fila-
mentary structures have been observed to be a common feature of
the interstellar medium (ISM) (e.g. Schneider & Elmegreen 1979;
Dobashi et al. 2005; Arzoumanian et al. 2011; André et al. 2014;
Kainulainen et al. 2016). Contours identified on the surface density
map of these structures are elongated. Thus, the volume density
derived under the spherical assumption may be quite different from
the true mean density. Moreover, even for molecular clouds with
perfectly spherical shapes, the mean volume density may still not
reflect the mean free-fall time of the whole region. As shown in
equation (1), tff ∝ ρ−0.5, which is a non-linear correlation. Thus, if
the molecular cloud has a non-uniform mass distribution (which is
very likely), the value of tff determined by integrating sub-regions
would not be equal to the value calculated with the mean density
of the whole region (e.g. Hennebelle & Chabrier 2011; Federrath &
Klessen 2012; Federrath 2013; Salim, Federrath & Kewley 2015).

Given the importance of volume density measurements and the
potential problems of the commonly used spherical assumption, our
goal is to find an improved method to estimate the 3D volume density
from 2D observations. Since the true value of volume density can only
be determined with 3D data, we turn to numerical simulations, from
which we can obtain all 3D properties of the simulated molecular
clouds. Using these simulations, we generate mock observations
and place surface density contours over them. For each contour,
we calculate the true volume density, together with a number of
other parameters (mean surface density, velocity dispersion, mass
of enclosed stars, etc.) that would be accessible in realistic 2D
observations. We use these data to both calibrate the expected error in
estimates of εff that rely on the spherical assumption and to develop
a predictive model for the volume density that can be used to reduce
this error.

This paper is structured as follows. Section 2 summarizes the
simulation data and the data analysis methods. Section 3 presents the
results of the analysis and the predictive model. Section 4 discusses
the physical meaning behind the proposed model and telescope beam
effects. Section 5 presents a sample application of our model to recent
observations of the Ophiuchus cloud, while Section 6 discusses
possible future work in this area. Section 7 concludes the work done
in this paper.

2 SI M U L AT I O N S A N D A NA LY S I S M E T H O D S

The simulations we use in our study are from the work of Cun-
ningham et al. (2018, hereafter C18). We choose these simulations
because they include detailed treatments of many physical processes:
gravity, magnetic fields, turbulence, mechanical jets/outflows, and
radiation feedback. Moreover, these simulations produce SFEs and
initial mass function (IMF) peaks that are both stable in time and are
close matches to recent observations, and they span a wide range of
turbulent and magnetic field characteristics, allowing us to check for
systematic variations with these properties. We start this section with
a brief introduction to the main features of the C18 simulations and
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Table 1. The short names and main differences of all nine simulations in
C18. The first column is the name of each simulation. The second column
is the mass-to-flux ratio normalized to the critical value (μ�). The third and
fourth columns indicate whether protostellar outflows and turbulent driving
are included in the simulation. The fifth column shows the highest refinement
level Lmax, which is related to the maximum linear resolution by �x =
(524 AU)/2Lmax . The sixth column is the simulation time of the snapshot we
use for our analysis, with t = 0 corresponding to the time at which gravity is
turned on, and the seventh column is the ratio between the total mass of sink
particles and total mass inside the simulation box.

Name μ� Outflows Driving Lmax Time (Myr) M∗/M

lo 1.56 � × 3 1.911 0.10
loDrive 1.56 � � 3 1.843 0.070
loNW 1.56 × × 3 1.640 0.13
lo2 2.17 � × 4 1.547 0.057
lo2Drive 2.17 � � 3 1.824 0.080
hi 23.1 � × 4 1.390 0.060
hiDrive 23.1 � � 3 1.535 0.034
hydro ∞ � × 4 1.319 0.052
hydroDrive ∞ � � 3 1.505 0.052

then describe the data analysis methods we apply in the remainder
of this section.

2.1 Summary of simulations

C18 uses the ORION2 AMR (adaptive mesh refinement) code (Li
et al. 2012). It solves the equations of ideal magnetohydrodynamics
(MHD) using the scheme of Mignone et al. (2012), together with
coupled self-gravity (Truelove et al. 1998; Klein et al. 1999) and
radiation transfer (Krumholz et al. 2007). The C18 simulations
include driven turbulence, produced following the driving recipe
of Mac Low (1999). They include protostellar outflows following
the procedure described in Cunningham et al. (2011); star formation
follows the sink particle algorithm of Krumholz, McKee & Klein
(2004), while protostar evolution and radiative feedback use the
model developed by Offner et al. (2009). We refer readers to C18 for
full details on how each of these physical processes are implemented.

C18 includes nine individual simulations with slightly different
initial conditions, whose properties are summarized in Table 1. For
all simulations, the AMR hierarchy is initialized on a 2563 base grid
denoted as L = 0. The highest refinement level Lmax = 4 (so the
highest resolution is 1/24 times of that of the base grid) for three
simulations and Lmax = 3 for the other six. The values of Lmax

for each simulation are listed in Table 1. The initial state consists
of molecular gas with solar metallicity, a mean molecular weight
2.33 mp and an initial temperature Tg = 10 K. Thus, the initial sound
speed is cs = 0.19 km s−1. The simulation domain is a periodic box
with size L = 0.65 pc and mean density ρ̄ = 4.46 × 10−20 g cm−3,
which corresponds to a total mass of M = 185 M�. Therefore, the
length scale and the mean density of these simulations represent
isolated globules, dense clumps, or filaments within clouds instead
of the whole cloud.

In all cases, the simulations begin with a uniform medium, and are
run for two box crossing times with gravity disabled and turbulent
driving turned on, so that the turbulence reaches a statistical steady
state. After that point, gravity is turned on; in half, the simulations
driving continues, while in the other half it is disabled at this point,
so that turbulence decays freely. In addition to this variation in
driving, the simulations vary in their degree of magnetization. All
simulations begin with a uniform magnetic field, whose strength is

parametrized in terms of the mass-to-flux ratio normalized to the
critical value, μ� = M/M�, where � is the magnetic flux through
the simulation domain and M� = �/2π

√
G is the magnetic critical

mass (Mouschovias & Spitzer 1976). The C18 simulations include
cases with μ� = 1.56, 2.17, 23.1, and ∞ (i.e. no magnetic fields),
each run with driving turned on and off, for a total of eight models.
In addition, one of the non-driven models is run with protostellar
outflows disabled, yielding a total of nine cases.

2.2 Data analysis methods

For the analysis in this paper, we use only the last snapshots, which
are taken at the times listed in Table 1; here, t = 0 corresponds to the
time at which gravity is switched on. The analysis procedure consists
of three steps: creating and selecting contours, measurement of the
true 3D volume density, and measurement of 2D contour properties.
The details of each step will be illustrated below.

