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ABSTRACT
Gravitationally bound clusters that survive gas removal represent an unusual mode of
star formation in the Milky Way and similar spiral galaxies. While forming, they can be
distinguished observationally from unbound star formation by their high densities, virialized
velocity structures, and star formation histories that accelerate towards the present, but extend
multiple free-fall times into the past. In this paper, we examine several proposed scenarios
for how such structures might form and evolve, and carry out a Bayesian analysis to test
these models against observed distributions of protostellar age, counts of young stellar objects
relative to gas, and the overall star formation rate of the Milky Way. We show that models
in which the acceleration of star formation is due either to a large-scale collapse or a time-
dependent increase in star formation efficiency are unable to satisfy the combined set of
observational constraints. In contrast, models in which clusters form in a ‘conveyor belt’ mode
where gas accretion and star formation occur simultaneously, but the star formation rate per
free-fall time is low, can match the observations.

Key words: stars: formation – ISM: kinematics and dynamics – open clusters and associa-
tions: general – galaxies: star clusters: general.

1 IN T RO D U C T I O N

The typical outcome of star formation in spiral galaxies is not a
gravitationally bound star cluster. In the Milky Way, Lada & Lada
(2003) were among the first to point out that the number of observed
star clusters at ages from 10 to 100 Myr is a factor of ∼10 smaller
than one would expect if every observed gas-embedded star-forming
clump were to go on to become a cluster of comparable mass. The
natural explanation for this discrepancy is that most of the young
stars that we observe in star-forming regions are in fact unbound, or
will become so once the gas is removed, and that we count them as
cluster members at young ages simply because they have not yet had
time to drift apart. Extensive surveys of external galaxies echo this
conclusion, with counts of star clusters as a function of age implying
that no more than 5–10 per cent of stars that form will remain part of
a gravitationally bound structure several tens of Myr after formation
(e.g. Adamo et al. 2015; Johnson et al. 2016; Chandar et al. 2017;
Messa et al. 2018; see the recent review by Krumholz, McKee &
Bland-Hawthorn 2019, for additional references).

Thus regions of star formation that do go on to become grav-
itationally bound clusters must be special in some way. Recent
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observational advances offer significant hints about how such
regions might be special. Regions that go on to become bound
clusters do not appear to represent a distinct class of gas cloud,
such that most clouds unbind entirely and a small minority remain
mostly bound. Instead, many star-forming regions appear to consist
of a dense inner part that contains a minority of the mass, which is
likely to go on to become bound, and an extended outer part whose
stars will drift apart. The inner regions that go on to become bound
are distinguishable in several ways.

First, they appear to feature extended star formation histories.
Low-density star-forming regions that are ∼10 pc in size or larger
tend to have stellar populations whose ages are comparable to their
crossing times (Elmegreen 2000; Kruijssen et al. 2019), suggesting
a relatively rapid formation process. By contrast, the densest regions
of star formation, with sizes ∼1 pc, have star formation histories
that are significantly more extended compared to their dynamical
times. The best-studied example is the Orion Nebula Cluster (ONC),
where the free-fall time in the central 1 pc is ≈0.6 Myr (Da
Rio, Tan & Jaehnig 2014), but there is extensive evidence that
star formation has been ongoing for a significantly longer period
(e.g. Reggiani et al. 2011; Jaehnig, Da Rio & Tan 2015; Da Rio
et al. 2016; Beccari et al. 2017). Star formation in this region
appears to be accelerating (Palla & Stahler 2000; Huff & Stahler
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2006; Caldwell & Chang 2018), but even accounting for this effect
most stars are significantly older than a free-fall time – using the
kinematically-selected sample and estimated ages of Kounkel et al.
(2018, 2019) find that 50 per cent of the stars in the ONC are
older than 3 free-fall times, and 10 per cent are older than 10 free-
fall times. However, the ONC appears to be typical in this regard:
similarly extended but accelerating star formation histories have
been observed in NGC 6530 (more than 25 per cent of stars older
than three free-fall times Prisinzano et al. 2019), Perseus (Azimlu,
Martı́nez-Galarza & Muench 2015), Taurus, and ρ Ophiuchus
(Caldwell & Chang 2018), though the last three of these regions
are still highly gas-dominated, and it is therefore unclear if they
will in fact reach star formation efficiencies sufficient to produce a
bound cluster.

Secondly, the regions with extended star formation histories are
also distinct kinematically. While most young stars still embedded
in their parent molecular clouds are characterised by unrelaxed
density and velocity distributions (e.g. Fűrész et al. 2008; Tobin et al.
2009), the density distribution in the central 1 pc of the ONC can
be fit reasonably well by an isothermal, spherically symmetric King
(1962) model (Hillenbrand & Hartmann 1998), and the velocity
distribution is virialised (Kim et al. 2019). This region is neither
expanding or contracting, and there is no evidence for a population
of stars on primarily-radial orbits that are plausibly falling toward
or escaping from it (Ward & Kruijssen 2018; Kuhn et al. 2019).

While regions like the ONC appear to be distinct in some
respects, they also share one very significant commonality with
the more extended envelopes around them. The density of young
stellar objects (YSOs) increases smoothly with gas surface density,
with no clear breaks at the densities or radii that correspond to
the shift from unrelaxed, fractal stellar distributions to relaxed,
virialized ones (Gutermuth et al. 2011). Once one normalizes the
gas surface density by the free-fall time, it correlates remarkably
tightly with YSO count; there is a near-linear relationship between
YSO mass and gas mass normalized by free-fall time with a scatter
of only ≈0.3–0.4 dex across orders of magnitude in mass and
density (Krumholz, Dekel & McKee 2012; Lada et al. 2013; Evans,
Heiderman & Vutisalchavakul 2014; Heyer et al. 2016; Ochsendorf
et al. 2017 – see fig. 10 of Krumholz et al. 2019 for a compilation
of results). One can interpret this correlation as describing the
efficiency of star formation: the star formation efficiency (SFE) per
free-fall time is εff = Ṁ∗/(Mg/tff ), where Mg and tff are the gas mass
and free-fall time. If there are NYSO YSOs associated with this gas
that have a mean mass MYSO and that remain spectrally identifiable
as such for a time tYSO, then the star formation rate (SFR) must be
Ṁ∗ ≈ NYSOMYSO/tYSO. All published studies based on YSO counts
give εff ≈ 0.01, with �0.4 dex scatter; the low value of εff and the
extended star formation histories in regions that become bound are
likely related, since a low εff region is likely to become bound
only if it forms stars long enough to reach a respectable total SFE,
and for the stars formed to dynamically relax (Kruijssen 2012). In
contrast, ratios of far-infrared or free–free luminosity to gas mass
give a much larger dispersion (Lee, Miville-Deschênes & Murray
2016; Vutisalchavakul, Evans & Heyer 2016; Ochsendorf et al.
2017). However, these results depend critically upon the procedure
used to match regions of FIR or free–free emission to spatially
separated molecular clouds, with differing matching procedures
yielding results that differ by up to ∼1 dex (Krumholz et al. 2019).
Given the consistency of the much more direct YSO results, we
regard them as more reliable.

Since regions like the ONC appear to be distinct from other star-
forming regions in some ways but not others, and appear to evolve

distinctly from the bulk of the young stellar population once star
formation ends and gas is cleared, it is interesting to attempt to
characterise the star formation process in these regions. Our goal
in this paper is to examine a variety of proposed scenarios for
star cluster formation that may be found in the literature, construct
simple mathematical descriptions for them, and confront them with
the wide variety of observational results that we have just outlined.
We present the models to which we are interested in comparing,
and outline a general framework for describing them, in Section 2.
In Section 3, we compare these models to the observations outlined
above, determining where they succeed and where they fail. We
summarize our findings in Section 4.

2 FRAMEWO RK FOR C LUSTER FORMATIO N

We now sketch out some simple, general models for how star
clusters might form. Before beginning this exercise, it is important
to understand that our goal is not to examine fully self-consistent and
detailed models for star cluster formation. Even purely analytic or
semi-analytic models for cluster formation and cloud evolution (e.g.
Goldbaum et al. 2011; Zamora-Avilés, Vázquez-Semadeni & Colı́n
2012; Zamora-Avilés & Vázquez-Semadeni 2014; Lee et al. 2016;
Lee & Hennebelle 2016b) generally include complex prescriptions
for the time evolution of cloud mass, density, velocity dispersion,
star formation activity, the effects of stellar feedback, and similar
details. Comparing observations to such models is in general very
difficult, because the models have many moving parts and contain
numerous tuneable parameters. Our goal instead is to develop
cartoons that capture some of the main qualitative features of models
that have been proposed in the literature, but that are analytically
computable and have relatively few free parameters, so that we can
carry out statistical comparisons to observation. This means that
we will simply prescribe the evolution of parameters such as cloud
mass and density, rather than trying to compute them fully self-
consistently. As we introduce the individual models below, we will
point out features of the more complex published models they are
intended to capture.

All the softwares used to produce all the plots and analysis found
in this paper are publicly available at https://bitbucket.org/krumho
lz/km19/.

2.1 General framework

We begin by characterizing a gas cloud that is in the process of
forming a star cluster in terms of its instantaneous gas mass Mg and
mean density ρ; it is convenient to characterize the latter in terms of
the free-fall time tff = √

3π/32Gρ. Both Mg and ρ can in general
be functions of time. At any instant, the cloud forms stars at a rate

Ṁ∗ = εff
Mg

tff
. (1)

For simplicity we will generally only worry about mean quantities,
but we note that, if instead of a uniform cloud one considers a cloud
where the density profile is a power law ρ ∝ r−kρ , and one assumes
that equation (1) holds locally (i.e. at every point the star formation
density obeys ρ̇∗ = εffρ/tff ), then the sole modification to equation
(1) is that εff is increased by a factor of [2/(2 − kρ)][(3 − kρ)/3]3/2,
which is of the order of unity unless kρ is very close to 2.

In addition to star formation, the cloud can gain mass by accretion
and lose it by ejection of mass by stellar feedback. We take the mass
removal rate by feedback to be proportional to the SFR Ṁfb = ηṀ∗,
while the accretion rate Ṁacc is an input parameter; here η is the
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usual mass loading factor.1 The total mass of gas and stars therefore
evolve following:

Ṁg = Ṁacc − (1 + η) εff
Mg

tff
, Ṁ∗ = εff

Mg

tff
. (2)

In principle both Ṁacc and η can, like tff, be a function of time.

2.2 Scenarios of star formation

Having established this general framework, we now consider a range
of scenarios for how a star cluster might be assembled. We plot
example histories for each model in Fig. 1, and summarize the
models and their key free parameters in Table 1.

