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ABSTRACT
We describe a novel method for determining the demographics of a population of star clusters,
for example distributions of cluster mass and age, from unresolved photometry. This method
has a number of desirable properties: it fully exploits all the information available in a data set
without any binning, correctly accounts for both measurement error and sample incomplete-
ness, naturally handles heterogenous data (e.g. fields that have been imaged with different sets
of filters or to different depths), marginalizes over uncertain extinctions, and returns the full
posterior distributions of the parameters describing star cluster demographics. We demonstrate
the method using mock star cluster catalogues and show that our method is robust and accu-
rate, and that it can recover the demographics of star cluster populations significantly better
than traditional fitting methods. For realistic sample sizes, our method is sufficiently powerful
that its accuracy is ultimately limited by the accuracy of the underlying physical models for
stellar evolution and interstellar dust, rather than by statistical uncertainties. Our method is
implemented as part of the Stochastically Lighting Up Galaxies (SLUG) stellar populations
code, and is freely available.

Key words: methods: data analysis – methods: statistical – techniques: photometric –
galaxies: star clusters: general.

1 IN T RO D U C T I O N

Stars form in regions where the stellar density is vastly higher
than the mean for the galactic field. Over tens to hundreds of Myr
after their formation, stars disperse from these birthplaces, leaving
behind a small fraction of long-lived, gravitationally bound old star
clusters. This process of formation and dispersal encodes a great
deal of physics regarding the formation of stars, the expulsion of
gas from star-forming clouds, and the dynamical evolution of stellar
systems in a galactic potential. For recent reviews, see Krumholz
(2014), Krumholz et al. (2014), and Longmore et al. (2014).

Because of the physics it encodes, the distribution of star clus-
ter ages and masses has long been an important topic of study,
both observationally and theoretically. Theoretical models for clus-
ter dispersal have emphasized processes such as gas expulsion (e.g.
Baumgardt & Kroupa 2007; Parmentier et al. 2008; Krumholz &
Matzner 2009; Fall, Krumholz & Matzner 2010; Murray, Quataert &

� E-mail: mark.krumholz@gmail.com

Thompson 2010), tidal disruption of clusters after gas expulsion
(e.g. Lamers et al. 2005; Gieles, Lamers & Portegies Zwart 2007;
Kruijssen 2009, 2012; Kruijssen et al. 2012; Elmegreen & Hunter
2010), and two-body relaxation and evaporation over long time-
scales (e.g. Fall & Zhang 2001). These models predict a variety of
functional forms for the joint age and mass distribution of surviving
star clusters. Observational studies have attempted to measure these
quantities for star clusters in the Milky Way (Williams & McKee
1997; Lada & Lada 2003; Borissova et al. 2011), the Magellanic
Clouds (Hunter et al. 2003; Rafelski & Zaritsky 2005; Chandar,
Fall & Whitmore 2010; Popescu, Hanson & Elmegreen 2012), and
more distant systems (Zhang et al. 1999; Larsen 2002; Goddard,
Bastian & Kennicutt 2010; Chandar et al. 2010, 2011; Bastian et al.
2012; Fall & Chandar 2012; Fouesneau et al. 2012, 2014; de Meu-
lenaer et al. 2015; Krumholz et al. 2015a; Johnson et al. 2016, 2017;
Adamo et al. 2017; Messa et al. 2018), with the goal of testing the
predictions of these models.

Because it is not at present possible to resolve the individual stars
in young star clusters beyond the Milky Way and its few nearest
neighbours, observational studies that go beyond samples of a few
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galaxies are generally restricted to working with unresolved light,
where the raw data consist of measurements of luminosities in
some set of filters for each star cluster. Consequently, there is an
urgent need for robust statistical techniques to derive the physical
properties of star cluster populations from such integrated light data;
the method we introduce below is intended for this type of analysis.

The traditional approach for analysing these data is to assign an
age and mass to each cluster by comparing their unresolved lumi-
nosities and colours to a set of evolutionary tracks for simple stellar
populations, with the best-fitting mass and age determined by χ2

minimization or a similar procedure. Once the masses and ages are
determined, the clusters are placed in mass and age bins, and the dis-
tribution in the population as a whole can, in principle, be measured.
However, such an approach encounters several difficulties. First,
the process of binning inevitably discards some of the information
present in the original data, and fitting parameters to binned dis-
tributions can introduce severe biases (e.g. Maschberger & Kroupa
2009). Second, at low masses, and for certain age and colour com-
binations even at higher masses, the assignment of mass and age to
an individual cluster is highly uncertain, and the errors in the as-
signments are not well approximated by simple Gaussians. Instead,
the posterior probability distribution function (PDF) of mass and
age can have a complex, multipeaked shape (Popescu & Hanson
2009, 2010a,b; Fouesneau et al. 2014; de Meulenaer et al. 2015;
Krumholz et al. 2015a). A single best-fitting mass and age may
be a very poor representation of the PDF for a single cluster, but
the process of assigning a cluster to a single bin ignores this com-
plexity. Third and most seriously, determining the properties of the
population as a whole requires considering the completeness of the
observed sample. Variations in whether and how one takes com-
pleteness into account can lead to quite different inferences in the
final physical distributions (e.g. Lamers 2009). Part of the reason for
this sensitivity is that completeness is a function of the luminosity
and surface brightness profile of the cluster, the background, and
the level of crowding in the image, leading to a completeness that
has a complex functional form in mass–age–extinction space.