2.2.1 Creating and selecting contours

The first step of the simulation data analysis is to generate and select
surface density contours. We start by making projection maps for
every snapshot at the native resolution of the simulations along each
of the three cardinal axes, yielding 27 gas column density maps.
On each map, we define 30 levels of surface density �, uniformly
spaced in logarithm between the mean value of the map, �̄1 and
the maximum value �max. We start from �̄ rather than from a
lower surface density contour because we want to focus on the high-
density regions where star formation occurs. From the smallest to the
largest of the determined column density levels, we draw contours
on the � map for each level. The set of closed contours generated
by this procedure forms the basic data set that we will analyse in the
remainder of this work.

To select contours suitable for further analysis, we discard those
that fail to meet four conditions. First, we project each contour on to
the two axes of the � map, and measure the lengths L1 and L2 of the
1D projections on both axes. We only retain contours with L1, L2 <

L/2. The reason is that the C18 simulations use periodic boundary
conditions, which makes it hard to define the shape and the centre of
mass (CoM) of the contours that cover a significant fraction of the
computational box. Secondly, we discard contours with a mean radius
Reff = √

A/π < L/100, where A is the area enclosed by the contour.
As shown in Federrath et al. (2011), one needs about 30 pixels across
a structure to adequately resolve its internal turbulent motions. Since
our simulation maps are either 20482 or 40962 in size, this condition
ensures that contours are resolved by a minimum radius of ≈20–
40 pixels, depending on the maximum resolution of the simulation.
Thus, this criterion guarantees that the internal structures of the
selected contours are well resolved. Thirdly, we retain only contours
enclosing at least one sink particle. This selection rule is intended to
mimic observations, which usually focus on regions selected around
observed protostars. The fourth criteria is to select the most massive
contour from the retained ones on each level. The reason is that a
large contour on a low � level may break into several smaller ones on
a higher level, making the whole sample biased towards the high �

range. Selecting only one contour each level can avoid this bias, and
the most massive contour is more representative than others. With

1Note that �̄ is identical for each projection of a single simulation, but
differs between the simulations, because at the snapshots we use, different
simulations have converted different fractions of their gas to stars.
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6000 Z. Hu et al.

Figure 1. The column density map of simulation lo, projected along the
x̂-axis. The white circles are the projected positions of sink particles. The
contours shown represent level 6 (blue; � = 0.29 g cm−2) and level 11
(yellow; � = 0.80 g cm−2) of the 30 column density levels determined from
the map.

the four criteria above, our 27 maps yield 365 contours suitable for
further analysis.

We show an example surface density map and contours, in this
case for simulation lo projected along the x̂-axis, in Fig. 1. The white
circles are the projected positions of sink particles, the blue contours
are from level 6/30 (� = 0.29 g cm−2) and the yellow contours are
from level 11/30 (� = 0.80 g cm−2). For reference, the mean surface
density of this map is �̄ = 0.084 g cm−2.

2.2.2 Measuring the effective volume density

As mentioned in the introduction, for a molecular cloud with a non-
uniform mass distribution, a simple mean volume density ρ̄ does not
reflect the mean free-fall time of the whole cloud, and using it may
lead to significant uncertainties when inferring the value of εff. We
therefore define the effective volume density ρeff to be a free-fall-
time-weighted mean density that is more suitable for calculating εff.
For a molecular cloud with non-uniform density and a fixed value of
εff, the SFR is given by (Hennebelle & Chabrier 2011; Federrath &
Klessen 2012)

Ṁ∗ =
∫

εff
ρ

tff (ρ)
dV = εff

√
32G

3π

∫
ρ3/2dV , (4)

where the integral is over the cloud volume. We therefore define the
effective free-fall time for the whole mass to be

tff,eff =
√

3π

32Gρeff
, (5)

where ρeff is our effective volume density, defined implicitly by
demanding

Ṁ∗ = εff
Mgas

tff,eff
= εff

√
32G

3π
ρ

1/2
eff

∫
ρ dV . (6)

Equating equations (4) and (6), we therefore define ρeff as

ρeff =
(∫

ρ3/2 dV∫
ρ dV

)2

, (7)

Figure 2. Zoom-in on the area around a single contour from Fig. 1; as in that
figure, colour shows column density and white points indicate the position of
star particles. The orange circle is the position of the centre of mass (CoM)
of the contour. The red arrow shows the direction of the major axis; and the
black arrow shows the direction of the plane-of-sky magnetic field Bpos; θ

labels the angle between the major axis and Bpos.

which is more suitable for calculating εff as in equation (2). For
each selected contour, we measure ρeff by evaluating the integrals in
equation (7) over a volume defined by the projection of the contour
along the los through the full volume of the simulation.

2.2.3 Measurement of 2D contour properties

To build a model that can predict ρeff from 2D observations, we
need to determine contour properties that may be related to ρeff. To
illustrate our procedure, we will use the contour located on the mid-
right-hand side of Fig. 1 as an example. We zoom in on this contour
in Fig. 2, where we show the contour, its CoM position, major axis
direction, and plane-of-sky magnetic field (Bpos) direction.

From each selected contour, we determine 10 parameters. The
first parameter is the spherical density ρsph as defined in equation
(3), which we will compare with the value of ρeff defined in equation
(7). The second is the mean radius of the contour, Reff. The third is
the ratio between the mean column density of the contour and that
of the whole column density map �contour/�̄; we choose the ratio
instead of the absolute value in order to minimize the effect of the
difference of gaseous mass between simulations. As stellar feedback
may change the mass distribution of a molecular cloud, we select
as the fouth parameter the ratio between the total mass of the sink
particles inside the contour and the total gas mass of the contour,
M∗/Mcontour.

The fifth parameter is the los velocity dispersion σv,los. We define
it as follows, roughly mimicking the way it might be measured
from a position–position-velocity data cube using an optically thin
tracer: for each pixel i in the projected map that lies inside the
contour of interest, we first compute the first moment of the los
velocity, vi,los = ∑

j Mij vij,los/
∑

j Mij , where Mij and vij,los are
the mass and los velocity of each cell j along a particular los i
through the projected map. We further define the mean los velocity
v̄los as the mean of the vi,los values, and the los velocity dispersion
by σ 2

v,los = ∑
ij (vij,los − v̄los)2/Np, where Np is the total number of

pixels included in the contour. Thus, the los velocity dispersion
is the root-mean-square velocity of all computational cells within
the contour, measured in the frame where the CoM velocity is
zero.
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Reconstructing 3D density from 2D observation 6001

Figure 3. Mass fraction fM, i contained in pixels with � < �i as a function
of percentile rank pi. The blue line shows this relationship for the example
contour shown in Fig. 2, while the red line shows the relationship for a contour
with a uniform column density. The Gini coefficient is the ratio of the grey
shaded area between the two curves to the area of the right triangle below the
uniform density line.