2.2.1 Static cloud (ST)

Our first scenario is the simplest possible, a non-accreting cloud with
constant tff that begins with an initial gas mass Mg = Mg,0 and starts
forming stars at time t = 0. We refer to this as the static, or ST model,
hereafter. Of course, if the density and free-fall time are constant,
but the gas mass is not, then this means that the cloud is not static in
terms of its radius; since the data to which we will compare below
do not include detailed information on the spatial structure of stellar
populations, however, the constant free-fall time is the property that
is relevant for our purposes. Physically, this would correspond to
a situation where cloud assembly is rapid compared to the process
of star formation, or where a cloud is assembled in a state where
it cannot form stars immediately. As first pointed out by Ginsburg
et al. (2012) and Longmore et al. (2014, also see Walker et al. 2016;
Urquhart et al. 2018), such a scenario can be ruled out for at least
the most massive young clusters observed in the Milky Way, on the
grounds that there are no observed gas clouds dense and massive
enough to be the progenitors of the most massive clusters. On the
other hand, Krumholz et al. (2019) point out that there is no such
difficulty for clusters near the Galactic Centre, and in this region
there do indeed appear to be very massive and dense molecular
clouds with little or no star formation activity such as ‘the Brick’
(Longmore et al. 2013; Rathborne et al. 2014). These have been
hypothesized to remain quiescent until star formation within them is
triggered by a pericentre passage around Sgr A∗ (Kruijssen, Dale &
Longmore 2015), and thus they represent potential exemplars of
the static cloud scenario, though recent observations of infall in at

1Our choice to parametrize mass-loss in terms of a mass-loading factor
η, so that the mass removal rate is proportional to the star formation rate,
differs from some other simple models (e.g. Lee et al. 2016) in which the
mass removal rate is taken to be proportional to the total stellar mass. As
discussed in Dekel & Krumholz (2013), which of these approximations
is preferable depends on how the duration of star formation compares to
the duration of the feedback mechanisms that dominate mass removal –
Ṁfb ∝ Ṁ∗ is preferable if star formation is extended compared to feedback,
Ṁfb ∝ M∗ if not. The dominant feedback mechanisms in a forming star
cluster are likely to be protostellar outflows (on for ≈0.1 Myr) for clusters
that do not contain O stars, and photoionization or radiation pressure (on for
≈3 Myr) for those that do (Krumholz et al. 2019). Below we will compare
to data on two star clusters, NGC 6530 and the ONC. In NGC 6530, the
duration of star formation is ≈1–2 Myr, and there are no O stars; in the
ONC, there is an O star, but the duration of star formation is ≈3–4 Myr.
Since both of these systems have star formation durations comparable to
or longer than the corresponding feedback duration, we prefer to model the
mass removal rate as proportional to the instantaneous star formation rate.

Figure 1. Example evolutionary histories of stellar mass (top), gas mass
(middle), and SFR (bottom) for each of the models discussed in the paper
(as indicated in the legend). For the purposes of this plot, we use η = 1 in
all models. For CB and CBD, we use τ acc = 1.5 and p = 3, for CBD and
GCD we use ηd = 5, for GC we use ξ = 1 and τ coll = 0.75, for GCD we
use ξ = 1, τ coll = 0.75, and τ fb = 0.5, and for IE we use χ = 0.5 and δ =
1. See main text for definitions of the various parameters.

least some of these objects suggest something closer to one of the
alternative scenarios we describe below (Barnes et al. 2019).

Since there is no mass accretion in this model, Ṁacc = 0, and we
will also assume η is constant, the solution to equation (2) is trivial:

M∗ = Mg,0

1 + η

(
1 − e−τ

)
Mg = Mg,0e−τ , (3)

where τ = t/tsf and

tsf = tff

(1 + η)εff
(4)

is the star formation time-scale; this is the natural time-scale over
which the star formation process occurs, and the cloud is converted
to stars or dispersed. The final SFE, defined as the ratio of final
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Table 1. Summary of models and their parameters. Note that not all of these parameters are independent, and in cases where parameters are related, we list
the relationship in the table.

Model name Abbreviation Parameter Meaning

Parameters common to all models εff Star formation efficiency per free-fall time
η Mass loading factor
tff Free-fall time
tsf Star formation time-scale, tsf = tff/[(1 + η)εff]

Static cloud ST –
Conveyor belt CB p Accretion rate versus time Ṁacc ∝ tp

tacc Duration of accretion flow; dimensionless time τ acc ≡ tacc/tsf

Conveyor belt + dispersal CBD p Accretion rate versus time Ṁacc ∝ tp

tacc Duration of accretion flow; dimensionless time τ acc ≡ tacc/tsf

φd Ratio of 1 + η during dispersal phase to value during accretion phase
Global collapse GC tcoll Collapse time; dimensionless time τ coll ≡ tcoll/tsf

tff, 0 Free-fall time at onset of star formation; for this model tsf ≡ tff, 0/[(1 + η)εff]
ξ Ratio of collapse time-scale to free-fall time-scale, tcoll = 2tff, 0/ξ

Global collapse + dispersal GCD tcoll Collapse time; dimensionless time τ coll ≡ tcoll/tsf

tff,0 Free-fall time at onset of star formation; for this model tsf ≡ tff,0/[(1 + η)εff]
ξ Ratio of collapse time-scale to free-fall time-scale, tcoll = 2tff,0/ξ
tfb Time at which feedback increases; dimensionless τ fb ≡ tfb/tsf

φd Ratio of 1 + η during dispersal phase to value during earlier phase
Increasing efficiency IE δ Efficiency per free-fall time varies as εff = εff,0(t/tff)δ

εff,0 Value of εff at t = tff; for this model, tsf ≡ tff/[(1 + η)εff,0]
χ Ratio of star formation time-scale to free-fall time-scale, χ = tsf/tff

stellar mass to total mass of gas available for star formation, is

ε∗ ≡ M∗
Mg,0

= 1

1 + η
. (5)

2.2.2 Conveyor belt (CB)

The absence of gas clouds as massive and dense as the densest
star clusters, as noted in Section 2.2.1, led Longmore et al. (2014)
to propose a ‘conveyor belt’ model where gas accretion occurs
simultaneously with cluster formation, so that the full mass of
the gas cloud is never assembled at a single time; observations
that regions such as the ONC frequently sit at the intersections of
filaments supports this picture (Motte, Bontemps & Louvet 2018).
In this picture, stars may form in both the filaments and in the central
hub, but stars that wind up as part of a bound cluster at the end of
the star formation process are mostly those that form in the central
hub. This hub region is continually re-supplied by accretion of gas
from the filaments. For the purposes of this paper, and for the data
sets to which we will compare below, we are primarily interested in
what happens in the hub.

In principle the region fed by a conveyor belt could be static,
expanding, or contracting. Numerical simulations and analytic
calculations by a number of authors (e.g. Klessen & Burkert 2000;
Goldbaum et al. 2011; Matzner & Jumper 2015; Lee & Hennebelle
2016a, b) suggest that, as long as the accretion rate is high enough
that a cloud’s growth time is comparable to its free-fall time, the
inflow supplies enough energy for the density and SFR per free-
fall time to remain roughly constant for multiple free-fall times.
Examples of such models include Goldbaum et al. (2011, their fig.
3), Zamora-Avilés & Vázquez-Semadeni (2014, the 105 and 106

M	 models shown in their fig. 1), and Lee & Hennebelle (2016b,
their fig. 6): in all of these models, the free-fall time varies by no
more than a factor of ∼2 over multiple cloud free-fall times. For this
reason we will assume constant tff and εff. We refer to this model
as conveyor belt, or CB, hereafter.

We abstract this model as having an initial gas mass of zero, and
an accretion rate that varies in time as a power law tp. We generically
expect p > 0, since gravity-driven accretion rates generally rise with
time until the reservoir of mass is exhausted; Goldbaum et al. (2011)
show that pressureless collapse of a reservoir of constant surface
density that becomes gravitationally unstable naturally produces p
≈ 3; Lee & Hennebelle (2016b) find a similar value of p while
protoclusters are small compared to their parent reservoirs, but that
this tapers to p ≈ 0 once � 10 per cent of the parent reservoir has
been accreted. We will adopt the Goldbaum et al. value of p = 3 as
our fiducial choice, but for completeness we give the model result
for general p, by taking the accretion rate to be

Ṁacc = H (tacc − t)(p + 1)
Mg,0

tacc

(
t

tacc

)p

, (6)

where Mg,0 is the total mass that will eventually reach the proto-
cluster, tacc is the time over which accretion happens, and H(x) is
the Heaviside step function. The initial conditions are Mg = M∗ =
0. With this accretion rate, equation (2) has the following analytic
solutions for any non-negative integer p:

M∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mg,0

(1 + η)(p + 2)τp+1
acc

g(τ, p + 2), τ ≤ τacc

M∗(τacc) + Mg(τacc)

1 + η

(
1 − e−τ+τacc

)
, τ > τacc

(7)

Mg =

⎧⎪⎨
⎪⎩

Mg,0

τ
p+1
acc

g(τ, p + 1), τ ≤ τacc

Mg(τacc)e−τ+τacc , τ > τacc

, (8)

where for p ≥ 1

g(τ, p) = pe−τ

∫ τ

0
τ ′(p−1)eτ ′

dτ ′, (9)

= p!

[
(−1)pe−τ −

p∑
i=1

(−1)i

(p − i)!
τp−i

]
. (10)

Here τ = t/tsf as in Section 2.2.1, τ acc = tacc/tsf, and we made use
of the relations
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∫ τ

0
g(τ ′, p)dτ ′ = g(τ, p + 1)

p + 1
, (11)

= τp − g(τ, p). (12)

To get a feeling for the magnitude of g(τ , p), we note that g(τ , 1) =
1 − e−τ and that g(τ , 2) = 2(τ − 1 + e−τ ). The approximation

g(τ, p) 
 τp

1 + τ/p
(13)

is accurate to better than 15 per cent. Next, observe that equation
(11) implies

dg(τ, p + 1)

dτ
= (p + 1)g(τ, p). (14)

In turn, this relation implies that g(τ , p) is a monotonically
increasing function of τ since equation (9) implies that g(τ , p)
is positive. It follows from equation (8) that the gas mass increases
monotonically until the accretion stops.

At times τ � τ acc, the SFE in the conveyor belt model approaches
ε∗ = 1/(1 + η), exactly as in the static cloud case, but the star
formation history is different. This model satisfies the observational
constraint that originally motivated it, in that the gas mass need
never be large compared to the final stellar mass. Indeed, the final
stellar mass (achieved in the limit τ → ∞) is M∗,f = Mg,0/(1 + η)
regardless of the accretion history, while the maximum gas mass
(achieved when τ = τ acc) is Mg,max ≈ Mg, 0/[1 + τ acc/(p + 1)]. Thus
as long as τ acc � η, the maximum gas mass will be comparable to
or smaller than the final stellar mass.

An important feature of this conveyor belt model is that star
formation always accelerates while gas is accreting, provided p ≥
0. With the aid of equation (14), we find that the acceleration in the
stellar mass is

M̈∗ = p + 1

(1 + η)τp+1
acc

(
Mg,0

t2
sf

)
g(τ, p + 2) τ ≤ τacc, (15)

which is always positive, as noted above. Such acceleration appears
to be demanded by the observations (Palla & Stahler 2000).

2.2.3 Conveyor belt plus rapid dispersal (CBD)

A slight variation on the standard conveyor belt model is to note
that, as pointed out by Goldbaum et al. (2011), mass-loss rates are
likely sensitive to the strength of the confining ram pressure from
accretion. Consequently, it makes sense to adopt a mass loading
factor that increases significantly once accretion ceases, leading to
more rapid dispersal. We refer to conveyor belt models in which
dispersal after the end of accretion is rapid as conveyor belt plus
dispersal (CBD) models hereafter. From the standpoint of our simple
analytic models, we can model this by setting η to one value during
the accretion phase, t < tacc, and to another value ηd > η during the
dispersal phase, t > tacc. In all other respects this model is identical
to the simple conveyor belt model of Section 2.2.2. The solution to
equation (2) in this case is modified only slightly from that given
by equations (7) and (8):

M∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mg,0

(1 + η)(p + 2)τp+1
acc

g(τ, p + 2), τ ≤ τacc

M∗(τacc) + Mg(τacc)

1 + ηd

(
1 − e−φd(τ−τacc)

)
τ > τacc

(16)

Mg =

⎧⎪⎨
⎪⎩

Mg,0

τ
p+1
acc

g(τ, p + 1), τ ≤ τacc

Mg(τacc)e−φd(τ−τacc) τ > τacc

, (17)

where

φd ≡ 1 + ηd

1 + η
(18)

can be thought of as representing the ratio of star formation
efficiencies during and after the accretion phase. This model shares
the key feature of the conveyor belt model: there is no need to
assemble a cloud as massive as the final star cluster all at once,
since the histories are identical up to the end of the accretion phase,
but then a smaller fraction of the remaining gas mass is converted
to stars than in the standard conveyor belt case. To be precise, the
final SFE is

ε∗ = 1

1 + η

[
1 −

(
φd − 1

φd

)
g(τacc, p + 1)

τ
p+1
acc

]
. (19)

Equations (11) and (12) imply that the ratio g(τ , p + 1)/τ p + 1 is
strictly smaller than unity for any τ > 0 since g(τ , p + 2) > 0, so
the final SFE is between 1/(1 + η) and 1/(1 + ηd).