The simplest approach to handling the problem of completeness
is to be extremely conservative, and discard all data in regions of
parameter space where the observations are not complete or nearly
so. However, this invariably requires one to discard much of the
available data. A somewhat more sophisticated approach is for-
ward modelling: rather than deriving the mass and age distribution
of the population from estimates of mass age for individual clus-
ters, one could instead consider a proposed distribution of masses
and ages, predict the resulting photometry distribution including
the effects of incompleteness, and adjust parameters of the mass
and age distribution until they match the observations. Approaches
of this type are widely used in astronomy, for example to infer
star formation histories or stellar mass distributions from observed
colour–magnitude diagrams (CMDs; e.g. Dolphin 2002; Harris &
Zaritsky 2009; Weisz et al. 2013; Conroy & van Dokkum 2016; see
Cerviño 2013 for a review). However, methods of this type have not
previously been applied to deriving the properties of populations of
star clusters, at least in part due a unique challenge not present in
other applications. In existing applications such as CMD fitting, the
forward model is deterministic, i.e. for a given stellar mass, age,
and other properties, there is a single predicted colour and magni-
tude. This is not the case for star clusters with masses � 3000 M�,
because such clusters are too small to fully sample the stellar initial
mass function (IMF, e.g. Cerviño & Luridiana 2004, 2006; da Silva,
Fumagalli & Krumholz 2012). As a result, two clusters of the same
total mass and age can produce wildly different luminosities and

colours. This means that the forward model is not deterministic,
but instead depends on an additional random variable that couples
non-linearly with the deterministic variables like cluster mass and
age. This situation presents computational challenges that are not
addressed by existing methods.

In this paper, we introduce a new approach for determining the
distribution of the properties of star clusters from unresolved pho-
tometry that allows us to consider arbitrary functional forms for
distributions of mass, age, and extinction, and to exploit all the
information available in heterogenous data (i.e. data where not all
fields are observed with the same filters or to the same depth). Cru-
cially, it naturally accounts for both incomplete observations and
the uncertainties in the assignment of masses and ages to individual
clusters that arise when the mapping between physical properties
and luminosity is non-deterministic due to finite sampling. The
essence of our approach is to consider a proposed distribution of
physical parameters, determine the corresponding luminosity dis-
tribution in a probabilistic way so that we preserve the non-unique
mapping between physical properties and photometry, apply the
completeness function in observed luminosity space, and then com-
pare to the data. We then adjust the underlying physical distribution
until the best match to the observations is found. We implement this
method using fast numerical algorithms that enable us to identify
the parameters describing a cluster distribution on a workstation-
level computer in ∼10 h of computing time. The software is based
on the Stochastically Lighting Up Galaxies (SLUG) software suite
(da Silva et al. 2012; da Silva, Fumagalli & Krumholz 2014;
Krumholz et al. 2015b), and is freely available from the SLUG web-
site, http://www.slugsps.com/cluster-population-pipeline.

The plan for the remainder of this paper is as follows. In Section 2,
we describe our new method and the computational techniques we
use to implement it. In Section 3, we test the method on mock
data to verify its accuracy and demonstrate its capabilities, and in
Section 4, we compare the performance of our new method to more
conventional approaches. We summarize our findings in Section 5.

2 M E T H O D

2.1 Statement of the problem

Our goal is to infer the mass and age distribution of a popula-
tion of star clusters in a galaxy for which we have a sample of
star clusters observed in some set of photometric bands; we must
include extinction as an additional nuisance parameter, which we
will marginalize over. The method we develop to achieve this goal
generalizes and extends the one proposed by Weisz et al. (2013)
for inferring the IMF of a resolved population of individual stars.
Formally, let g(M,T , AV | θ ) be the joint distribution of mass, age,
and visual extinction for the underlying population, which depends
on a vector of parameters θ .1 For example, if we were to assume
that the mass, age, and AV distributions are separable power laws,
then θ would contain the minimum, maximum, and slope of each
power law. We wish to infer a posterior distribution for θ . Since the
true size of the cluster population is not known a priori, and our

1Metallicity is another potential physical parameter, but for simplicity, we
will assume that the cluster-to-cluster variation in metallicity is small enough
that its effects can be neglected. This assumption is particularly likely to be
valid for optical data, since metallicity has relatively little effect on optical
bands, and mostly affect near-infrared colours (Anders et al. 2004). The
generalization to include metallicity as a parameter is straightforward.
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observations are inevitably incomplete at the low-luminosity end of
the distribution, we must also treat the number of clusters present
Nc as a parameter of the model, although we will see below that it
is more convenient to transform to a different variable.