To describe the shapes of our contours, we introduce the ellipticity
e as the sixth parameter. The definition of e is

e = 1 − b/a, (8)

where a is the semimajor axis length of the contour and b is the
semiminor axis length; e ∼ 0 corresponds to an extremely elongated
contour, and e ∼ 1 describes a nearly circular contour. To determine
a and b, we first calculate the CoM of the contour. Then for each
pixel in the contour with a mass Mp and a displacement from the
CoM, �x = (�xp,1,�xp,2), we define the inertia tensor I as

Iij = (−1)i+j
∑

p

mp�xp,i�xp,j , (9)

where the sum runs over all pixels interior to the contour. The
eigenvalues of I are a and b (where a ≥ b by convention), and
the corresponding eigenvectors define the directions of the major
and minor axes.

The seventh and eighth parameters are the projected, mass-
weighted mean magnetic field strengths in the plane of sky Bpos

and in the los Blos; the former is approximately measurable using
Zeeman splitting, and the latter using dust polarization. We define
the ninth parameter θ as the angle between the major axis and Bpos.
For consistency, we always choose the smaller angle between the
two directions, thus θ ∈ [0, π /2] radian.

The tenth and last parameter is the Gini coefficient g (Gini 1936)
of the column densities of the pixels �i enclosed by the contour. To
compute this, we first sort the values of enclosed �i from the smallest
to the largest. For each pixel value �i, we calculate the fraction of
mass fM, i contained in pixels with column density � < �i and plot
it against the percentile rank pi of �i, i.e. pi is the fraction of pixels
for which � < �i. For a contour with constant �i (i.e. a uniform
column density distribution), fM is a straight line from (0, 0) to (1, 1).
For our example contour whose column density is non-uniform, the
start and end of the curve of fM, i versus pi are the same, but fM, i falls
below the one-to-one line for 0 < pi < 1. We show the measured
fM for our example contour, and a hypothetical curve for a uniform
column density region, in Fig. 3. The Gini coefficient is defined as
the ratio between the area of the grey region and the area of the right

triangle under the red curve: formally

g = 2
Npix∑
i=1

(
pi − fM,i

)
(pi+1 − pi) , (10)

where there are Npix pixels within the contour, and by convention
pNpix+1 = 1. Clearly g is bounded to lie between 0 and 1; g ≈ 0
describes a contour with near uniform surface density, while g ≈ 1
corresponds to a contour with highly concentrated mass distribution.

3 R ESULTS

Having created our sample with the selection of 365 contours and
measured the interesting contour properties, we now investigate
whether it is possible to build a model that can predict ρeff from the
contour properties. We start by examining the difference between
ρeff and ρsph in Section 3.1. Then, we utilize the method of multiple
linear fitting (MLF) to build our model. In the remainder of this
section, we describe the effectiveness of our model under different
conditions.

3.1 Comparing ρeff and ρsph

For each selected contour, we define

Qsph = ρsph

ρeff
, (11)

as the ratio of the spherical approximation density to the effective
density; values of Qsph > 1 indicate that the spherical density overesti-
mates the effective density, while values < 1 indicate underestimates.
This will be our figure of merit for the remainder of the paper,
i.e. this quantity characterizes how well we can approximate the
true, 3D density given the projected information to which we have
access. A perfect model would yield a distribution of Q values that
is a δ function at Q = 1. For the 365 selected contours, the mean
value of Qsph is Qsph = 0.948, and the median value is Qsph, med

= 0.544. We show the full histogram of log Qsph in Fig. 4 with
the contours’ simulation sources labelled. From Fig. 4, we can see
that the distribution of log Qsph is more weighted to log Qsph < 0,
with log Qsph, med = −0.26. The distribution of log Qsph values varies
between individual simulations. Most log Qsph values for the hydro
simulation, for example, are less than 0. To quantify the dispersion
of log Qsph, we determine the 16th and 84th percentiles of log Qsph,
which we show as black vertical dashed lines in Fig. 4. We define
the dispersion

σsph ≡ 1

2

(
Qsph,84 − Qsph,16

)
, (12)

where Qsph, 16 and Qsph, 84 are the 16th and 84th percentile values,
respectively. Thus, for a Gaussian distribution of log Qsph values, σ sph

is just the usual Gaussian dispersion. For the data shown in Fig. 4,
σ sph = 0.51 dex. Therefore, the volume density determined under
the spherical cloud assumption underestimates ρeff by ≈0.26 dex
and carries an uncertainty of �ρsph ≈ 0.51 dex.

3.2 Building the predictive model

To reduce the uncertainty carried by ρsph, we next build a model to
predict the value of ρeff from 2D contour properties by MLF. As some
parameters introduced in Section 2.2.3 have wide ranges, we carry
out our fits using log-scaled variables. The dependent variable is Y =
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6002 Z. Hu et al.

Figure 4. Normalized histogram of log Qsph, the quantity that characterizes
the ratio of the density estimated using the spherical assumption to the true
effective density; for example, log Qsph values of −1 and 1 correspond to the
spherically estimated density being too small and too large by a factors of 10,
respectively. The simulations from which each measurement of Qsph comes
are indicated by colour, as shown in the legend. The two vertical dashed lines
show the 16th and 84th percentiles of the distribution.

log (ρeff/ρsph) = −log Qsph, while the six independent variables are

X =
[

log Reff, log
�contour

�̄
, log

M∗
Mcontour

, log σv,los, e, g

]
. (13)

We omit the magnetic variables for now, because they are not
available for the simulations that do not include magnetic fields;
we revisit these variables in Section 3.3. After fitting, we obtain the
coefficient vector k and the intercept b. Thus, the predicted effective
volume density ρp is

ρp = Cρsph = 10k·X+ bρsph, (14)

where C ≡ 10k·X+ b is the correction factor. By analogy with Qsph

and σ sph as defined in Section 3.1, we now define Qp = ρp/ρeff

and σ p as the ratio of the predicted and effective densities and half
of the distance between the 16th and 84th percentiles of log Qp,
respectively.

We report the best-fitting values of k and b as Fit 1 in Table 2.
The coefficient of determination for this fit is R2 = 0.83, indicating a
strong correlation and justifying our choice of MLF. With the fitted
relation, we predict the effective volume density ρp for every contour
in the sample. We compare the normalized histograms of log Qsph

and log Qp in Fig. 5. It is obvious that log Qp is much more narrowly
distributed around zero than log Qsph, with log Qp, med = 5.4 × 10−4.
The resulting dispersion, σ p = 0.17 dex, is also substantially smaller.
Thus, this fitted relation not only eliminates the bias, but also reduces
the uncertainty in the effective volume density by

�σ = σsph − σp = 0.34 dex. (15)

We use �σ , the amount by which a given model reduces the scatter
in log (ρp/ρeff) compared to log (ρsph/ρeff), as our figure of merit for
evaluating our predictive model from this point forward.

3.3 The effect of including magnetic field data

To check the effect of including magnetic field data on our density
predictions, we perform another MLF on the seven MHD simulations

Table 2. Results of MLF for the correction factor C
between ρeff and ρsph (see equation 14). The top block
of rows show the fit coefficients k, and the last three rows
provide the intercept b, the coefficients of determination
R2, and the amount �σ by which the fit reduces the
dispersion of log Q.