2.2.4 Global collapse (GC)

The observation that star formation accelerates could be a reflection
of gas accumulation, as in the CB or CBD models, but it could
also be a result of the star formation process itself. An example
of such a model is the global collapse (GC) scenario proposed
by a number of authors (e.g. Zamora-Avilés & Vázquez-Semadeni
2014; Kuznetsova, Hartmann & Ballesteros-Paredes 2015, 2018;
Vázquez-Semadeni, González-Samaniego & Colı́n 2017; Vázquez-
Semadeni et al. 2019). The central idea of GC models is that
clouds are assembled in a low-density state but then undergo a
global collapse. Consequently, the mean free-fall time, rather than
remaining constant, systematically decreases on a free-fall time-
scale as the mean density rises. The combination of an apparently
extended star formation history and an accelerating SFR is then
taken to be due to the decreasing free-fall time: stars that form at
early times may have ages comparable to the free-fall time of the
system when the formed, but this can be significantly longer than
the free-fall time of the system at the time when it is observed.
Moreover, as the system gets denser, the free-fall time decreases
and thus star formation accelerates.

In terms of the hub-and-filament geometry frequently observed in
star-forming regions, and discussed in Section 2.2.2, the difference
between the CB (or CBD) and GC models is the assumed time
evolution of the hubs. In the CB model, the hub is assumed to
remain at roughly constant density over many free-fall times, so
that any acceleration of star formation is due to the mass of the hub
increasing, not due to its density rising. By contrast, in GC the hub
is assumed to be in a process of collapse on a dynamical time-scale
(even if it is also accreting), so that the density rises with time,
and this accounts for most or all of the increase SFR with time.
Examples of published models in the latter category include the
103 or 104 M	 cases shown in fig. 1 of Zamora-Avilés & Vázquez-
Semadeni (2014), where, once the clouds grow massive enough, the
density runs away to infinity on roughly a free-fall time-scale.

Mathematically we can represent this model by assuming that the
mean density obeys

dρ

dt
= ξ

ρ

tff (ρ)
, (20)

where tff (ρ) = √
3π/32Gρ is the free-fall time at the current

density. The constant ξ specifies how fast the cloud contracts
compared to the free-fall time-scale, with higher ξ corresponding

MNRAS 494, 624–641 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/494/1/624/5801025 by Library (H
ancock) user on 08 M

ay 2020



Bound star cluster formation 629

to more rapid contraction. The value of ξ will depend at least partly
on geometry – ξ ≈ 1 is expected for 3D structures, but values as
small as ∼0.1 are possible for highly flattened geometries if one
interprets ρ as the density internal to the structure (Toalá, Vázquez-
Semadeni & Gómez 2012); however, note that if one interprets ρ

as the mean density of a spherical structure of the same size, as is
frequently done when interpreting observations, then ξ � 1 even
for flattened structures. For a cloud that starts at density ρ0 at time
t = 0, the density and free-fall time evolve as

ρ = ρ0

(1 − x)2 tff = tff,0 (1 − x), (21)

where x = t/tcoll, tcoll = 2tff,0/ξ is the time at which the cloud reaches
infinite density, and tff,0 = √

3π/32Gρ0 is the initial free-fall time.
Inserting this non-constant free-fall time into equation (2), hold-

ing η and εff constant, and solving subject to the initial condition
that Mg = Mg, 0 and M∗ = 0 at t = 0, we obtain

M∗ = Mg,0

1 + η

{
1 − (1 − x)τcoll , x < 1
1, x ≥ 1

(22)

Mg = Mg,0

{
(1 − x)τcoll , x < 1
0, x ≥ 1

. (23)

The quantity

τcoll = 2(1 + η)εff

ξ
(24)

is the dimensionless time at which the cloud collapses to infinite
density and tff → 0, where we have non-dimensionalized time
using τ = t/tsf as before, but we now define tsf = tff,0/[(1 + η)εff]
(cf. equation 4), i.e. we define tsf using the initial free-fall time since
tff is non-constant. Half the stars have formed and half the gas has
been consumed at a time

t1/2 =
(

1 − 1

21/τcoll

)
tcoll, (25)

and correspondingly the free-fall time then is

tff, 1/2 = tff,0

21/τcoll
. (26)

For τcoll � 1, half the stars form at a rate not that different from the
initial rate. Indeed, in the limit ξ � 1, and thus τ coll � 1, the GC
model approaches the ST model, since the collapse then becomes
slow compared to star formation. (Conversely, in the limit εff → 1,
the ST and CB models become qualitatively similar to GC, since
then all gas is converted to stars on a dynamical time-scale.) More
generally, the rate at which the SFR changes is

M̈∗ = Mg,0

(1 + η)t2
sf

(
1 − τcoll

τcoll

)(
1 − τ

τcoll

)τcoll−2

, (27)

so star formation accelerates with time (M̈∗ > 0) only if τ coll < 1.
The final SFE is ε∗ = 1/(1 + η), exactly as in the ST or CB models.

2.2.5 Global collapse plus dispersal (GCD)

Just as the CBD model adds a more rapid dispersal phase (i.e. a
larger value of η) to CB, one can similarly posit a GC model with
rapid dispersal at its end. In the CBD model the natural cause of
an increase is the removal of confinement by the accretion flow. In
GC there is no similar natural breakpoint, but a number of authors
(e.g. Vázquez-Semadeni et al. 2019, and references therein) have
posited that the stellar initial mass function (IMF) is time-dependent,
so that massive stars only form late in the collapse process. If this

hypothesis were correct, it would naturally cause the mass loading
factor to increase at later times. Mathematically, we model this by
introducing two new free parameters: φd, which is defined exactly
as for the CBD model (equation 18) as the ratio of star formation
efficiencies before and after massive star feedback ‘turns on’, and
tfb, which represents the time at which this happens.

If we let η be the mass loading parameter prior to t < tfb, ηd =
φd(1 + η) − 1 be the mass loading factor from tfb < t < tcoll,
and continue to use equation (21) to describe the evolution of the
free-fall time, the solution to equation (2) is

M∗ = Mg,0

1 + η
·⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − (1 − x)τcoll , x < xfb

φ−1
d (1 − xfb)τcoll

[
1 −

(
1−x

1−xfb

)φdτcoll
]

+
1 − (1 − xfb)τcoll , xfb ≤ x < 1

1 −
(

φd−1
φd

)
(1 − xfb)τcoll , x ≥ 1

(28)

Mg = Mg,0 ·⎧⎪⎨
⎪⎩

(1 − x)τcoll , x < xfb

(1 − xfb)τcoll

(
1−x

1−xfb

)φdτcoll
, xfb ≤ x < 1

0, x ≥ 1

, (29)

where xfb = tfb/tcoll. The final SFE is

ε∗ = 1

1 + η

[
1 −

(
φd − 1

φd

)
(1 − xfb)τcoll

]
. (30)

As with CBD (cf. equation 19), the factor inside the square brackets
is strictly negative, and thus the final SFE is lower than in the
corresponding model without the disruption phase. Star formation
continues accelerating during the gas clearing phase only if φdτ coll

< 1; otherwise it decelerates.

2.2.6 Increasing star formation efficiency (IE)

A final potential mechanism to explain why star formation ac-
celerates in protoclusters like the ONC is to posit that this is an
intrinsic part of the star formation process itself. Lee, Chang &
Murray (2015) and Murray & Chang (2015) argue that, rather than
being constant, εff increases with time in star-forming regions as
εff ∝ tδ , with δ ≈ 1; we refer to this as the increasing efficiency (IE)
model. Although somewhat similar to the GC model, the two are
conceptually distinct in that star formation accelerates in the GC
model because the mean density rises with time, while in the IE
model it accelerates even though the mean density remains constant
because the star formation process itself becomes more efficient.
Mathematically, the two models differ in their predicted rate of
acceleration. Caldwell & Chang (2018) argue that the IE model
provides a good fit to observed star formation histories in resolved
clusters, and Lee et al. (2016) and Ochsendorf et al. (2017) argue it
provides a good fit to the observed ratio of ionizing luminosity to CO
luminosity, though, as we note above, the quality of the agreement
is extremely sensitive to the choice of procedure for matching up
non-co-spatial molecular gas and H II regions.

For the purposes of comparing this model to data, we adopt the
same parametrization as Lee et al. (2016): εff = εff, 0(t/tff)δ . Thus
εff,0 represents the value of εff one free-fall time after the onset of
star formation. While the theoretical models of Lee et al. (2015)
and Murray & Chang (2015) give δ = 1, we will allow δ to be
a free parameter from 0 to 3 when we fit to observations below.
The solution to equation (2) for arbitrary δ ≥ 0, holding η and tff
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constant, subject to the initial conditions Mg = Mg,0 and M∗ = 0 at
t = 0, is

M∗ = Mg,0

1 + η

[
1 − exp

(
−χδτ 1+δ

1 + δ

)]
(31)

Mg = Mg,0 exp

(
−χδτ 1+δ

1 + δ

)
, (32)

where τ = t/tsf, tsf = tff/[(1 + η)εff,0] (i.e. we define tsf using
the value of εff at 1 free-fall time; c.f. equation 4), and χ =
tsf/tff = 1/[(1 + η)εff,0]. The final SFE is ε∗ = 1/(1 + η), exactly
as in the static model. The average efficiency with which stars
form is

εff = 1 + η

Mg,0

∫ ∞

0
εff (τ )Ṁ∗(τ ) dτ

= [χ (1 + δ)]δ/(1+δ) �

(
1 + δ

1 + δ

)
εff,0. (33)

For typical parameters in this model, δ = 1 and χ = 50, this gives

εff ≈ 8.9εff,0, so most stars form at an efficiency substantially higher
than that which prevails for the first free-fall time. Intuitively, this
makes sense: in this model there are a relatively long period of
near-quiescence when εff is small and few stars form, but this is
followed by a burst of activity after εff becomes large; most stars
form during this final burst. Quantitatively, the second derivative of
the SFR is

M̈∗ = Mg,0

(1 + η)t2
sf

[
χδτ δ−1

(
δ − χδτ δ+1

)
exp

(
−χδτ 1+δ

1 + δ

)]
. (34)

The sign of M̈∗ therefore depends on δ − χδτ δ + 1; for sufficiently
small τ this term is positive, and star formation accelerates. Later
on, as gas is depleted, this term becomes negative and star formation
decelerates.

3 C ONFRONTATION W ITH OBSERVATIONS

Having outlined the various models, we now compare them to
observations.