The data from which we will make this inference consist of a set
of Nobs observed star clusters, and for the ith star cluster we observe
its absolute magnitude or luminosity LF, i in NF different photometric
filters F, measured with some photometric error σ F, i, which we take
to be known and Gaussian-distributed. For notational compactness,
let Li and σ i be the luminosities / absolute magnitudes and the
corresponding errors for the ith cluster in all NF filters, and {Li} and
{σ i} be the set of all such observed luminosities and uncertainties
for all clusters in every filter.

Finally, let us assume that each of our observations has a known
completeness function described by Pobs,i(L′). This function is the
probability that a cluster of intrinsic luminosity L′, observed in the
same manner as observed cluster i (i.e. with the same integration
time and set of filters, in a field at the same distance) will be included
in the sample.2 Note that L′ is distinct from the quantity L intro-
duced in the previous paragraph: the former is the true luminosity
of a cluster, while the latter is the measured luminosity, which is
slightly different due to observational error. A simple magnitude
limit corresponds to Pobs,i(L′) being a step function. In practice,
this function must be determined by artificial cluster tests or the
like. Note that we explicitly allow for the possibility that different
sets of observations may have different completeness limits, for
example if we are combining data from two different galaxies at
different distances, or from two fields within the same galaxy that
were observed to different depths.

2.2 Posterior probability for a cluster population

As usual in a Bayesian approach, we write the posterior probability
distribution of the model parameters (θ, Nc) gives the data as the
product of the prior probabilities with the likelihood function, i.e.3

p(θ, Nc | {Li}, {σ i}, Nobs)

∝ p({Li}, Nobs | θ , Nc, {σ i}) pprior(θ , Nc). (1)

We remind readers that, in this equation θ is the vector of param-
eters describing the distribution of star cluster properties, Nc is the
true number of clusters in the observed region, {Li} and {σ i} are the
vector of observed cluster luminosities or magnitudes and their cor-
responding uncertainties, and Nobs is the number of observed clus-
ters. The likelihood function p({Li}, Nobs | θ , Nc, {σ i}) is simply
the probability density of the data give the model and the observa-
tional errors, while pprior(θ , Nc) is the prior probability distribution
for the parameters θ and Nc, and p(θ, Nc | {Li}, {σ i}, Nobs) is the
posterior PDF that we are attempting to compute. To evaluate it,
we assume that the observed luminosity of each cluster represents
an independent draw from an underlying distribution of star cluster
luminosities, pL(L | θ, σ ); note that L here is the observed lumi-
nosity, not the intrinsic one, and because the uncertainties σ are not

2Here and throughout, we use lowercase p to denote PDFs, and uppercase
P to denote simple, dimensionless probabilities.
3A note on notation, since all probability distributions can be properly nor-
malized by requiring that their integrals be unity, in what follows we usually
omit normalization constants and write out all dependencies as proportion-
alities. The only exceptions are cases where we retain the normalization
constant for clarity.

the same from one measurement to another, the luminosity distri-
butions for each cluster are not identical. We defer a calculation of
pL(L | θ , σ ) to the next section.

We assume that both the intrinsic luminosities of clusters and
the observational errors on them are uncorrelated.4 Under this as-
sumption, and since the number of observed clusters Nobs is also an
independent variable, we can write the likelihood function for the
cluster population as a product of the probability distributions for
individual clusters and for Nobs,

p({Li}, Nobs | θ , Nc, {σ i})

∝ PN(Nobs | θ , Nc)
Nobs∏
i=1

pL(Li | θ , σ i). (2)

Here PN(Nobs | θ , Nc) is the probability that we will observe Nobs

clusters from a population of Nc whose intrinsic luminosity distri-
bution is parametrized by θ .