Quantity Fit 1 Fit 2

log (Reff/pc) 0.47 0.52
log(�contour/�̄) 0.16 − 0.042
log (M∗/Mcontour) 0.042 0.031
log (σ v, los/(cm/s)) − 0.18 − 0.14
log (Bv, pos/G) – 0.070
log (Bv, los/G) – 0.16
θ – − 0.0040
e 0.055 0.21
g 3.91 3.4

b 0.63 1.7
R2 0.83 0.87
�σ (dex) 0.34 0.33

Figure 5. Normalized histograms of log Qsph (blue) and log Qp (orange).
The histogram of log Qsph values is the same as that shown in Fig. 4. The
two blue dashed lines show the 16th and 84 percentiles of log Qsph, and the
two orange dashed lines show the 16th and 84 percentiles of log Qp. The
predictive model substantially reduces the bias and error in estimates of the
effective density.

in our data set (hydro and hydroDrive excluded), to which we
refer as Fit 2. This fit includes log Bpos, log Blos, and θ (the angle
between the plane of sky magnetic field direction and the contour
major axis) in the vector of independent variables X. We report the
results of this fit in Table 2. We define log Qp, 2 as the logarithm
of the ratio of predicted ρp, 2 and effective densities, in analogy
with log Qp, and we plot the normalized histograms of log Qp, 2

and log Qsph in Fig. 6; note that the distribution of log Qsph shown
here is slightly different than that shown in Fig. 5, since the former
includes the contours from hydro and hydroDrive, while this figure
excludes them. The dispersion of Qsph for this sample is σ sph, 2 =
0.48 dex, and the dispersion of Qp, 2 is σ p, 2 = 0.15 dex. Thus, �σ 2

= σ sph, 2 − σ p, 2 = 0.33 dex. Comparing the results from this and the
previous fit, we find fairly minor differences in the fit coefficients
and intercepts. The R2 value only increases by about 0.04 from
Fit 1 to 2, and �σ 2 is nearly the same as �σ . This indicates that
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Reconstructing 3D density from 2D observation 6003

Figure 6. Same as Fig. 5, but now showing the results for effective densities
predicted using Fit 2, which includes magnetic field information. Note that the
comparison set of Qsph values shown here (blue histogram) is slightly different
than that in Fig. 5, because in this figure, we omit the purely hydrodynamic
simulations, whereas in the previous figure, we included all simulations.

a model including magnetic field information does not significantly
reduce the uncertainty on ρeff in comparison to one omitting it.
Moreover, as summarized in the review by Crutcher (2012), magnetic
field measurements are observationally expensive: determination of
Bpos requires measurements of polarized dust continuum emission or
absorption, while Blos requires Zeeman effect measurements. Due to
the long observation times required, these are difficult to obtain for a
large sample. Considering the small gains that we have found from
including magnetic field information and the difficulty in obtaining
it, we generally suggest using Fit 1 to predict the effective density,
unless there is magnetic field information available, in which case
Fit 2 can be used.

3.4 Dependence on physical conditions: turbulence, magnetic
fields, and outflows

We obtain the relation in Section 3.2 by performing MLF on
all nine C18 simulations. However, the ambient conditions (mean
magnetic field strength, presence or absence of turbulence driving)
vary between individual simulations. If the coefficients of the model
fit depend on ambient conditions, this may reduce the reliability
of our model under specific circumstances. To check whether
this is a concern, we use the two linear models developed in
Sections 3.2 and 3.3 to determine the values of σ p and σ p, 2,
the dispersions in log Qp and log Qp, 2, for different subsets of
the simulations. We divide the simulations into those with driven
versus decaying turbulence, into simulations with different mass-
to-flux ratios, and into simulations that do or do not include
protostellar outflows. We plot the results in the top panel of
Fig. 7; for comparison we also show σ sph, the dispersion in Qsph

for the same set of simulations. Note that the model obtained
via Fit 2 is only applicable for simulation sets excluding hydro
and hydroDrive. We provide a full tabulation of the results in
Table 3.

From this plot we can see that for subsets including magnetic
fields, there is no significant difference in σ p for different models.
After applying both prediction models, the dispersion of Qp values

Figure 7. Top panel: σ sph, σ p and σ p, 2 values determined from different
subsets of the C18 simulations. Bottom panel: the number of contours
selected from different subsets of the C18 simulations. The horizontal axis
labels indicate the set of simulations for which these values are measured.
Simulation loNW, which has a normalized mass-to-flux ratio μ� = 1.56 but
has protostellar outflows disabled, is only included by itself in set ‘1.56(NW)’.
The ‘drive’ simulation subset includes all four simulations for which turbulent
driving continues after gravity is turned on, while ‘noDrive’ includes the other
four simulations where there is no driving and turbulence is allowed to decay
freely. Each of the last four horizontal axis labels, indicated by numerical
values, includes the two simulations (one with and one without driving) with
the specified mass-to-flux ratio μ�; here ‘inf’ means μ� = ∞, i.e. the purely
hydrodynamic simulations.

is decreased for each subset of the simulations to σ p ∈ [0.10,
0.26] dex; the improvement compared to the simple spherical
assumption is in the range �σ ∈ [0.18, 0.45] dex. Therefore, we find
relatively little variation in the performance of our prediction model
in different simulation subsets; σ sph and σ p values vary between
different sets of simulations, but relatively modestly, so that the
errors in the predicted models lie in the range ≈0.10–0.26 dex
for each subset of the simulations. Including B-field information
brings no improvement from Fit 1 to Fit 2, and the difference is
negligible for the weak B-field subset (μ� = 23.1). We do not find
a significant correlation between σ p and the number of contours
(plotted in the bottom panel of Fig. 7) available for a particular
simulation subset. More theoretical work is needed to understand
how variations in the ambient conditions affect the relationship
between the sky-projected and volumetric quantities, and how they
might affect our model. Nonetheless, we can state at this point that
the relationship between ρeff and ρsph does not seem to depend
strongly on the physical conditions present in the star-forming
region.

4 D ISCUSSION

Although our model has proven effective in reducing the uncertainty
in observational inferences of ρeff, the physical mechanisms leading
to this model are still unclear. In this section, we begin to investigate
this question by examining the predictive power of each individual
parameter in Section 4.1. We then extend our model to account
for finite resolution effects in Section 4.2. Finally, we discuss the
implications of our findings for observational efforts to measure εff

and its variation in Section 4.3.

MNRAS 502, 5997–6009 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/4/5997/6131850 by Library (H
ancock) user on 24 M

ay 2021



6004 Z. Hu et al.

Table 3. Values of log Qsph, log Qp and log Qp, 2 for different sets of simulations. The first row lists the name of different
simulation subsets, where ‘All’ means all simulations and the remaining seven columns correspond to the same subsets of the
simulations used in Fig. 7. In the 1st column, Q is the ratio between the estimated density and the true effective density ρeff,
and σ is the dispersion of log Q (equation 12). The subscripts ‘sph’, ‘p’ and ‘p,2’ in the 1st column indicate the value of log Q
obtained using the spherical assumption, and the predictive models from Fit 1 and Fit 2, respectively. The subscripts ‘16’, ‘50’,
‘84’ indicate the 16th, 50th and 84th percentile values. Note that Fit 2 is not applicable to simulation sets including hydro or
hydroDrive, because those simulations did not include magnetic fields.