3.1 Star formation histories

3.1.1 Data set

The first observation to which we are interested in comparing
is the observed distribution of stellar ages in young clusters; as
discussed in Section 1, working through the implications of the
observed extended but accelerating star formation histories in such
regions is one of our primary motivations in this work. For our
observational data set, we select two young open clusters: the
ONC and NGC 6530. We focus on these two because they both
offer very clean, high-quality data: membership lists determined
from Gaia 6D phase-space data plus other ancillary indicators,
and ages determined from spectroscopy, with star-by-star extinction
corrections. The free-fall time in the ONC is tff,ONC ≈ 0.6 Myr as
determined from dynamical modelling by Da Rio et al. (2014).
For NGC 6530, Prisinzano et al. (2019) measure a stellar velocity
dispersion of σ NGC 6530 = 2.42 km s−1, and the effective radius of the
cluster is 0.1◦ (Kharchenko et al. 2013), which translates to 2.3 pc
for the best-fitting distance of 1.32 kpc obtained by Prisinzano et al..

Thus the crossing time is tcr = rNGC 6530/σ NGC 6530 = 0.93 Myr. For a
virialized object, the free-fall time is approximately half the crossing
time (Tan, Krumholz & McKee 2006), so we adopt tff,NGC6530 =
0.5 Myr.

For our stellar ages in NGC 6530, we use the fits provided by
Prisinzano et al. (2019). For the ONC, we must select down from the
full catalogue of Kounkel et al. (2018), since their study covers the
entire Orion star-forming region and includes multiple populations
across a large volume. For this study, we select stars from their
catalog that are within 1 pc in projection of θ1 C (the same radius
within which we have estimated the free-fall time), and that are
kinematically identified as part of the Orion A population. We take
the ages of these stars from Kounkel et al., using only the ages
based on spectroscopic determinations, since those based on colour
are unreliable in the ONC due to high extinction. After applying
these cuts, our sample consists of 185 stars in the ONC and 395
stars in NGC 6530.

In addition to the age estimates themselves, in order to carry out
a meaningful statistical analysis we must have some understanding
of the uncertainties in the measurements. Uncertainties in the ages
of young stars has been a topic of considerable debate in the
literature in recent years, and we refer to the readers to the reviews
by Soderblom et al. (2014), Jeffries (2017), and Krumholz et al.
(2019) for a detailed discussion. Young stellar ages are always
subject to a systematic uncertainty of ∼0.1–0.3 dex in the absolute
age scale coming from the choice of pre-main-sequence tracks.
However, there is significantly less uncertainty in the relative ages
of stars (e.g. Reggiani et al. 2011), which is the quantity of concern
for us, since we are interested in the star formation history –
a shift in absolute age just amounts to a rescaling of the time-
scales.

Relative age uncertainties come from a variety of factors, de-
pending on the age-dating method. Uncertainties larger than ≈0.2–
0.3 dex can be ruled out by independent methods of constraining
dispersions of stellar age (e.g. radii derived from rotation or gravity-
sensitive spectral features – Jeffries 2007; Da Rio et al. 2016;
Prisinzano et al. 2019), but a range of estimates below this limit have
been published (e.g. Preibisch 2012; Da Rio et al. 2016; Prisinzano
et al. 2019). For this work we adopt the results of Prisinzano et al.
(2019): we take the error in log age to be a Gaussian with a width
σ = 0.13 dex and a bias b = −0.05 dex (i.e. true stellar ages are on
average 0.05 dex older than estimated ones). The systematic bias
is due to unresolved binarity, which increases luminosity at fixed
effective temperature, and thus tends to bias age estimates low. We
have experimented with other choices of these parameters, subject
to the overall constraint that the total error cannot exceed ≈0.2−0.3
dex, and we find that the posterior PDFs for some parameters can be
sensitive to the exact choice of σ and b, as are quantitative measures
of relative goodness of fit such as the Akaike information criterion.
Since we do not understand the true error distribution in detail, we
will for this reason limit our analysis to general features that are
robust against plausible changes in σ or b.

3.1.2 Likelihood function

We wish to compare the observed age distribution to that predicted
by our various candidate models. To this end, we now compute
a likelihood function, which gives the probability density of the
data given the model. For convenience we summarise the meanings
of various parameters that we introduce in this calculation in
Table 2.
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Table 2. Definitions of parameters used in computing the stellar age
distribution likelihood function.

Parameter Meaning

tclust Age of cluster (time since onset of star formation)
t∗ True age of a star
t∗,obs Observationally estimated stellar age (including errors)
σ Dispersion of stellar age error distribution
b Bias in the stellar age error distribution
tff, clust Present-day free-fall time in cluster
ε∗, clust Present-day star formation efficiency, M∗(tclust)/Mg,0

fg, clust Present-day gas fraction, Mg/(Mg + M∗) at t = tclust

For a cluster formation model with stellar mass as a function of
dimensionless time, M∗(τ ), the distribution of log stellar ages that
will be seen a time when the cluster age is tclust (i.e. a time tclust after
the onset of star formation) is

dp

d log t∗
= (ln 10)

t∗M ′
∗(τclust − τ∗)

tsfM∗(τclust)

= (ln 10) εff

(
t∗
tff

)
Mg(τclust − τ∗)

M∗(τclust)
, (35)

where t∗ is the stellar age, τ clust = tclust/tsf, and τ ∗ = t∗/tsf are
the dimensionless cluster and stellar ages, respectively, and M ′

∗ =
dM∗/dτ . The factor of ln 10 is to ensure that the PDF is properly
normalized to have unit integral over all log t∗. The stellar mass
versus dimensionless time, M∗(τ ), is given by equations (3), (7),
(16), (22), (28), and (31), for the ST, CB, CBD, GC, GCD, and
IE models, respectively; the corresponding gas masses, Mg(τ ), are
given by equations (3), (8), (17), (23), (29), and (32).

Note that, in the GC and GCD models, tff is also a function of
τ clust − τ ∗ (equation 21). These models produce a double-peaked
profile in the distribution dp/dlog t∗; equation (35) shows that the
age distribution is proportional to τ∗M ′

∗(τclust − τ∗), or, in terms of
the parameter τ in Fig. 1, (τclust − τ )M ′

∗(τ ). Reference to Fig. 1
shows that this leads to a double peak in the GC and GCD models,
with one peak at τ ∼ τ clust and a second at τ ∼ τ clust − τ coll or τ ∼
τ clust − τ fb.

To incorporate the effects of errors, we convolve the true age
distribution with the error distribution. Following our discussion in
Section 3.1.1, we parametrize the uncertainty distribution in log age
as a biased Gaussian, i.e. for a star whose true log age is log t∗, the
distribution of measured log ages log t∗,obs is

f (log t∗,obs | log t∗) = 1√
2πσ 2

exp

[
−
(
log t∗ − log t∗,obs + b

)2

2σ 2

]
,

(36)

where b is the bias and σ is the dispersion, and both b and σ are
in units of dex. The full distribution of observed ages is therefore
given by

dp

d log t∗,obs
=

∫ ∞

−∞

(
dp

d log t∗

)
f (log t∗,obs | log t∗) d log t∗. (37)

We evaluate this integral numerically via Fourier transform, since
it is equivalent to the convolution of the true stellar age distribution
dp/dlog t∗ with a Gaussian. The log likelihood function L is simply
the probability density of the data given the model:

logL =
N∑

i=1

log

(
dp∗

d log t∗,obs

)
t∗,obs=ti

, (38)

where ti is the age estimated for the ith star in the observed sample.

Our stellar age distributions as written depend on two-
dimensional quantities: the cluster age tclust, and the star formation
time-scale tsf that scales between physical times t and dimensionless
times τ = t/tsf. We treat these as free parameters to be fit. In addition,
we fit free parameters for each of the models: tacc for model CB, tacc

and φd for model CBD, tcoll for model GC, tcoll, tfb, and φd for model
GCD, and δ for model IE. Note that we do not have to fit to η or ξ (for
the GC and GCD models), because η is absorbed into the definition
of tsf, and ξ into the definition of tcoll. We adopt priors that are flat in
the logarithm of all the positive-definite quantities (all time-scales)
or that are strictly greater than unity (φd), and flat linear priors in
all other parameters. We impose almost no constraint on the time of
observation tclust, allowing any value in the range 0.01−100 Myr,
but we limit the allowed ranges of the remaining parameters based
on physical considerations, which we now proceed to describe.

First, for all models we set the prior probability to zero for εff

outside the range 10−4 to 1, on the grounds that εff values outside
this range correspond to unphysically-inefficient or efficient star
formation; to estimate εff from tsf, we use the observed free-fall
time in NGC 6530 or the ONC, as appropriate, and η = 1.2 This
serves to define the allowed range of tsf. Second, we apply priors
based on the physical picture that motivates each model. For the
CB and CBD models, the physical picture is that accretion is due
to the collapse of a larger-scale, lower-density reservoir with a
longer dynamical time than the cluster-forming region, a picture
that requires tacc > tff; we also require tacc ≤ tclust, not for any
physical reason, but simply because all models with tacc > tclust

have identical age distributions for the stars that exist today, and
thus cannot be distinguished in our analysis. For the GC and GCD
models, the central idea is that regions collapse on a free-fall time-
scale, forming stars while doing so. We therefore impose as a prior
0.1 < ξ < 10; lower values of ξ correspond to collapses so slow as to
be nearly indistinguishable from the ST model, while higher values
require regions to collapse much faster than a free-fall time, which
is unphysical. This serves to limit the range of tcoll (see footnote
2). Finally, for IE, theoretical models of how the density structure
changes as star formation proceeds predict δ ≈ 1. We allow some
range around this, by setting our prior to zero outside the range δ =
0−3.

Our third and final prior is on the present-day SFE, ε∗,clust ≡
M∗(tclust)/Mg,0, i.e. the fraction of all the gas available that has been
converted to stars; note that ε∗,clust may be smaller than the final

2Applying this prior to the GC and GCD cases requires some care, because
a particular combination of tclust, tsf, and tcoll, the parameters to which we
are fitting, does not by itself determine a unique value of εff; instead, one
can change εff arbitrarily while leaving all these time-scales unchanged by
simultaneously changing ξ and tff,0. To determine εff, we must therefore
choose a value of ξ . We can do so by considering two possible scenarios.
One is that the cluster in question has not yet reached collapse (tclust <

tcoll), in which case we can fix ξ by demanding that the free-fall time in the
model match the observed present-day free-fall time tff,clust (0.6 Myr for the
ONC, 0.5 Myr for NGC 6530, respectively). Re-arranging equation (21),
we find that the value of ξ that satisfies this condition is ξ = 2tff, clust/(tcoll