To determine PN(Nobs | θ , Nc), first consider the simplest case
where the observed clusters all come from a single field imaged with
a single set of filters and uniform sensitivity across it. In this case,
there is a single completeness function Pobs(L′), and for a cluster
population with a distribution of intrinsic luminosities pL′ (L′ | θ ),
for any set of population parameters θ there is a single probability

Pobs(θ ) =
∫

Pobs(L′) pL′ (L′ | θ ) dL′ (3)

that a randomly selected cluster will be observed. In this case,
the number of clusters we expect to observe is Nex = Pobs(θ )Nc,
and since each observation of one of the Nc clusters present is
an independent experiment, the actual number observed must be
Poisson-distributed:

PN(Nobs | Nex) = NNobs
ex e−Nex

Nobs!
. (4)

In this expression, we have suppressed the dependence of Nex on θ

for the sake of compactness.
Now consider the more general case where we have multiple

fields with different sensitivities and filter sets, and thus different
completeness functions. For each such observation j, there will be
some number of clusters Nex, j that one would expect to detect, which
is a function of both the true number of clusters in the observed field
and the observational completeness function for it. The number of
clusters Nobs, j that is actually observed in each field will then be
Poisson-distributed per equation (4), and the total number of clusters
expected in the full catalogue of all fields is just Nex = ∑

jNex, j.
However, the sum of a number of random variables that are each
drawn from a Poisson distribution is itself Poisson-distributed. Thus,
PN(Nobs | θ , Nc) must be distributed following equation (4) even for
heterogenous observations.

Because PN(Nobs | θ , Nc) depends only on Nex, it is convenient
to eliminate Nc in favour Nex as the variable for which we will seek
a posterior PDF. That is, rather than trying to compute p(θ, Nc |

4The assumption of uncorrelated noise may not be strictly true in a real
observation, since the dominant uncertainty in real observations is usually
the aperture correction. This may lead to errors that depend on the level
of crowding or background, and thus are correlated with respect to the
locations of clusters within the target galaxy. However, this would represent
a correlation of error with cluster position. As long as there is no correlation
of the error with cluster physical properties, this does not matter for our
purposes.

MNRAS 482, 3550–3566 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/482/3/3550/5145865 by The Australian N
ational U

niversity user on 07 D
ecem

ber 2018



SLUG IV: forward-modelling star cluster demographics 3553

{Li}, {σ i}, Nobs), we will instead compute

p(θ, Nex | {Li}, {σ i}, Nobs)

∝ PN(Nobs | Nex)
Nobs∏
i=1

pL(Li | θ , σ i). (5)

We have therefore written the likelihood function for our observed
cluster population in terms of the luminosity distribution for a single
cluster and the expected number of observed clusters, with the
dependence on Nex separable from that on θ . Of course, once one
has determined the posterior distributions of θ and Nex, one could use
these to obtain the posterior distribution of Nc. In practice, however,
this is unlikely to be interesting, for the following reason: star cluster
mass functions are invariably observed to be steep, such that by
number most clusters have low masses. Thus, the value of Nc will
depend strongly on the shape of the mass function at low masses.
Since real extragalactic observations invariably become incomplete
at masses significantly larger than the smallest possible star cluster
mass, any parameters we introduced to describe the shape of the
lower part of the mass function (e.g. a lower mass cut-off), will not
be constrained by the observations, and since Nc depends critically
upon them, it will be unconstrained by the observations as well.

2.3 The distribution of observed luminosities for individual
clusters

The final step in our derivation is to compute the distribution of
observed luminosities for an individual cluster, pL(L | θ , σ ), where
we remind readers that L is the vector of observed luminosities,
which are the result of taking the true luminosity L′ and measuring
it with some finite error σ . To do so, we assume that there is a
distribution of intrinsic cluster luminosities L′ that is identical for
every cluster, and that depends only the model parameters: pL′ (L′ |
θ ). We can then obtain the observed luminosity distribution by
marginalizing over the intrinsic luminosity of each cluster:

pL(L | θ , σ )

∝
∫

pL′ (L′ | θ ) p(L | L′, σ ) Pobs(L′) dL′, (6)

where p(L | L′, σ ) is the probability that a cluster of intrinsic lu-
minosity L′ will yield an observed luminosity L when measured
with uncertainty σ . Under our assumption that the observational
uncertainties are Gaussian, this is

p(L | L′, σ ) = (2π)−NF/2∏NF
n=1 σn

exp

[
−

NF∑
n=1

(
Ln − L′

n

)2

2σ 2
n

]

≡ N(L | L′, σ ), (7)

where the sum runs over all NF filters, and we have introduced
the notation N(x | x0, σ ) to represent the usual multidimensional
normal distribution centred on x0 with standard deviation σ and no
covariance, evaluated at position x.

We estimate the intrinsic luminosity distribution convolved with
the probability of being observed using the method described
by Krumholz et al. (2015b), and implemented in the clus-
ter slug module in the SLUG software package. Specifically,
given a library of simulated clusters, where cluster j has a mass
Mj, age Tj, extinction AV, j, and a vector of luminosities L′

j, we
write the intrinsic luminosity distribution using a kernel density

estimation model,

pL′ (L′ | θ ) Pobs(L′) ∝
Nlib∑
j=1

wj(θ)N(L′ | L′
j, h). (8)

Here, the sum runs over all Nlib clusters in the simulation library, h
is the bandwidth of the kernel density estimation, and the weights
wj are given by

wj(θ ) = Pobs(L′
j)

g(Mj, Tj, AV,j | θ )

plib(Mj, Tj, AV,j)
, (9)

where g(M,T , AV | θ ) is the proposed distribution of mass, age,
and extinction, and plib(M, T, AV) is the distribution from which the
library was sampled.