Quantity All drive noDrive 1.56(NW) 1.56 2.17 23.1 inf

log Qsph, 16 − 0.76 − 0.59 − 0.88 − 0.76 − 0.33 − 0.66 − 0.81 − 0.83
log Qsph, 50 − 0.26 − 0.16 − 0.48 − 0.033 − 0.024 − 0.34 − 0.12 − 0.64
log Qsph, 84 0.26 0.34 0.052 0.35 0.40 0.059 0.39 − 0.22
σ sph 0.51 0.47 0.47 0.56 0.36 0.36 0.60 0.30

log Qp, 16 − 0.16 − 0.15 − 0.17 − 0.30 − 0.13 − 0.17 − 0.080 − 0.19
log Qp, 50 −5.4 × 10−4 − 0.023 0.021 0.071 0.049 − 0.048 0.084 − 0.093
log Qp, 84 0.18 0.19 0.18 0.18 0.21 0.18 0.21 0.017
σ p 0.17 0.17 0.17 0.24 0.17 0.18 0.15 0.10

log Qp, 2, 16 – – – − 0.34 − 0.16 − 0.13 − 0.14 –
log Qp, 2, 50 – – – − 0.068 0.054 − 0.026 0.017 –
log Qp, 2, 84 – – – 0.18 0.22 0.12 0.14 –
σ p, 2 – – – 0.26 0.19 0.13 0.14 –

Table 4. Results of MLF performed on the whole sample with only one
independent variable each time. The variables are ranked from top to bottom
according to their �σ values. For comparison, �σ = 0.34 dex for Fit 1, which
uses all six non-magnetic variables.

Quantity Intercept Coefficient R2 �σ (dex)

g − 0.93 4.6 0.75 0.29
log (Reff/pc) 1.2 0.60 0.17 0.060
log (σ v, los/(cm/s)) 3.5 − 0.70 0.099 0.051
log(�contour/�̄) 0.0010 0.26 0.058 0.032
e 0.25 0.013 3.2 × 10−5 0.0025
log (M∗/Mcontour) 0.26 − 0.0062 6.0 × 10−4 0.0017

4.1 Predictive power of individual parameters

An obvious question that follows from the success of our MLF
model in reducing uncertainties in ρeff is, which parameters have
the most predictive power? We have already seen that magnetic
field information adds little accuracy, and we now seek to extend
this analysis to the remaining parameters. To investigate this issue,
we carry out simple linear fits on the whole sample using only
one independent variable each time, and measure the R2 and �σ

(equation 15) values for the fit; the latter characterizes the amount by
which a model including only that parameter is able to improve
estimates of ρeff relative to the naive spherical assumption. We
tabulate the results in Table 4. The larger �σ is, the more the
corresponding parameter can reduce the uncertainty in the effective
volume density. The table reveals that the parameters vary widely in
their importance. The Gini coefficient g is the most important factor
in our model, and by itself it accounts for most of the improvement:
�σ = 0.29 dex for g alone, versus �σ = 0.34 dex for Fit 1, using all
the variables. Next, log Reff, log (σ v, los), and log(�contour/�̄) have
medium predictive power, while the other two parameters have
limited influence on the fitted relation.

To explain this difference, we need to reexamine equation (14).
Our model is to multiply ρsph by a correction factor C. Thus,
if one parameter can reveal how far the object is away from a
spherical, uniform-density cloud, then we would expect it to have
strong predictive power, or large �σ . To start with, g describes

how concentrated the mass distribution is on the 2D projected map,
which is strongly related to the volume-density profile. A larger g
corresponds to a larger

∫
ρ3/2 dV term and hence a larger ρeff, which

is consistent with the positive coefficient of g. At the same time,
contours with larger �contour/�̄ and larger Reff might on average be
more collapsed along the los, which would suggest a reason for their
predictive power: they can flag deviations from the simple spherical
assumption. However, the low R2 values of these two individual
parameter fits indicate that this is not a strict relation. A contour
with larger los depth may have larger vlos dispersion because of
the regions alone the los become more uncorrelated, which can
explain the medium predictive power of σ v . However, the lack of
correlation between density and velocity dispersion σ v has also been
found in several observations (e.g. Pineda, Caselli & Goodman 2008;
Goodman, Pineda & Schnee 2009). Passot & Vázquez-Semadeni
(1998), Federrath et al. (2010), and Federrath & Banerjee (2015)
explain this phenomenon as a result of the fact that there is no
correlation between density and velocity fluctuations in the case of
(near-)isothermal turbulence; though our simulations include stellar
radiation feedback, this effect is important only close to protostars,
and thus most of the gas is close to isothermal. Therefore, the R2

value of log (σ v, los) is also small.
Both other two parameters have limited predictive power. Sim-

ilarly, ellipticity may describe how close the 2D contour shape is
to a circle, but this apparently provides little constraint on the 3D
shape of the gas. Finally, log (M∗/Mcontour) has the smallest �σ and
R2 values. The reason may be that, once sink particles form in the
C18 simulations, the local density profile evolves very little; it likely
remains close to the usual ρ ∝ r−3/2 form expected for free-fall
collapse. As a result, the fraction of the available mass that has
already accreted, as parametrized by M∗/Mcontour, has very limited
predictive power.

Since g is the dominant factor here, we provide a simplified model
to predict ρeff using it alone

ρp = 10kgg+bg ρsph = 104.6g−0.93ρsph, (16)

where kg is the slope and bg is the intercept from the linear regression.
This simplified model can reduce the uncertainty in ρeff by �σ g =
0.29 dex. As a consistency check, we note that a spherical cloud
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Reconstructing 3D density from 2D observation 6005

Figure 8. The Gaussian-filtered and rebinned column density map of
simulation lo, projected along the x̂-axis. The size of the Gaussian kernel
applied on this map is shown as the pink circle in the right-hand upper corner.
Its radius is w = L/100 (note that this is the Gaussian sigma, not the FWHM).
The white circles are the projected positions of sink particles. The contours
shown represent level 6 (� = 0.17 g cm−2) and level 11 (� = 0.32 g cm−2)
of the 30 column density levels determined from the map.

with uniform density has surface density Gini coefficient gsph = 0.2.
Inserting this value into equation (16) yields ρp = 10−0.01ρsph, so we
would correctly recover ρp ≈ ρsph.