− tclust). This in turn breaks the degeneracy and allows us to determine a
unique value of εff. The other possibility is that the cluster as we see it today
is after the collapse to singularity (tclust > tcoll), in which case the free-fall
time we measure is a result of the stars rebounding to their current positions
post-collapse, and has nothing to do with the free-fall time prior to collapse.
In this case ξ is unconstrained by the fit, and we must therefore adopt a
value of ξ . For this case, we choose a fiducial value ξ = 1. Our calculation
of the best-fitting model is able to consider both scenarios, since we do not
impose any prior on whether tclust < tcoll or tclust > tcoll.
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SFE ε∗ that would be reached as tclust → ∞. For the ONC, Kim
et al. (2019) find that the cluster is virialised and not expanding,
which suggests that its SFE could not be too low. We have no
direct dynamical evidence that the same is true for NGC 6530, but
given its overall similarity with the ONC, this seems likely to be
the case for it as well. The requirement that the SFE not be ‘too
low’ is somewhat difficult to quantity: when gas is removed from a
protocluster rapidly compared to its dynamical time, loss of more
than ≈ 70 per cent of the mass always leads to complete unbinding
(Kroupa, Aarseth & Hurley 2001). However, the age distributions in
the ONC and NGC 6530 imply that star formation, and presumably
mass removal, have been ongoing for significantly longer than a
free-fall time, and for sufficiently adiabatic gas removal, stars can
remain bound down to arbitrarily small star formation efficiencies.
Moreover, in order to match the observation that most stars do not
form as part of bound clusters, we require that only a small fraction
of the stars remain bound, and thus we do not want the efficiency
to be too high. Given our uncertainties, we adopt a relatively mild
prior, which disfavours efficiencies below 5 per cent. Formally, we
apply a prior pprior(ε∗,obs) ∝ exp{−[0.05/ min(ε∗,obs, 0.05)]2}. For
the purpose of calculating ε∗, we adopt η = 1, corresponding to
50 per cent instantaneous SFE, for all models, and a 50 per cent
final SFE for all but the CBD and GCD models. By allowing ε∗, clust

to be small compared to ε∗, we are allowing for the possibility that
the clusters are observed early in the formation process, when Mg

� M∗.
Finally, we note that the ONC is also observed to have a small

gas fraction at the present day (Da Rio et al. 2014), fg,clust ≡
Mg(tclust)/[(Mg(tclust) + M∗(tclust)] � 1. While in principle this could
serve as an additional prior, we lack quantitative constraints on the
gas fraction in NGC 6530, and, with the exception of CBD and
GCD, none of our models contains an explicit treatment of gas
clearing. For this reason, we will report fg,clust for our fits, but we
will not impose any restrictions on it as a prior.

3.1.3 Results

Having defined the likelihood function and priors, we use the
package EMCEE (Foreman-Mackey et al. 2013) to perform a Markov
Chain Monte Carlo (MCMC) calculation to determine the posterior
probability distribution for all the free parameters in each model as
compared to the data; for the CB model we consider both a case
with our fiducial value, p = 3, and one with p = 0, as predicted
for late stages of collapse by Lee & Hennebelle (2016a, b). For
this calculation we use 100 walkers and perform 1000 MCMC
steps; visual inspection of the chains indicates that this is more
than adequate for convergence. We report the marginalised posterior
PDFs, which we derive from the final 800 steps (i.e. we use 200 steps
as a burn in period), in Table 3, and show the fits in Fig. 2. We provide
full posterior PDF distributions of all variables as Supplementary
material (online). In Table 3 we also report three additional. derived
quantities for each model, which are helpful in interpreting the
results: the SFR per free-fall time εff, the present-day gas fraction
fg,clust, and the present-day SFE ε∗,clust.

Our analysis allows a few immediate conclusions. First, examin-
ing Fig. 2, it is clear that the ST and CB (p = 0) models provide
a poor description of the data in both NGC 6530 and the ONC.
The underlying reason is that ST always produces an SFR that is
highest at the start of star formation and then tapers; CB with p =
0 has an SFR that accelerates with time only weakly. Both models
therefore predict a stellar age distribution that is peaked towards the

oldest ages, contrary to what we observe. The MCMC attempts to
compensate for this effect by favouring large star formation time-
scales tsf, so that as little gas is converted to stars as possible and the
SFR falls off due to gas depletion as little as possible; this is also
why both models have very high present-day gas fraction fg,clust and
very low present-day SFE ε∗,clust.

The IE model provides a better fit to the data, but in order to
do so the fit is driven to values of δ, the acceleration parameter,
far from the theoretically-preferred value δ = 1. Indeed, the only
reason δ does not go even higher is that our priors do not allow δ

> 3. Physically, this is because the model has difficulty producing
a star formation history that extends for many free-fall times but
also accelerates strongly at late times, unless δ is very large. The
existence of a reasonably population of stars with ages approaching
∼10tff requires that the tclust not be too small, but then if δ is close
to unity, too much gas is consumed at early times to allow the SFR
to accelerate at later times. Thus in order to fit the data, the model
requires a much larger value of δ, which more strongly suppresses
star formation at early times.

The most successful models are CB, CBD, GC, and GCD. Though
none of the models are able to reproduce the full age distribution
in great detail, all four produce accelerating star formation that is
in reasonable agreement with the observed age distribution, with
an accretion time (for CB or CBD) or a collapse time (for GC and
GCD) that is nearly equal to the age of the oldest stars present, and to
our best estimate for the age of the system as a whole. Given that our
model for the uncertainties in stellar age estimates is almost certainly
too simplistic, this is probably the best level of agreement for which
it is reasonable to hope. The posterior distribution of dimensionless
SFE εff in these models is extremely broad, mainly because the
star formation history is relative insensitive to gas consumption,
and instead reflects the accumulation of additional mass (at a rate
in good agreement with that predicted by Goldbaum et al. 2011)
in CB or CBD, or to the overall increase in the density and thus
decrease in the free-fall time in GC or GCD. Interestingly, in the
ONC all three models either admit or require that the present-day
gas fraction fg,clust be small, consistent with the observations of Da
Rio et al. (2014), though we did not explicitly impose this as a prior.

3.2 εff from YSO counts

3.2.1 Data set

The next observational test to which we subject our models is the
relationship between gas and YSOs in the gaseous objects that are
the likely progenitors of star clusters. As discussed in the Section 1,
estimates of εff based on YSO counts cluster around ≈0.01 in
all observed star-forming regions, with small scatter. While this
would seem to straightforwardly and directly constrain εff, a number
of authors have suggested that this is not the case due to biases
introduced by the methodologies of the measurement. For example,
Lee et al. (2016) argue that some measurements preferentially select
clouds early in their evolution, when, according to Lee et al.’s
favoured IE model, εff is smaller than its time-averaged value.
Similarly, Vázquez-Semadeni et al. (2019) favour a GCD model
and argue that estimates of εff may be erroneous in clouds because
a count of the number of YSOs present implicitly integrates the
SFR over some period of time into the past, when the free-fall time
was longer than the value we measure at the present day. We are in
a position to test both these hypotheses, by directly modelling the
observed distribution of εff values produced by our cluster formation
models.
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Bound star cluster formation 633

Table 3. Best-fitting parameters obtained by comparing each model to the observed distribution of stellar ages in the ONC and NGC 6530. The
quantities listed as ‘Fit parameters’ are those directly constrained in the fit, while ‘Derived parameters’ are calculated from the fit parameters. Values
are specified in the form p(50)p(84)−p(50)

p(16)−p(50), where p(q) is the qth percentile of the marginalised posterior PDF for that quantity. Times expressed as
logarithms are in Myr.

Model Fit parameters Derived parameters
log tclust log tsf Other log εff fg,clust log ε∗,clust

(Myr) (Myr)

ONC

ST 0.78+0.02
−0.02 1.72+0.16

−0.14 – −2.24+0.14
−0.16 0.94+0.02

−0.02 −1.26+0.13
−0.15

CB, p = 0 0.92+0.03
−0.02 1.46+0.17

−0.24 log tacc = 0.89+0.03
−0.04 −1.98+0.24

−0.17 0.92+0.02
−0.05 −1.15+0.21

−0.15

CB, p = 3 1.13+0.04
−0.04 −0.28+1.33

−0.19 log tacc = 1.12+0.04
−0.04 −0.24+0.19

−1.33 0.12+0.73
−0.07 −0.33+0.02

−0.55

CBD, p = 3 1.12+0.04
−0.07 0.11+1.35

−0.47 log tacc = 1.11+0.04
−0.17, log φd = 1.48+0.38

−1.10 −0.63+0.47
−1.35 0.02+0.89

−0.02 −0.44+0.09
−0.67

GC 0.94+0.04
−0.04 1.34+0.78

−0.11 log tcoll = 0.94+0.07
−0.05, ξ = 1.00+0.18

−0.06 −1.00+0.07
−0.72 0.00+0.92

+0.00 −0.30+0.00
−0.82

GCD 0.99+0.05
−0.05 1.92+0.43

−0.49 log tcoll = 0.99+0.05
−0.05, log tfb = 0.81+0.15

−0.64, −1.33+0.31
−0.46 0.00+0.64

+0.00 −0.74+0.35
−0.42

log φd = 0.60+0.53
−0.44, ξ = 1.00+2.89

+0.00
IE 1.08+0.04

−0.04 4.76+0.47
−0.61 δ = 2.68+0.23

−0.42 −1.31+0.09
−0.08 0.92+0.03

−0.06 −1.13+0.23
−0.16

NGC 6530

ST 0.52+0.02
−0.02 1.64+0.13

−0.16 – −2.25+0.16
−0.13 0.96+0.01

−0.02 −1.44+0.15
−0.12

CB, p = 0 0.66+0.02
−0.02 1.35+0.18

−0.12 log tacc = 0.64+0.03
−0.03 −1.95+0.12

−0.18 0.95+0.02
−0.02 −1.29+0.11

−0.16

CB, p = 3 0.92+0.02
−0.03 1.03+0.23

−0.39 log tacc = 0.90+0.03
−0.03 −1.63+0.39

−0.23 0.91+0.03
−0.11 −1.10+0.32

−0.18

CBD, p = 3 0.88+0.03
−0.27 0.52+1.04

−0.36 log tacc = 0.87+0.03
−0.97, log φd = 1.84+0.12

−1.59 −1.13+0.36
−1.04 0.43+0.53

−0.34 −0.77+0.20
−0.61

GC 0.83+0.04
−0.05 2.23+0.20

−1.03 log tcoll = 0.86+0.04
−0.09, ξ = 2.64+0.67

−1.64 −1.50+0.47
−0.21 0.93+0.02

−0.93 −1.21+0.91
−0.17

GCD 0.87+0.04
−0.04 2.40+0.18

−0.17 log tcoll = 0.88+0.04
−0.04, log tfb = 0.58+0.19

−0.67, −1.28+0.19
−0.82 0.89+0.04

−0.89 −1.29+0.14
−0.17

log φd = 0.87+0.28
−0.22, ξ = 8.20+1.34

−7.20
IE 0.85+0.02

−0.02 4.60+0.20
−0.20 δ = 2.95+0.04

−0.08 −1.14+0.04
−0.05 0.95+0.02

−0.02 −1.29+0.11
−0.17

Note. We derive εff as follows: for models ST, CB, and CBD, we use equation (4) with tff set equal to the observed value in NGC 6530 or the ONC. For
model IE, we report the time-averaged value εff given by equation (33). Finally, for models GC and GCD we use the procedure described in footnote
2. In all cases our numerical value is for η = 1, and εff obeys the scaling εff ∝ 1/(1 + η).

We take our measured distribution of εff values from Heyer
et al. (2016), who identify class 0/I YSOs within and measure
εff for gas clumps identified in the ATLASGAL survey (Schuller
et al. 2009; Csengeri et al. 2014). We use Heyer et al.’s IMF-
corrected estimates of εff, which account statistically for the fact
that their YSO catalogues begin to suffer from incompleteness for
protostars smaller than ≈2 M	. This is the largest (N = 517)3

and most complete sample of εff measurements in the literature,
and the ATLASGAL clumps that it targets are very similar to
the ONC and NGC 6530 in terms of mass, density, and free-
fall time, making the data well-suited to the task of using both
the cluster star formation history and the εff distribution together,
as we do below. Specifically, the mean free-fall time of the
ATLASGAL clumps is 0.3 Myr, very similar to the observed
free-fall times of 0.5 and 0.6 Myr in NGC 6530 and the ONC.
Thus the ATLASGAL sample very likely represents a survey of
YSOs in objects that are will become clusters like NGC 6530 or
the ONC, just at a slightly earlier evolutionary phase. However,
we do note that the distribution of εff values obtained by Heyer
et al. (2016) is qualitatively quite similar to those obtained from
other samples that also use YSO counts for objects at a range of
size and density scales (e.g. Evans et al. 2014; Ochsendorf et al.
2017).