For the purposes of developing intuition, it is helpful to examine
the weight factors wj(θ ) factors in a bit more detail. The meaning of
the first term, Pobs(L′

j), is simple: it simply downweights the contri-
bution of each library cluster to the observed luminosity distribution
by the probability that will actually be observed. The factor plib(M,
T, AV) in the denominator of equation (9) simply represents the
frequency with which we drew a particular combination of (M, T,
AV) in the process of constructing the library; that is, the number of
sample library clusters that fall into a particular infinitesimal range
in mass, age, and extinction is just proportional to plib(M, T, AV). By
contrast, g(M,T , AV | θ) is the number of sampled points that we
would have had in that bin if our library had been drawn from the
distribution described by the parameters θ . Thus, the ratio of these
two terms, to which wj(θ ) is proportional, simply represents the ratio
of the number of clusters we should have for a particular set of pa-
rameters θ to the number we actually used when we constructed our
library. For example, if g(M,T , AV | θ ) = (1/2)plib(M,T , AV) at
some particular point (M, T, AV), this means that our library has
twice as many clusters in that neighbourhood as it should give the
value of θ , and thus when attempting to compute the luminosity
distribution pL′ (L′ | θ ), we should only count our library samples
as half a cluster each, wj(θ ) = 1/2. Note that our procedure imposes
a restriction on plib(M, T, AV): it must be non-zero at any point in
(M, T, AV)-space where g(M,T , AV | θ ) is non-zero for any set of
parameters θ , i.e. the support of the library must encompass the
support of all candidate distributions describing the population. If
this condition is not satisfied, then wj(θ ) diverges.

We now evaluate equation (6) using equation (7) for p(L | L′, σ )
and equation (8) for pL′ (L′ | θ ) Pobs(L′). This gives

pL(L | θ , σ )

∝
∫ Nlib∑

j=1

wj(θ)N(L′ | L′
j, h)N(L | L′, σ ) dL′

∝
Nlib∑
j=1

wj(θ )
∫

N(L′ | L′
j, h)N(L | L′, σ ) dL′

= A(θ)
Nlib∑
j=1

wj(θ )N(L | L′
j, h′), (10)

where h′ = √
h2 + σ 2, with the sum is computed elementwise. In

the second step, we use the linearity of the integration operator
to exchange the sum and the integral and take the weights wj(θ )
out of the integral because they do not depend on L′; in the final
step, we make use of the standard result for the integral of the
product of normal distributions. The quantity A(θ ) that we have
added to the final line is a normalization constant chosen to ensure

MNRAS 482, 3550–3566 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/482/3/3550/5145865 by The Australian N
ational U

niversity user on 07 D
ecem

ber 2018



3554 M. R. Krumholz et al.

that
∫

pL(L | θ , σ ) dL = 1, and is given by

A(θ ) =
⎡
⎣ Nlib∑

j=1

wj(θ )

⎤
⎦

−1

. (11)

Inserting this into equation (2) gives the complete specification
of the likelihood function,

p({Li}, Nobs | θ, Nex, {σ i}) ∝ PN(Nobs | Nex)

A(θ )Nobs

Nobs∏
i=1

⎡
⎣ Nlib∑

j=1

wj(θ )N(Li | Lj, h′)

⎤
⎦ , (12)

where PN(Nobs‖Nex) is a Poisson distribution with expectation value
Nex. As noted above, since in practice we cannot constrain Nex

from observations, we can regard it as a nuisance parameter to
be marginalized over. The remaining problem of determining the
best-fitting parameters θ , and exploring the shape of the posterior
probability distribution in the vicinity of this maximum in order to
determine uncertainties, can then be solved using any number of
methods. Our implementation uses the EMCEE package (Foreman-
Mackey et al. 2013), a Markov Chain Monte Carlo (MCMC) algo-
rithm.