4.2 Finite resolution effects

Both the numerical model in Section 3.2 and the simplified model
in Section 4.1 are derived from projection maps created at the native
resolution of the simulations, so we are effectively considering only
cases where the internal structures of the selected contours are very
well-resolved. In real observations, the resolution may be limited,
and may vary between observations depending on the instrument
and the distance to the target. This might have non-trivial effects: a
larger beam size will smear details of the contours, and the inferred
value of g, for example, is very likely to decrease when high-� peaks
are smeared out by low resolution. To explore this effect, we apply a
series of Gaussian filters to our projection maps; we consider kernels
with standard deviation (not full width at half-maximum, FWHM)
w = L/1000, L/500, 3L/1000, L/250, L/200, 3L/500, 7L/1000, L/125,
9L/1000, and L/100, where L is the size of the simulation box. We
do not consider larger beam sizes because this leaves too small a
dynamic range between the size of contours that we can resolve
and the size scale at which the periodic nature of our simulation box
begins to create problems. Then, we rebin the Gaussian-filtered maps
to a resolution of 2L/w pixels on a side, so that the resulting maps
are Nyquist-sampled. For each of the rebinned maps, we repeat the
analysis presented in Section 2.2. Note that the 30 contour levels
are separately calculated for each rebinned map, and thus are not
the same for maps with different levels of beam-smearing, since the
contour levels depend on the maximum surface density �max. Similar
to Fig. 1, we show a Gaussian-filtered, x̂-axis projected column
density map of simulation lo in Fig. 8. The Gaussian kernel applied
on this map is w = L/100, which is shown as the pink circle in the
right-hand upper corner. The contours shown are also from level 6
(� = 0.17 g cm−2) and level 11 (� = 0.32 g cm−2).

Figure 9. The distributions of Gini coefficients computed on the beam-
smoothed maps g as a function of smoothing kernel dispersion w/L. The
upper and lower limits of the band are the 84th and 16th percentiles, while
the middle dot points indicate the 50th percentiles. The dashed line is the the
median g value g50, original = 0.25 of the 365 contours selected from original
maps.

Since g is the dominant factor in our model and is also likely
to be the parameter that is most sensitive to resolution effects, we
only study the effect of beam size on the simplified model shown
in equation (16), which has g as its sole parameter. We begin by
investigating the effect of beam size on the values of g. We show
the distribution of g from selected contours as a function of beam
size in Fig. 9. For w = L/1000, we see that the distribution of g is
centred around g = 0.24, slightly smaller than the median g value
g = 0.25 of the 365 contours selected from original maps. Larger
w/L ratios lead to smaller g values, hence farther from the original
distribution. Therefore, the values of kg and bg in equation (16) need
to be corrected for the beam size.

To study how kg and bg change with w/L, we collect contour
properties from maps with the same beam size and then perform
linear regressions with only g for each value of w/L. We show our
best fits for kg and bg as a function of beam size in the top and bottom
panels of Fig. 10, respectively. We also show polynomial fits (third
order for kg, second order for bg) to the results, which capture the
variation with high accuracy

kg,p = 2.7 × 106
(w

L

)3
− 3.4 × 104

(w

L

)2

− 1.5 × 102
(w

L

)
+ 4.7, (17)

bg,p = −6.0 × 103
(w

L

)2
+ 1.7 × 102

(w

L

)
− 1.0. (18)

These fits allow us to predict the effective volume density account-
ing for beam size effects

ρp = 10kg,pg+bg,pρsph, (19)

where kg,p and bg,p are determined by equations (17) and (18). The
distributions of log Qsph and log Qp resulting from this procedure
are shown in Fig. 11. This plot reveals several interesting conclu-
sions. First, log Qsph, 50 is centred around −0.26 for highly resolved
observations (w/L = 0.001, i.e. ∼1000 resolution elements across
the molecular cloud), and drops for lower resolution. This means
that ρsph calculated in observations will underestimate ρeff, which
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6006 Z. Hu et al.

Figure 10. Top panel: Best-fit coefficient kg as a function of beam size w/L.
Bottom panel: same as top panel, but for the intercept bg. In both panels, blue
points indicate the numerical results, and orange lines indicate the polynomial
fits given by equations (17) and (18), respectively.

Figure 11. The distributions of log Qsph (blue band) and log Qp (orange
band) versus w/L. The upper and lower limits of each band are the 84th and
16th percentiles, while the middle dot plots are the 50th percentiles. The
dashed horizontal line indicates Q = 1, i.e. perfect recovery of ρeff.

leads to an overestimate of εff. This bias will be increased for poorly
resolved observations. The offset in ρeff can be as large as −0.49 dex
when w/L = 0.01, corresponding to a systematic overestimate of εff

by ≈0.25 dex. Our predictive model corrects this systematic error, so
log Qp is centred around 0, independent of beam size, with a maxi-
mum offset of only 0.015 dex. The predictive model also continues
to reduce the dispersion in ρeff estimates, though the improvement
�σ decreases from 0.27 dex at high resolution to 0.087 dex at the
coarsest resolution we consider. This degradation in performance is
not surprising, since we have access to less information about the
internal density structure of objects in the coarser observations. In
summary, our correction model, equation (19), can both eliminate
the resolution-dependent offset between ρsph and ρeff and reduce the
uncertainty of ρsph, which can can greatly enhance the accuracy of
εff measurements.

4.3 Implications for previous measurements of εff, and for star
formation theories

As shown in Fig. 11,ρsph underestimates ρeff, which leads to a
systematic overestimate of εff; a simple linear fit to our results gives

�εff = −0.5 log Qsph,50 = 13
w

L
+ 0.11 dex, (20)

where w is the resolution and L is the map size. To examine the
possible �εff caused by beam size effects in observations, we take
the example of the εff study by Ochsendorf et al. (2017). They use the
Magellanic Mopra Assessment (MAGMA) DR3 (Wong et al. 2011)
CO intensity map to determine molecular could mass in the Large
Magellanic Cloud (LMC), which has a beam size of 45 arcsec FWHM
and a map size of 3.6 deg2. Inserting these factors into equation (20)
predicts �εff = 0.16 dex, which is a relatively small offset, and
smaller than the scatter determined by Ochsendorf et al. (2017) as
σεff ≈ 0.4 dex. This result suggests that the possible overestimation
of εff may not be significant in observations. This result, however,
needs further investigation since equation (20) is fitted with the fixed
simulation domain size L, which is not the exact equivalent of the
observed map size in a real galaxy. We discuss this issue further
in Section 6. None the less, this result suggests that the bias in εff

measurements due to finite resolution is not a severe effect.
However, it is not only the mean value of εff that is crucial

for theories of star formation. Its spread, σεff , is also important,
because theoretical models predict widely differing values of σεff .
For example, Lee et al. (2016) calculate σεff values for different
theoretical models, predicting values of 0.24 dex for the turbulence-
regulated model of Krumholz & McKee (2005) and 0.12 or 0.13 dex
for the multifree-fall model of Hennebelle & Chabrier (2011),
depending on the choice of parameters. Models in which εff increases
with time as a cloud evolves give larger dispersions: σεff = 0.54 dex
for εff ∝ t (Lee, Chang & Murray 2015; Murray & Chang 2015),
and 0.9 dex for εff∝t2 (Feldmann & Gnedin 2011). In observations
of Milky Way molecular clouds that use the spherical approximation
to determine εff (e.g. Lada et al. 2013; Evans et al. 2014; Heyer et al.
2016), σεff is estimated to be about 0.35 dex, which is significantly
larger than the spread predicted by the first two models, and much
smaller than the value expected from the time-dependent models.