3For some of this sample, Heyer et al. (2016) do not detect any YSOs, and
thus only obtain an upper limit on εff. For the purposes of our analysis, we
take the value of εff in these clumps to be equal to the stated 2σ upper limit.

3.2.2 Likelihood function

As in Section 3.1, to compare to the models to the observations we
require a likelihood function that gives the probability density of the
data given the model, which must properly account for averaging
of the SFR over a finite time interval, potential biases in the sample,
and observational errors. First consider the issue of averaging over
a finite time. The Heyer et al. (2016) data set on which we focus
estimates the SFR based on number counts of class 0/I YSOs, a
phase that lasts for a time tYSO ≈ 0.5 Myr (Evans et al. 2009;
Gutermuth et al. 2009). We can therefore define an appropriately
time-averaged εff for our models as

εff,avg(t, �t) = [M∗(t) − M∗(t − �t)] /�t

Mg(t)/tff (t)
, (39)

where t is the time of observation, and �t = 0.5 Myr is the window
over which the SFR is averaged.

As with our treatment of stellar ages, we must consider not only
biases (in this case introduced by averaging over a finite time), but
observational errors. Errors in εff measurements are significantly
more poorly modelled than errors in stellar age distributions, and
involve subtleties such as making an IMF-based correction for
the presence of protostars too dim to be detected. Given our
ignorance, we will adopt a simple lognormal functional form, i.e.
in a cloud with a true (time-averaged) logarithmic star formation
efficiency log εff,avg, the distribution of observationally inferred
values log εff,obs will be distributed as a Gaussian of width σlog εff

centred on log εff,avg. That is, given a true (time-averaged) efficiency
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634 M. R. Krumholz and C. F. McKee

Figure 2. Distribution of observed stellar ages dp/dlog t∗,obs in the ONC (top) and NGC 6530 (bottom). In all panels, the coloured lines represent 20 random
samples from the final iteration of the MCMC for each of the models, as indicated in the legend. Grey histograms show the observed distribution, and are the
same in every panel. The dashed vertical lines indicate 1, 3.2, and 10× the observed free-fall time, as indicated. The dotted grey lines, which we provide to
guide the eye, are lines of slope unity, which, given the logarithmic age bins, corresponds to a constant SFR.

per free-fall time εff,avg, the distribution of observationally estimated
star formation efficiency per free-fall time is

f (log εff,obs | log εff,avg) =
1√

2πσlog εff

exp

[
−
(
log εff,avg − log εff,obs

)2

2σ 2
log εff

]
. (40)

The value of the dispersion σlog εff is not well known, but we will see
below that it is not necessary to adopt a model for σlog εff ; instead
we can leave σlog εff as a parameter to be fit along with other model
parameters.

Now consider a cloud observed at some time t during its evolu-
tion, with an instantaneous time-averaged star formation efficiency
εff,avg(t, �t). The distribution of observed efficiencies for this cloud
is f(log εff,obs|log εff,avg(t, �t)). If we have a population of such
clouds, each observed at random times t between the onset of
star formation at t = 0 and some maximum time tmax, then the
distribution of observed εff,obs values for the population is simply
the average of f(log εff,obs|log εff,avg(t, �t)) over all possible times t
at which the clouds could be observed, i.e.

dp

d log εff,obs
= 1

tmax

∫ tmax

0
f (log εff,obs | log εff,avg(t,�t)) dt . (41)

The choice of maximum time tmax is somewhat subtle. In simple
models where Mg reaches 0 in finite time, such as the GC model,
one can simply take tmax to be the time for which Mg(tmax) = 0.
However, we are interested in comparing to a more general class
of models where Mg may not go to exactly 0 at finite time. To
choose a reasonable tmax, we note that studies of εff based on
YSO counts always select YSOs and gas clouds within the same
area on the sky, which limits the phase of evolution to which they
are sensitive: as clusters evolve and begin to clear their gas, stars
inevitably cease to be surrounded by molecular gas, so clouds that
have cleared most of their gas are not included in YSO counting
surveys. Our simple zero-dimensional models cannot capture this
effect directly, but we crudely mimic it by choosing our time interval
to correspond to that over which Mg/M∗ > 1, i.e. when the stellar
mass has not yet exceeded the gas mass. We therefore take tmax to be
defined implicitly by the condition Mg(tmax)/M∗(tmax) = 1. We have
verified that varying the value of Mg/M∗ we use to define our time
interval by a factor of ten in either direction not change the results
substantially.

Given the preceding discussion, we have now write down the log
likelihood function for a set of observed εff values is

logL =
N∑

i=1

log

(
dp

d log εff,obs

)
εff,obs=εff,i

, (42)
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Bound star cluster formation 635

where εff,i is the ith observed value of εff, and there are N
measurements in total. We use this likelihood function with EMCEE

to obtain posterior PDFs for the parameters for the same models as
in Section 3.1. As in our analysis of the stellar age distribution, we
use priors that are flat in the logarithm of positive-definite quantities,
and flat in value for other quantities; the allowed parameter range
is identical to that used in Section 3.1. In addition to the parameters
included there, we must also fit for η, σlog εff , and ξ (for model GC
and GCD), since, while these do not affect the distribution of stellar
ages, they do affect the distribution of observed εff values. For η our
prior is flat in log from 0.01 to 10, and for σlog εff it is flat in log from
0.01 to 10. We must also choose a value for the free-fall time, since
this sets the ratio �t/tff, which determines how much the observed
εff distribution is biased by averaging the SFR over a finite time.
As noted above, the mean value of tff in the ATLASGAL sample
is 0.3 Myr, and the dispersion around this is small (0.26 dex), so
we use tff = 0.3 Myr for our analysis of all models except GC and
GCD; these models sweep through all values of tff from tff,0 to 0,
so for this case we impose as a prior the requirement that tff,0 >

0.3 Myr, i.e. the collapse must start from a state that is no denser
than the observed ATLASGAL clumps.

3.2.3 Results

We show models evaluated using samples drawn from the MCMC
chains in Fig. 3, and report the posterior PDFs of all parameters
in Table 4. The results show that all the models we consider can
fit the observed εff distribution quite well, but that both εff and
the level of observational error are very tightly constrained by the
observations; εff is required to be of order a few per cent, and σlog εff

to be approximately 0.15 dex. Indeed, the models even constrain
η not be too large, since otherwise rapid mass removal means
that the gas mass is able to change significantly over the time-
averaging interval �t, which in turn would broaden the observed εff

distribution more than the data allow. Thus, despite the hypothesis
in the literature that measured εff distributions are biased because
they average over a finite time interval and thus miss changes in
the free-fall time (e.g. Vázquez-Semadeni et al. 2019), or that they
miss periods of efficient star formation (e.g. Lee et al. 2016), we do
not obtain significantly looser constraints on the value of εff when
we explicitly put those possibilities into our model.

3.3 Combined constraints

Having examined the constraints we can deduce from the distribu-
tion of stellar ages and the YSO–gas correlation individually, we
now ask whether these constraints are compatible. That is, do there
exist a set of parameters for a given model such it can simultaneously
reproduce the observed stellar age distribution in young clusters
and the YSO count in protoclusters? To answer this question, we
use our MCMC samples to compute the dimensionless parameters
– εff, η, etc. – that characterize each proposed model, using the
constraints from both the stellar age distribution and YSO counts.
We focus only on the dimensionless parameters, since, while the star
clusters for which we have examined the stellar age distribution and
the ATLASGAL clumps are similar in terms of mass and free-fall
time, they are not completely identical, and thus we do not expect
the dimensional parameters (e.g. free-fall time or collapse time)
to match exactly. We plot the posterior PDFs of the dimensionless
parameters for models CBD, GCD, and IE in Figs 4, 5, and 6,

respectively.4 These plots use the posterior PDFs derived from the
stellar age distribution in NGC 6530, since it is a somewhat larger
data set, but the results for the ONC are qualitatively similar. We
omit ST and CB (p = 0) from this comparison because we have
already determined that these models provide poor fits to the stellar
age distribution alone, and we omit CB (p = 3) and GC because
they are qualitatively similar to CBD and GCD, respectively,
on the parameters they share. However, the corresponding plots
for these clusters are provided in the Supplementary material
(online).

Turning first to Fig. 6, we immediately see that the IE model
has a major difficulty: as discussed in Section 3.1 and shown in
Fig. 6, the stellar ages distributions in NGC 6530 and the ONC are
best fit in the context of this model by a star formation efficiency
that increases as roughly εff ∝ t3 (or faster, since δ = 3 is the
largest allowed by our priors). This is completely at odds with
the constraint provided by the ATLASGAL clumps, whose tight
relationship between YSOs and gas properties requires that εff be
nearly constant, and thus that δ ≈ 0. The physical explanation
for this tension is simple: star formation is observed to accelerate
based on stellar age distributions, and the IE model interprets this
acceleration as a systematic increase in star formation efficiency
with time. However, when one observes the gas clumps that are
in the process of forming clusters, one finds that the number
of YSOs per unit gas mass, normalised by the free-fall time, is
nearly constant, completely inconsistent with large variations in
star formation efficiency. There is no way to reconcile these two
constraints in the context of the IE model, or indeed in any model
that assumes the acceleration of star formation is due to an increase
in star formation efficiency with time. Instead, the acceleration
of star formation must be due either to an increase in the star-
forming mass with time (as in CB or CBD) or a decrease in the
free-fall time (as in GC or GCD). We may therefore rule out the IE
model.

The CBD and CGD models illustrated respectively in Figs 4
and 5, on the other hand, show no contradiction between the
parameter values demanded by the stellar age distributions and
the ATLASGAL clumps. In both sets of models the ATLASGAL
data very tightly constrain εff, while setting little constraint on any
other parameters. Conversely, the stellar age distribution tightly
constrains τ acc, τ coll, ξ , xfb, and φd, but provides little restriction
on εff. As a result, there is a reasonable parameter space of
overlap.

Thus we find that the joint set of data favour one of two
scenarios. We plot the history of gas and stellar mass, SFR, and
mean density and free-fall time derived for these two scenarios
in Fig. 7. In the first, gas accretes as roughly Ṁ ∝ t3 (consistent
with the theoretical models of Goldbaum et al. 2011) and forms
stars inefficiently (εff ≈ 0.01). Accretion continues for ∼1–10 star
formation time-scales (τ acc ∼ 1–10), and once it ends, mass is
rapidly dispersed by feedback (φd � 1). The precise parameters
used for the CBD model shown in Fig. 7 are log εff = −1.75,
τ acc = 3, η = 3, φd = 10; all of these parameters are within the
16th to 84th percentile range allowed by both sets of constraints.
The gas and stellar masses in the model, physical time, and SFR,
can be rescaled arbitrarily by changing the total cloud mass and
density, while leaving all the dimensionless parameters (which

4For parameters that cannot be constrained by the stellar age distribution,
we take the posterior PDF derived from stellar ages to be equal to the flat
prior we use for these variables when analysing the ATLASGAL data.
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636 M. R. Krumholz and C. F. McKee

Figure 3. Distribution of observed star formation efficiencies log εff,obs. Grey histograms show the distribution observed by Heyer et al. (2016) for the
ATLASGAL sample, and are the same in every panel. Coloured lines represent 20 random samples from the final iteration of the MCMC fit for each model,
as indicated in the legend.