Numerical evaluation of equation (12) requires some care, be-
cause the right-hand side involves a very large number of terms.
A typical catalogue might contain several thousand observed clus-
ters, and the SLUG libraries we use contain 107 sample clusters;
thus equation (12) involves 1010–1011 terms. Since any method of
finding the maximum likelihood invariably involves evaluating the
likelihood function hundreds of thousands of times, brute force
evaluation of equation (12) is impractically slow. We can avoid this
problem by noting that the normal distribution N(Li − Lj | h′) is
negligibly small for most combinations of Li and Lj, because for a
the great majority of clusters in the library |(Li − Lj)2/2h′2| 
 1.
That is, only a tiny fraction of Lj values are near any given Li, and
these nearby clusters completely dominate the inner sum in equa-
tion (12). In Appendix A, we describe an algorithm that exploits this
fact to evaluate the sum in order ln Nlib rather than order Nlib time.
Combined with openMP parallelization over the outer product, this
algorithm enables us to evaluate equation (12) for each value of θ

and five-filter photometry in a roughly 1 s on a workstation, making
MCMC optimization of the fit parameters practical.

3 MO C K C ATA L O G U E T E S T S

3.1 Generation of mock catalogues

To demonstrate the capabilities of our new method, we carry out a
series of tests on mock data. We generate mock star cluster data sets
by running SLUG to draw a certain number of clusters from speci-
fied mass, age, and extinction distributions, and for each cluster to
calculate the photometric magnitude in the Hubble Space Telescope
(HST) WFC3 filters F275W, F336W, F438W, F555W, and F814W;
for shorthand below, we refer to these filters as UV, U, B, V, and
I. Although our method can handle heterogenous data without dif-
ficulty, for simplicity in this demonstration of it, we assume that
all fields are images in these same five filters. For all the tests pre-
sented in this section, unless otherwise noted, we adopt a Chabrier
(2005) IMF for the stars, we compute stellar evolution using the
MESA Isochrones and Stellar Tracks (MIST) version 1.0 tracks for
stars born rotating at 40 per cent of breakup (Dotter 2016; Choi

et al. 2016),5 and using SLUG’s default option (‘sb99’) for stellar
atmospheres (Leitherer et al. 1999; Vázquez & Leitherer 2005). We
include extinction with an extinction law given by SLUG’s Milky
Way extinction curve, and nebular emission using SLUG’s default
treatment, with a ratio of nebular to stellar extinction drawn from
a Gaussian distribution with a mean of 2.1 and a dispersion of 0.5,
based on the empirically determined distribution found by Kreckel
et al. (2013). All tests use Solar metallicity, and all assume a con-
stant star formation rate of Ṁ∗ = 1 M� yr−1, with star formation at
this rate having begun a time Tsf in the past, and continuing to the
present. For simplicity, and because extinction is a nuisance param-
eter, we assume that all catalogues have an extinction distribution
of the form

p(AV) ∝ exp

(
− A2

V

2σ 2
AV

)
(13)

with σAV = 0.5 mag, and AV restricted to be >0.

3.1.1 Mass and age distributions

The different mock data sets differ only in their assumed distribu-
tions of mass and age. We consider a population of clusters born
with a mass distribution

p(Mi) ∝ MαM
i exp

(
− Mi

Mbreak

)
(14)

above some minimum mass Mmin. The corresponding expectation
value for the cluster mass is

〈Mi〉 = Mbreak
� (2 + αM, Mmin/Mbreak)

� (1 + αM, Mmin/Mbreak)
, (15)

where �(a, z) is the incomplete � function. Assuming that a fraction
fc of stars are born in star clusters, the total number of clusters formed
is

Nform = fcTsf
Ṁ∗
〈Mi〉 . (16)

For the age distributions, we consider two possibilities that have
been advocated in the literature. Some authors (e.g. Fall & Chandar
2012; Chandar, Fall & Whitmore 2015; Chandar et al. 2017) argue
for mass-independent (mid) cluster disruption, whereby the proba-
bility that a given cluster survives to a particular time is independent
of its mass, at least for ages below a few Gyr. In this formulation,
the probability that a cluster survives to age T is described by a
power law,

ps,mid =
{

1, T < Tmid

(T /Tmid)αT , T > Tmid
(17)

for αT ≤ 0. In this case the corresponding joint distribution of cluster
mass and age is

d2N

dM dT
∝ MαM exp

(
− M

Mbreak

)
max (T , Tmid)αT , (18)

so that at ages T > Tmid, we have the usual power-law age distribution
dN/dT ∼ T αT usually adopted in mid-models. We require that this
distribution only apply at ages T > Tmid, and be flat at younger ages,

5The MIST models make use of the MESA stellar evolution code (Paxton
et al. 2011, 2013, 2015).
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SLUG IV: forward-modelling star cluster demographics 3555

because otherwise the distribution would diverge as T → 0.6 For
this distribution, the fraction of clusters formed that have survived
to the present day, assuming Tsf ≥ Tmid, is

fs,mid =
{

(1 + ln χ ) /χ, αT = −1
(1/χαT − αT /χ )/(1 − αT ), αT �= −1

, (19)

where χ = Tsf/Tmid is the number of disruption times for which star
formation has been ongoing.