Section 3.1 suggests a somewhat different interpretation, however:
there we show that ρsph typically differs from ρeff by σ sph ≈ 0.51 dex,
so even if εff were perfectly constant in reality, a measurement of it
that relies on the spherical assumption would be expected to show
a dispersion σεff ,sph ∼ 0.26 dex. Conversely, the intrinsic scatter in
εff suggested by an observed dispersion of 0.35 dex is σεff ,intrinsic ≈√

0.352 − 0.262 = 0.23 dex. This result directly casts doubt on the
star formation models predicting larger εff scatters. It suggests that
a significant part of the observed scatter is not reflective of true
scatter in εff, but instead represents observational error induced by
reliance on the spherical assumption. This conclusion is consistent
with the analysis of Krumholz & McKee (2020), who argue based
on statistical modelling of star clusters and pre-cluster gas clumps
that the intrinsic spread in εff must be substantially smaller than the
observed spread.

5 SAMPLE A PPLI CATI ON TO THE
O P H I U C H U S C L O U D

To test the effectiveness of our simplified Gini model, equation (16),
on real data, we study the SFEs of regions in the Ophiuchus cloud.
The observations that we use are described by Pokhrel et al. (2020),
and we refer readers to that paper for full details of data processing.
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Reconstructing 3D density from 2D observation 6007

Figure 12. Histograms of the distribution of Gini coefficients from the
Ophiuchus cloud, goph (blue), and from the C18 simulations, gsim (orange).
Both distributions have been normalized to have unit integral. The dashed
vertical lines show the median values of the two distributions.

To summarize the most important points here: Pokhrel et al. (2020)
obtain a map of the H2 column density N (H2) from the Herschel
Gould Belt Survey (HGBS) archive (André et al. 2010), and they
combine this with a catalogue of young stellar objects (YSOs) drawn
from the Spitzer Extended Solar Neighborhood Archive (SESNA)
compiled by R. Gutermuth et al. (in preparation). The Ophiuchus
cloud N (H2) map has a pixel size of doph = 0.002 pc, which
can be converted into a Gaussian filter standard deviation woph =
doph/1.18 = 0.0017 pc. As the cloud size is 11.5 × 12.0 pc2, the w/L
ratio is ≈10−4. Finite resolution effects are therefore very limited,
and we can just apply equation (16).

The first step in our analysis is to create and select contours
on different column density levels. Following Pokhrel et al. (in
preparation), we define 106 N (H2) levels linearly spaced between
2.82 × 1021 and 5.22 × 1022 cm−2. We then choose contours for
further analysis according to our three selection conditions. First, we
discard contours with no YSO inside. Secondly, we choose contours
with mean radius no less than 30 pixels (≈0.06 pc) to guarantee
their internal structures are well resolved. Thirdly, for the remaining
contours on each level, we only select the most massive one. After
selection, we have 75 contours as the observation sample.

As an initial check of our method, we wish to verify that the
distributions of g from the simulations and observation are similar.
This comparison requires some care. Pokhrel et al. (2020) mask
pixels for which their analysis returns an estimated column density
N(H2) > 1023 cm−2, because at these high column densities, the
cloud may be optically thick in one or more of the Herschel bands;
consequently, the values they derive represent only lower limits. The
range between the observed mean column density N̄ (H2) = 3.40 ×
1021 cm−2 and the highest unmasked value is only 1.47 dex, while
this range in the x-projection map from simulation hi, for example, is
2.71 dex. In order to make a fair comparison between simulations and
observations, we must clip the simulations so their dynamic range is
comparable to that of the observations. Thus, for each projection map
from C18 simulations, we mask pixels with � > 101.47�̄, and repeat
the contour selection process described in Section 2.2.1. We then
determine g for these new contours from the C18 simulations, gsim,
and compare to the distribution of Gini coefficients in the observed
map, goph, in Fig. 12. The two distributions are clearly qualitatively

Figure 13. Star formation efficiencies of the selected contours from Ophi-
uchus cloud. The x-axis is the log N(H2) level at which the contour is
selected, and εff, oph (blue) and εff, g (orange) are the star formation efficiencies
determined using the spherical assumption (equation 3) and using our Gini
model (equation 16), respectively.

similar, and the median values of the two samples are nearly identical:
goph, med = 0.196 and gsim, med = 0.197. A two-sided Kolmogorov–
Smirnov test comparing the two samples returns a p value of p = 0.18,
indicating that we cannot rule out the null hypothesis that these two
g samples were drawn from the same parent distribution. Therefore,
we conclude that the g distributions from the Ophiuchus cloud and
C18 simulations are consistent with one another.

We next determine the SFEs of the Ophiuchus cloud contours. For
every contour, we measure the enclosed gas mass Mgas, the enclosed
area A, and the number of enclosed protostars NPS. We compute the
SFR Ṁ∗ of one contour as

Ṁ∗ = NPSMPS/tPS, (21)

where MPS ≈ 0.5 M� is the mean mass of protostars in our catalogue
(Evans et al. 2009), and tPS ≈ 0.5 Myr is the duration of the proto-
stellar phase during which YSOs will be included in this catalogue
(Dunham et al. 2015). We determine the mean volume density in
two ways: one using equation (3) (the spherical assumption) and
one using equation (16) (our Gini model). With these values, we
can determine the SFEs with equation (2). We plot the resulting
values of εff as a function of contour level N(H2) in Fig. 13. The
sudden drop in εff at the high column density is probably due to the
YSOs moving out of the contours during the protostar stage (Pokhrel
et al., in preparation). Comparing the results of the two methods of
estimating the density, we find that applying our Gini model has the
effect of shifting the high and low ends of the εff distribution towards
the middle. We show this more clearly in Fig. 14, which shows the
distributions of εff derived with the two density estimation methods,
together with their 16th and 84th percentiles. The median values that
we obtain with the spherical and Gini methods of density estimation
are log εff, sph, med = −1.4 and log εff, g, med = −1.5, respectively, and
the dispersions of εff, sph and εff, g are σ sph = 0.46 dex and σ g =
0.39 dex, respectively. Thus, using the Gini method to estimate the
volume density decreases the estimated dispersion of SFE inside the
Ophiuchus cloud by �σ = 0.07 dex. This is smaller than the 0.5�σ g

= 0.15 dex found in our idealized tests. However, our idealized tests
did not include the effects of limited dynamic range (which are likely
qualitatively similar to the effects of beam smearing); moreover, this
result is from contours inside one single cloud, while a conclusion can
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Figure 14. Normalized histograms of εff, sph (blue) and εff, g (orange). The
blue and orange dashed vertical lines are the 16th and 84th percentiles of the
two distributions, respectively.

only be drawn by studying several molecular clouds. Nevertheless,
the fact that we find �σ > 0 is an encouraging result for our model.