Table 4. Best-fitting parameters obtained by comparing each model to the observed distribution of measured εff values in ATLASGAL
clumps (Heyer et al. 2016).

Model Fit parameters Derived parameters
log σlog εff log ηa log tsf Other log εb

ff
(dex) (Myr)

ST −0.79+0.01
−0.01 −0.72+0.86

−0.86 1.18+0.06
−0.30 – −1.78+0.02

−0.02

CB, p = 0 −0.79+0.02
−0.02 −0.53+0.82

−0.93 1.13+0.10
−0.36 log tacc = 1.45+0.38

−0.81 −1.76+0.02
−0.02

CB, p = 3 −0.79+0.02
−0.02 −0.65+1.02

−0.89 1.13+0.08
−0.44 log tacc = 1.77+0.16

−0.28 −1.74+0.02
−0.02

CBD, p = 3 −0.79+0.02
−0.02 −0.66+0.92

−0.88 1.13+0.08
−0.38 log tacc = 1.78+0.15

−0.26, log φd = 1.02+0.68
−0.70 −1.74+0.03

−0.02

GC −0.78+0.02
−0.02 −0.08+0.70

−0.82 2.53+0.89
−0.86 log tcoll = 1.58+0.31

−0.50, log ξ = −0.00+0.72
−0.66 −1.77+0.03

−0.02

GCD −0.79+0.02
−0.03 0.17+0.54

−0.65 2.47+0.72
−0.88 log tcoll = 1.39+0.43

−0.57, log ξ = 0.22+0.52
−0.72 −1.77+0.06

−0.03

log tfb = −0.45+1.02
−1.04, log φd = 0.82+0.67

−0.57
IE −0.79+0.02

−0.02 −0.69+0.79
−0.88 1.25+0.12

−0.27 δ = 0.06+0.09
−0.04 −1.76+0.03

−0.03

Notes. Formatting is identical to that used in Table 3.
a The median and percentile values we report for log η are strongly affected by our prior log η > −2. All models with η � 1 are essentially
identical, so our analysis cannot distinguish them; thus the values we report should be read as providing an upper limit at the reported 84th
percentile, rather than a meaningful central estimate.
b The value of εff we report here is the true value defined by the instantaneous SFR, not the time-averaged value εff,avg defined by equation
(39). For model IE, we report the time-averaged value εff given by equation (33). We compute εff as described in the notes to Table 3.

determine the shape of the curves) fixed. We have scaled the curves
shown to values typical of NGC 6530 and the ONC, and of the
ATLASGAL clumps: a final stellar mass of 2000 M	, and a free-
fall time of 0.3 Myr. The corresponding physical star formation
and accretion time-scales are tsf = 4.2 Myr and tacc = 12.7 Myr,
respectively.

In the second scenario, an initially low-density cloud undergoes
a global collapse that is fairly rapid compared to the instantaneous
free-fall time (ξ � 1), as might be expected for example in a colliding
flow where the collapse is due to external pressure plus gravity
rather than gravity alone, but during this collapse it forms stars
quite inefficiently (εff ≈ 0.01). As a result, the total collapse time
is quite small compared to the star formation time-scale (τ coll �
0.1), so that most stars form only during the final plunge when the
density is running way to infinity – a value τ coll < 1 is required
to yield an accelerating star formation history. The plot shown
in Fig. 7 uses log εff = −1.75, τ coll = 0.04, τ fb = 0.036, η =
1.0 (so ξ = 1.8), and φd = 10, together with an initial free-fall

time tff,0 = 10 Myr, again falling within the 16th–84th percentile
range of our analysis of NGC 6530 and the ONC; the mass has
also been scaled to produce a final stellar mass of 2000 M	. The
corresponding initial star formation and collapse time-scales are
tsf = 281 Myr and tcoll = 11.2 Myr, respectively; the collapse
time-scale corresponds to a starting density ≈20 cm−3, and thus
typical of the cold neutral medium (CNM). In this model, the
ATLASGAL clouds began their lives as clouds of CNM, and their
present-day properties would correspond to a physical state near the
point where the blue and orange lines cross in the bottom panel of
Fig. 7.

3.4 Global SFR

We now add an additional constraint to our modelling: the SFR
of the Milky Way as a whole is ≈2 M	 yr−1 (Chomiuk & Povich
2011), so the total SFR implied by a successful model must not
exceed this value. To see what this implies, we again return to the

MNRAS 494, 624–641 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/494/1/624/5801025 by Library (H
ancock) user on 08 M

ay 2020



Bound star cluster formation 637

Figure 4. Corner plot showing the posterior PDF for the dimensionless
parameters of the CBD model (εff, η, τ acc, and φd), derived using the
distribution of stellar ages in NGC 6530 (red colours) and the counts of
YSOs in ATALASGAL clumps (blue colours). In the panels on the bottom
left corner, contours show 2D marginal posterior PDFs for each combination
of variables, as indicated on the axes. Histograms along the central diagonal
show 1D marginal posterior PDFs for each variable. PDFs in all panels are
scaled so that the maximum is unity.

Figure 5. Same as Fig. 4, but showing the GCD model and its dimensionless
parameters. Note that we show xfb = tfb/tcoll rather than τ fb = tfb/tsf, because
the former quantity is more helpful for the discussion that follows.

ATLASGAL sample. As noted above, the mean free-fall time of
these objects is tff = 0.3 Myr (Heyer et al. 2016), and the total
mass of ATLASGAL clumps in the Galaxy is Mtot ≈ 1.0 × 107 M	
(Urquhart et al. 2018).

Figure 6. Same as Fig. 4, but showing the IE model and its dimensionless
parameters.

3.4.1 ST, CB, and CBD

The rate at which ATLASGAL clumps form stars is straightforward
to calculate in the ST, CB, and CBD models:

SFR = εff
Mtot

tff
= 0.33

( εff

0.01

)(
Mtot

107 M	

)
(

tff

0.3 Myr

)−1

M	 yr−1, (43)

where we have normalized to the mean free-fall time for the
ATLASGAL clumps. Thus if εff ≈ 0.01 for these models, as
suggested by our analysis so far, the total contribution of the
ATLASGAL clumps to the total star formation budget of the Milky
Way is ≈0.3 M	 yr−1, which is ≈ 10 per cent of the total. This is
consistent with the upper limit stated above, and in fact suggests
a nice consistency: the ATLASGAL clumps are much denser than
the mean star-forming region or star cluster (for example, compare
to fig. 9 of Krumholz et al. 2019), and thus the stars that form
within them are much more likely to remain part of a bound cluster
than the typical star formed in the Galaxy. If we hypothesize
that the ATLASGAL clumps correspond roughly to the bound
portion of the star formation in the Galaxy, so our estimate implies
that ∼ 10 per cent of all stars formed in bound clusters, that is
entirely consistent with the observationally measured fraction of
stars formed in bound clusters in typical spiral galaxies (e.g. Ryon
et al. 2014; Adamo et al. 2015; Johnson et al. 2016; Chandar et al.
2017). We caution, however, not to put too much weight on this
agreement, since we do not in fact know if the density range that
is selected by ATLASGAL corresponds well to the conditions that
delineate between bound and unbound star formation.

3.4.2 GC, GCD, and IE

The remaining models require a more refined treatment because
tff and εff can vary. Since these models do not depend on the
magnitude of the mass, we can assume that the entire population of
ATLASGAL clouds is born with the same mass and then evolves
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638 M. R. Krumholz and C. F. McKee

Figure 7. Example histories of stellar mass, gas mass, SFR, and free-fall
time / density for the two best-fitting models, CBD and GCD, scaled to mass
and time-scales typical of the ATLASGAL sample; the exact parameters
used to construct these models are described in Section 3.3. The right axis
in the bottom panel shows number density of H nuclei, computed assuming
a mean mass of 1.4mH per H nucleon. The bottom horizontal axis shows
physical time in Myr, while the top two axes show dimensionless time
τ = t/tsf; this is different for the CBD and GCD models because the star
formation time-scale tsf is different in the two models.

according to one of these models. Let NM = dN /dMg be the
number of clouds per unit mass, and let Ṅ be the rate at which
clouds are born with a mass Mg,0. The equation of continuity for the
cloud mass distribution is then

∂NM

∂t
+ ∂

∂Mg

(
NMṀg

) = Ṅ δ(Mg − Mg,0), (44)

so that in a steady state we have

− NMṀg = Ṅ . (45)

The SFR is then

SFR =
∫ Mg,0

0
Ṁ∗NMdM = Ṅ ε∗Mg,0 (46)

from equation (2), since there is no accretion in these models
(Ṁacc = 0). Here ε∗ is the final star formation efficiency: 1/(1 +
η) in GC or IE, and the value given by equation (30) for GCD. Now
the total mass in clouds is

Mtot =
∫ Mg,0

0
MgNM dM, (47)

=
∫ ∞

0
Mg

( Ṅ
Ṁg

)(
dMg

dt

)
dt, (48)

= Ṅ tsf

∫ ∞

0
Mg dτ. (49)

The SFR per unit gas mass is then

SFR

Mtot
= ε∗

tsf

[∫ ∞

0

Mg

Mg,0
dτ

]−1

. (50)

We can check this by noting that for the ST model it gives the result
in equation (1):

SFR = Mtot

(1 + η)tsf
= εff

Mtot

tff
. (51)

First consider the IE model. Evaluating the integral in equation (50)
with the aid of equation (32) we find

SFR = χδ/(1+δ)

(1 + δ)1/(1+δ)�
(
1 + 1

1+δ

) εff,0
Mtot

tff
(52)

= 1

(1 + δ) �
(
1 + 1

1+δ

)
�
(
1 + δ

1+δ

) εff
Mtot

tff
, (53)

where in the second step we have made use of equation (33)
to rewrite the SFR in terms of the mass-averaged star formation
efficiency εff . We have already noted that the constraints on δ arising
from stellar age distributions are inconsistent with those derived
from YSO counts, but the total SFRs in both cases are similar.
Consulting Tables 3 and 4, we see that YSO counts give εff ≈ 0.01
and δ ≈ 0, so overall we obtain SFR ≈ 0.01Mtot/tff. Stellar ages
give εff ≈ 0.05 and δ ≈ 3, which again gives SFR ≈ 0.01Mtot/tff.
Thus the global SFR predicted by our best-fitting values of the IE
model are roughly the same as those obtained in the ST, CB, or CBD
models, and is consistent with the global star formation budget of
the Milky Way.

Next consider the GC and GCD models. In this case, evaluation
of the integral in equation (50) gives

SFR = fGCD

[(
1 + τcoll

τcoll

)
εff

]
Mtot

tff,0
= fGCD

[
ξ

2

(
1 + τcoll

1 + η

)]
Mtot

tff,0
,

(54)

where

fGCD =
(1 + τcollφd)

[
1 − φd−1

φd
(1 − xfb)τcoll

]
1 + τcollφd

[
1 − φd−1

φd
(1 − xfb)τcoll+1

] (55)

is the factor by which the SFR is lower in a GCD model than in a
GC one due to the extra dispersal at late times; this factor is unity
for the GC model, and it also approaches unity for xfb → 1 or φd

→ 1, in which limits the GCD models reduces to the GC one. The
term in square brackets in equation (54), which we have written in
two equivalent ways in order to illustrate the limiting behaviour for
τ coll � 1 and �1, can be thought of as the ‘effective’ εff of the
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Bound star cluster formation 639

model. If τ coll � 1, i.e. clouds collapse slowly compared to their
star formation time-scale, then clearly this term just approaches εff,
equation (54) approaches equation (43), and this model approaches
the behaviour of ST, CB, or CBD. If, on the other hand, τ coll �
1 so that clouds collapse quickly compared to their star formation
time-scale, then the term in square brackets approaches (ξ /2)/(1 +
η). This is just the product of the collapse time measured in units
of the free-fall time, (ξ /2), and the fraction of the mass converted
to stars rather then lost to the wind, 1/(1 + η). The instantaneous
value of εff does not matter in this limit, because all the stars form
in the final plunge to infinite density.