The other possibility is that star clusters undergo mass-dependent
disruption (mdd), as proposed for example by Lamers et al. (2005)
and Gieles (2009). In this model, clusters lose mass at a rate that
varies as a power law with their current mass, dM/dT ∝ Mγmdd

with 0 ≤ γ mdd ≤ 1, so that at age T a cluster born with mass Mi will
have a mass

M = Mi

[
1 − γmdd

(
Mmin

Mi

)γmdd T

Tmdd,min

]1/γmdd

. (20)

If the second term in square brackets is >1, then the cluster is
considered to have disrupted completely. Here Tmdd, min is the time-
scale over which a cluster of initial mass Mmin loses all its mass and
disappears.7 In this case, the distribution of present-day masses and
ages is

d2N

dM dT
∝ d2N

dMi dT

dM

dMi
(21)

∝ MαM ηαM+1−γmdd exp

(
−η

M

Mbreak

)
(22)

where

η(M,T ) ≡
[

1 + γmdd

(
Mmin

M

)γmdd T

Tmdd,min

]1/γmdd

(23)

is the ratio of the initial mass to the present mass for a clus-
ter of present-day mass M and age T. Since a cluster born of
age T must have been formed with a mass larger than Ms,min =
Mmin(γmddT /Tmdd,min)1/γmdd to have survived, the fraction of clus-
ters of age T that have survived mdd is

fs,mdd(T ) =
∫ ∞

max(Ms,min(T ),Mmin) M
αM e− M

Mbreak dM∫ ∞
Mmin

MαM e− M
Mbreak dM

(24)

=
�
(

1 + αM,
max(Ms,min(T ),Mmin)

Mbreak

)
�
(

1 + αM, Mmin
Mbreak

) . (25)

6Physically, the assumption that the age distribution is flat below some
minimum age Tmid is expected on dynamical grounds. Even if there is a
disruption mechanism that unbinds clusters on time-scales below Tmid, there
is no way to determine from photometry that stars have become unbound
until they begin to disperse, and they cannot disperse on time-scales less
than a cluster crossing time. Thus, regardless of the nature of any physical
disruption mechanism, the observed cluster age distribution must match the
star formation rate distribution (i.e. must be independent of age) at times
less than the typical cluster crossing time.
7Note that the conventional choice for mdd models is to normalize to the
disruption time for a cluster of initial mass 104 M�, denoted t4, or an initial
mass of 1 M�, denoted t0. We have instead chosen to normalize at Mmin

instead, simply to avoid introducing an extra parameter. Since the disruption
time is simply a power law in the mass, our Tmdd, min parameter is related
to the more usual t4 or t0 trivially: Tmdd,min = t4(Mmin/104 M�)γmdd , and
similarly for t0.

Averaged over all ages, the total fraction of surviving clusters is

fs,mdd = 1

Tsf

∫ Tsf

0
fs,mdd(T ) dT . (26)

The integral cannot be evaluated in closed form, but is trivial to
evaluate numerically for any specified set of parameters.

3.1.2 Mock catalogues

Our joint mass–age distribution is fully characterized by a choice
to use mdd or mid, and by six parameters: Mmin, Tsf, αM, Mbreak,
and either αT and Tmid (for mid-models) or γ mdd and Tmdd, min (for
mdd models). The parameters Mmin and Tsf cannot generally be de-
termined from observations of the type we are considering because
clusters near the minimum mass or maximum age are invariably too
dim to observe; they enter the problem only by changing the total
number of clusters in the catalogue. Since this effect is degenerate
with changes to the value of fc (the fraction of stars formed in clus-
ters) or Ṁ∗ (the total star formation rate), we simply set Mmin = 100
M� and Tsf = 10 Gyr for all catalogues, and do not explore varia-
tions in these parameters further. For the remaining parameters, we
consider three mock catalogues, whose parameters are summarized
in Table 1 that illustrate different possible combinations of them.
We tune our parameters so that each catalogue produces a compara-
bly sized sample of observable clusters, with the size chosen to be
about the size of the catalogue for NGC 628 presented by Adamo
et al. (2017), which contains approximately 3700 clusters (though
not all are visually confirmed). The cases are:

(i) Powerlaw: this case uses a mock catalogue with clusters
drawn from a distribution similar to that proposed by, e.g. Fall &
Chandar (2012), and Chandar et al. (2015, 2017), whereby the mass
function is a pure powerlaw whose upper limit set only by size of
sample effects, and disruption is mass independent. Specifically, we
adopt for this catalogue αM = −2, αT = −1, Mbreak = 106.5 M�,
and Tmid = 106.5 yr. Note that for this choice of Mbreak, the expected
number of clusters that form with M > Mbreak is �1, so the mass
distribution is effectively a pure power law truncated only by finite
sample size. Also adopting fc = 1 for this case, the expected number
of clusters surviving to the present day is