6 FU T U R E WO R K

Although our predictive model has proven its ability to reduce the
uncertainty of effective volume density estimates, there is still much
room for future improvement. The first step would be to enlarge
the sample with data from different simulations. Although the C18
simulations capture many of the physical processes and conditions
in dense, star-forming molecular clouds, and span a very wide range
of physical parameters (magnetic field strength, turbulent driving),
they still have several limitations. For example, they apply purely
solenoidal turbulent driving, whereas in reality both solenoidal
modes from galactic differential rotation and compressive modes
from stellar feedback may be present (Federrath 2018a,b). Another
limitation is from their radiative transfer methods. They assume
the gas and the dust share the same temperature. This assumption
of strong coupling is valid at densities above ∼104−105 cm−3

(Goldsmith 2001), but may fail for lower density, non-self-gravitating
regions, which leads the simulations to overestimate the dust cooling
rate for the gas. If we were to extend our analysis to other simulations
without these limitations, we might extend the range of our contour
sample and obtain better fits.

Another potential area of improvement is the fitting method. Our
current MLF method is justified by its high R2 results, but the
resulting model is highly dominated by g. Moreover, the variables
used in the MLF may not be completely independent of each other.
A contour with small Reff, for example, is more likely to have large
�̄ because we are focusing on the centre of a molecular cloud.
A linear relation, in this case, may not be the ideal form, and we
should explore the possibility of other forms of correlations. If we
were able to enlarge the sample size with more simulations, one
possible approach would be to utilize machine learning to discover
the underlying relations.

In Section 4.2, we use the ratio between the beam size and map
size w/L for analysing the effects of beam-smearing. Expressing
the results in terms of w/L has the advantage that it makes the
results dimensionless. However, the simulated cloud size is actually
infinite because of the periodic boundary condition applied in the C18

simulations, while L is only the simulation domain size and should
neither be seen as the equivalent of a molecular cloud size nor as
a projection map size in observations. Real molecular clouds have
edges, and our simulations do not. Since this problem originates from
the simulations themselves, we probably cannot overcome it using the
C18 data. Instead, a better approach would be to start from galactic-
scale simulations, form molecular clouds self-consistent within them,
and continue zooming in until we reach the dense clump scale often
used in εff estimates. This would provide a sample of simulated
molecular clouds with well-defined physical sizes, from which we
could derive relations for beam-size effects more comparable to
observations.

We have tested our Gini model on the observation data of
Ophiuchus cloud. To obtain more conclusive results of SFE and
σ SFE, however, one need to study several different molecular clouds.
Meanwhile, besides the resolution effect, the effect of protostars
shifting out of contours and the large error of column density in dense
regions should also be considered. Our current plan is to conduct a
survey on the 12 molecular clouds studied in Pokhrel et al. (2020),
whose results may put more regulations on theoretical star formation
models.

7 C O N C L U SIO N

This work aims at obtaining precise measurements of the SFE of
molecular clouds. Making these measurements requires that we
estimate the volume densities of gas clouds seen only in projection;
these estimates are a major source of error, and reducing them is
the primary goal of this work. We use a suite of simulations of star
formation from Cunningham et al. (2018) to investigate the nature of
this error. We first evaluate the effect of assuming that the clouds we
see are spherical and uniform density, the most common approach
in the current literature. Then we develop a numerical model that
can predict the effective volume density of a projected 2D contour
from its observable properties substantially more accurately than the
simple spherical assumption. We build this model with MLF, and the
high coefficient of determination we obtain (R2 ∼ 0.83) demonstrates
that this produces reliable results.

We find that the volume density determined from the spherical
assumption has a significant scatter σ sph = 0.51 dex, and a un-
derestimation logQsph, med = 0.26 dex, compared to the true, free-
fall time weighted mean density, which is the quantity of interest
for measurements of the SFE. Considering these effects, the star
formation efficiencies determined in recent studies relying on the
spherical assumption are likely to be overestimated by 0.13 dex, and
the scatter σεff ∼ 0.35 dex, likely represents a true, intrinsic scatter
in the SFE of no more than 0.23 dex, imposing strong constraints on
theoretical models.

By comparison, when we apply our linear model, using all the
observable parameters we tested, we reduce the uncertainty of the
mean density by as much as �σ = 0.34 dex. We also evaluate
the influence of individual parameters in our predictive model,
and suggest physical explanations of their significance and relative
predictive power. In cases where we observe only the mass, area,
column density, and the Gini coefficient of a target cloud, a simplified
model can still decrease the uncertainty by �σ = 0.29 dex. This
improvement is sufficient to roughly halve the uncertainties of recent
SFE measurements, and thus is very substantial. The effectiveness
of this simplified model is proven by our analysis of the Ophiuchus
cloud. In addition, we investigate the effect of the telescope beam size
on our simplified model and provide a corrected version to minimize
this effect.
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Despite its good performance, this model still has much room for
future development. We can extend its applicable range by including
more simulations spanning a larger variety of physical conditions.
Rebuilding the model with machine learning may also enhance its
capabilities.

AC K N OW L E D G E M E N T S

We would like to thank Prof. Andrew J. Cunningham for sharing
the C18 simulation data. MRK acknowledges funding from the
Australian Research Council (Discovery Project DP190101258 and
Future Fellowship FT180100375), and the Australia-Germany Joint
Research Cooperation Scheme (UA-DAAD). CF acknowledges
funding provided by the Australian Research Council (Discovery
Project DP170100603 and Future Fellowship FT180100495), and
the Australia–Germany Joint Research Cooperation Scheme (UA-
DAAD). RP and RAG acknowledge funding support for this work
from NASA ADAP awards NNX15AF05G, 80NSSC18K1564, and
NNX17AF24G. RP acknowledges funding support from NASA
ADAP award 80NSSC18K1564, and RAG acknowledges fund-
ing support from NASA ADAP awards NNX11AD14G and
NNX13AF08G. We further acknowledge high-performance com-
puting resources provided by the Australian National Computational
Infrastructure (grants jh2 and ek9) in the framework of the National
Computational Merit Allocation Scheme and the ANU Merit Allo-
cation Scheme, and by the Leibniz Rechenzentrum and the Gauss
Centre for Supercomputing (grant pr32lo).

This research has made use of data from the Herschel Gould Belt
survey (HGBS) project.2 The HGBS is a Herschel Key Programme
jointly carried out by SPIRE Specialist Astronomy Group 3 (SAG
3), scientists of several institutes in the PACS Consortium (CEA
Saclay, INAF-IFSI Rome and INAF-Arcetri, KU Leuven, MPIA
Heidelberg), and scientists of the Herschel Science Center (HSC).

DATA AVAILABILITY

The simulation and observation data underlying this article will be
shared upon reasonable request to the corresponding author.

RE FERENCES
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