We cannot apply this result to the Galaxy as a whole, because both
the free-fall time tff,0 and the total mass Mtot at the start of collapse
are unknown – ATLASGAL tells us only the instantaneous mass
of clumps whose density is high enough for them to be included
in the catalogue, i.e. those for which tff � 0.3 Myr. However, we
can still apply our model just to the ATLASGAL clumps, simply
by interpreting the birth rate Ṅ as the rate at which clouds become
dense enough to be visible to ATLASGAL. Since in the GC and
GCD models tff is monotonically decreasing, we can in this case
simply adopt tff,0 = 0.3 Myr and set Mgas to the total mass of the
ATLASGAL samples, and then use equation (54) to compute the
contribution to the Galactic SFR provided by those clumps that are
dense and massive enough to fall into the ATLASGAL catalogue.
This provides a lower limit on the total Galactic SFR.

Inserting the observed mass and free-fall time of the ATLASGAL
clumps, we therefore find that the GC and GCD models predict that
they should yield an SFR

SFR = 11 M	 yr−1

fGCD

( εff

0.01

)( τcoll

0.03

)−1
(

Mtot

107 M	

)(
tff

0.3 Myr−1

)
, (56)

where we have normalized to our best-fitting value of τ coll based
on observed stellar age distributions, and our numerical evaluation
assumes τ coll � 1. We can immediately see that there is a serious
problem with the star formation budget in the GC model: for the
best-fitting parameters arising from stellar age distributions and
YSO counts, the observed ATLASGAL clumps should form stars
at nearly five times the total SFR of the Galaxy as a whole. The
problem becomes even more severe if we recall that ATLASGAL
clumps are much denser than the mean density of observed star
clusters, and thus likely represent only a small subset of the total
star formation in the Galaxy, i.e. SFR � SFR(<tff).

The GCD model has the potential to perform better, since for it
fGCD < 1, i.e. the SFR is potentially lower due to the final dispersal
phase in this model. We can address this possibility both analytically
and numerically. Analytically, note that equations (30) and (55)
together imply that

fGCD ≥ (1 + η)ε∗, (57)

so that values of fGCD � 1 also imply values of ε∗ � 1, in which
case it is difficult to see how bound clusters could form. Indeed,
using equation (54), we have

SFR ≥ ξε∗ (1 + tcoll)

(
Mtot

tff,0

)
� 16.5ε∗ M	 yr−1, (58)

where in the numerical evaluation we have set ξ ≥ 1, since, as
noted above, when one uses the spherical equivalent density (as has
been done for the ATLASGAL sample), this inequality holds. Thus
the observed SFR of the Milky way is only consistent with a GCD
model in which ε∗ � 0.1, in which case we expect that almost none
of the ATLASGAL clumps could go on form a bound cluster. This

Figure 8. Histograms of predicted SFRs for the gas clumps in the ATLAS-
GAL catalogue, using the CBD, GC, and GCD models with parameters
constrained by fitting to the stellar age distribution in young clusters and
the number of YSOs per unit gas mass in the ATLASGAL sample. All
histograms have been normalized to have a maximum of unity for ease of
comparison. The vertical dashed line marks the total SFR of the Milky Way
(Chomiuk & Povich 2011); values to the left of this line, indicated by the
arrow, are consistent with the total Galactic SFR, while values to the right
of it are inconsistent.

seems problematic, since if ATLASGAL clumps cannot go on to
form bound clusters, it is unclear what structures can.

We can also use our MCMC analysis address the value of fGCD,
and whether it allows one to simultaneously match the ATLASGAL
and YSO count data. To do so, we proceed as follows. First, since
we have seen from Fig. 5 that ATLASGAL YSO counts essentially
constrain only εff, while age distributions constrain other variables
but not εff, we select from our MCMC chains for our fit to the stellar
age distribution all samples for which εff lies within the 16th to
84th percentile range allowed by our analysis of YSO counts.5 This
gives us a set of parameter values that are consistent with both sets
of observations. Secondly, for each sample we compute the quantity
fGCD[(1 + τ coll)/τ coll]εff (c.f. equation 54), and the corresponding
predicted value of the SFR for that set of parameters. The result is
a set of predicted SFRs for the ATLASGAL clumps, considering
only those parameter values that are also consistent with the data
on YSO clumps and age distributions.

We plot the distribution of predicted SFRs in Fig. 8. For
comparison, we also plot the corresponding distributions for the
GC model (which uses an identical procedure except that fGCD =
1 for all samples) and for the CBD model (for which we derive
the SFR from equation 43). As expected based on the arguments
above and on equations (43) and (56), the CBD model predicts that
ATLASGAL clumps form stars at a few tenths of a Solar mass per
year, consistent with all of the bound star formation in the Galaxy
occurring in them, and perhaps a small amount of unbound as well.
The GC model overproduces the SFR of the Galaxy by a factor of
∼10. The figure also shows that the GCD model does not do any
better than the GC model at matching the observed Galactic SFR;
the extra dispersal at the end, once we constrain the parameters that
describe it by the observed age distributions and YSO counts, does
not allow a significantly lower total SFR for GCD than for GC.

5We use the fits to NGC 6530 for this purpose, but the results for the ONC
are qualitatively the same. Similarly, using values of εff constrained to lie in
the 5th to 95th or the 1st to 99th percentile range also does not change the
qualitative result.
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640 M. R. Krumholz and C. F. McKee

There is a small tail of parameter space that allows the ATLASGAL
sample to have an SFR comparable to that of the entire Galaxy, but
even this solution is problematic, since these models are viable only
to the extent that one is willing to assume that star formation in
the Galaxy occurs exclusively in clumps as dense or denser than the
ONC, i.e. the lower density regions like Perseus, Taurus, Ophiuchus,
etc., make zero contribution to the Galactic SFR.

The fundamental problem for the GC and GCD models is
completely analogous to the one noted by Zuckerman & Evans
(1974) for CO-detected molecular clouds, and by Krumholz & Tan
(2007) for HCN-detected ones: the model assumes that order unity
of the mass in the ATLASGAL clumps will be converted to stars
on a time-scale comparable to the free-fall time, which yields an
SFR much higher than the one we actually observe in the Milky
Way. However, there as an important extra feature here, which is
not present in the earlier works. One can avoid the problem of
overproducing stars from the CO and HCN data by assuming a
very high-mass loading factor, either at all times (in GC) or at late
times (in GCD). However, we can now see that this solution is in
strong tension with the combined YSO counts and stellar age data.
The YSO counts require that the SFR per free-fall time stay nearly
constant, so the only way for star formation to accelerate, as required
by the observed age distributions, is for the total density in the star-
forming gas to rise. For the acceleration to be enough to match the
observations, this density increase must occur substantially faster
than the gas is depleted by star formation or feedback – in terms of
the parameters of our models, we require τ coll � 1. However, if the
density is increasing much faster than gas is removed by feedback,
this in turn implies a high total star formation efficiency. There is
no way to simultaneously satisfy the constraints of low SFR per
free-fall time in individual clumps and accelerating star formation
without also overproducing the total SFR of the Galaxy.

4 SU M M A RY A N D C O N C L U S I O N

In this paper we investigate a number of candidate scenarios for
the formation of bound star clusters, focusing on questions of how
the mass is assembled, how it evolves, and how efficiently it forms
stars. We do so taking advantage of two significant observational
advances over the past few years. The first is the availability of
spectroscopically estimated ages for a reasonably complete sample
of stars that can be assigned with high confidence to young clusters
using Gaia kinematics (Kounkel et al. 2018; Prisinzano et al.
2019). These data now show in multiple clusters that star formation
in clusters is an accelerating but extended process, i.e. the SFR
increases over time, but the total duration of star formation is several
free-fall times, so that ∼ 30–50 per cent of the stars in any given
cluster are more than three free-fall times old, and ∼ 5–10 per cent
are as old as ten free-fall times. Explaining this accelerating but
extended star formation history requires a model in which either the
total mass of gas available for star formation increases with time, the
efficiency of star formation at fixed gas mass and density increases
with time, or the mean density increases with time, leading to an
increase in the SFR – these scenarios roughly correspond to the
models of conveyor belt star formation, IE of star formation, and
global hierarchical collapse that have previously appeared in the
literature.

The second data set of which we make use is a large sample
of star-forming gas clumps from the ATLASGAL survey (Schuller
et al. 2009; Csengeri et al. 2014; Heyer et al. 2016). that are well-
matched to young star clusters in terms of mass and density, but
which are still very gas rich and thus likely represent a slightly earlier

evolutionary state. Such gas clumps show a very tight correlation
between the mass of gas, its mean density, and the number of
YSOs embedded within it, which together constrain the rate at
which the gas produces YSOs. We carry out a Bayesian forward-
modelling treatment of the observational uncertainties and possible
biases in these data set, including the effects of selecting only gas-
dominated systems and of changes in the gas properties on time-
scales shorter than the YSO lifetime, and we find that these factors
do not significantly alter the overall constraint on how efficiently gas
produces YSOs. The tight correlation of gas properties with YSO
counts rules out the possibility that the star formation efficiency
per free-fall time is time-dependent, ruling out models where the
observed acceleration of star formation is due to a time-dependent
increase in star formation efficiency per unit mass per unit free-fall
time.

We finally consider the global star formation budget of the
Milky Way, and show that the scenarios of global hierarchical
collapse and conveyor belt star formation predict that the observed
ATLASGAL clump population will yield very different total rates
of star formation in the Galaxy. The collapse scenario is only able
to recover the observed acceleration of star formation if clumps
collapse globally on a time-scale shorter than that on which they
initially form stars locally, since otherwise depletion of the gas by
star formation yields a star formation history that decelerates rather
than accelerating. However, the requirement for global collapse to
occur before a significant fraction of the mass can form stars in turn
requires that the ATLASGAL clumps produce stars at a rate that
exceeds the entire SFR of the Milky Way, let alone the substantially
lower rate at which bound star clusters form.

By contrast, the conveyor belt model, first proposed by Longmore
et al. (2014), encounters no such difficulties, because it attributes
the acceleration of star formation to the fact that gas clumps form
stars and accrete simultaneously, so that the gas mass available for
star formation tends to increase with time until the gas is dispersed
by feedback. We further find that accretion at a rate that varies
with time as Ṁacc ∝ t3, as generically predicted for the gravitational
collapse of mass reservoirs with fixed bounding pressure (Goldbaum
et al. 2011), produces a distribution of stellar ages consistent with
that observed in young clusters. We therefore conclude that the
best available explanation for all of the available observational
constraints is that bound star clusters form in a conveyor belt mode,
where gas accretes at an increasing rate, but the central cluster-
forming region is not in a state of global collapse, and has a star
formation efficiency per unit mass that is both low and roughly
constant in time.
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