N = Nformfs,mid = 2.93 × 104. (27)

We therefore draw this number clusters for the mock catalogue.
(ii) Truncated: this case is similar to the results obtained by

Fouesneau et al. (2014) and Johnson et al. (2017) for Andromeda.
Disruption is mass-independent, but no disruption occurs until ages
above 100 Myr, i.e. Tmid = 108 yr. The mass function is truncated
at a lower mass, Mbreak = 105 M�. Finally, only 10 per cent of stars
form in clusters, so fc = 0.1. All other parameters are the same as for
Powerlaw. For this distribution, the mean cluster mass is 〈M〉 =
638 M� and the number of surviving clusters is N = 8.78 × 104.

(iii) Mass-dependent disruption (MDD): this cata-
logue uses parameters chosen to be similar to those obtained by
Adamo et al. (2017). For this case we use mdd, with γ mdd = 0.65
and Tmdd, min = 9.5 Myr.8 The mass distribution at birth is the same
as for Truncated, i.e. αM = −2 and Mbreak = 105 M�. We take
fc = 0.3 in this case, so the total number of clustered formed is
Nform = 4.71 × 106. Using equation (26), the fraction of clusters

8Note that Tmdd, min = 9.5 Myr is equivalent to Adamo et al.’s parameter
t4 = 190 Myr.
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3556 M. R. Krumholz et al.

Table 1. Parameters of mock catalogues, and results of fits to these parameters using SLUG. The first row lists the number of observed clusters in each mock
catalogue. The second row specifies whether the catalogue was generated using mid or mdd, and the values w(mid) and w(mdd) that we report are the Akaike
weights of the mid and mdd models as determined from our MCMC fits; see the main text for details. For all other parameters, we give the true value used in
generating the catalogue, and we list fit values in the form (q50)+(q84−q50)

−(q50−q16) where qN is the Nth percentile estimate for q. Thus, the value reported is the 50th
percentile, and the + and − error range indicates the range from the 16th to the 84th percentile. While we calculate fit parameters for both mid and mdd models
for each mock catalogue, in the table above we report the fits only for whichever of the two models has the higher Akaike weight.

Parameter Powerlaw Truncated MDD DoubleErr LibMismatch CompMismatch

Nobs 5629 5167 5479 5255 5088 5093
mid / mdd True mid mid mdd mid mid mid

w(mid) 1.0 1.0 <10−10 1.0 1.0 1.0
w(mdd) <10−10 <10−10 1.0 <10−10 <10−10 <10−10

αM True −2 −2 −2 −2 −2 −2
Fit −2.00+0.018

−0.021 −2.01+0.028
−0.033 −2.05+0.019

−0.039 −2.00+0.019
−0.021 −1.91+0.030

−0.033 −1.97+0.020
−0.023

log (Mbreak/M�) True 6.5 5.0 5.0 5.0 5.0 5.0
Fit 6.36+0.51

−0.39 4.90+0.17
−0.12 5.20+0.16

−0.09 4.90+0.10
−0.08 4.76+0.10

−0.08 4.96+0.11
−0.11

αT True −1 −1 – −1 −1 −1
Fit −1.02+0.021

−0.022 −1.01+0.071
−0.056 – −0.97+0.040

−0.038 −0.95+0.040
−0.035 −1.04+0.042

−0.040
log (Tmid/yr) True 6.5 8.0 – 8.0 8.0 8.0

Fit 6.49+0.029
−0.031 8.00+0.047

−0.050 – 7.96+0.031
−0.030 7.90+0.042

−0.041 7.97+0.035
−0.032

γ mdd True – – 0.65 – – –
Fit – – 0.61+0.030

−0.036 – – –
log (Tmdd, min/yr) True – – 6.98 – – –

Fit – – 7.05+0.134
−0.049 – – –

that survive mdd is fs, mdd = 0.00370, so the expected number of
clusters at the present day is N = 1.74 × 104.

(iv) DoubleErr: this catalogue is identical to Truncated,
except that the assumed photometric errors added to the true cluster
luminosities are twice as large – see below. Its purpose is to test
how our results depend on the size of the photometric error.

(v) LibMismatch: this catalogue is identical to Truncated
in its parameters, but instead of generating the mock catalogue
using MIST models for stellar evolution and a Milky Way extinction
curve, we generate them using SLUG’s Padova tracks (Girardi et al.
2000) and starburst attenuation curve. The goal of this catalogue is
to test the robustness of our method in a case where the models for
stellar evolution and dust are not a perfect match to the underlying
data.

(vi) CompMismatch: this catalogue is identical to Trun-
cated in its parameters, but uses a different completeness function
(see below). The goal of this catalogue is to test how our method
behaves when our estimated completeness function is not exactly
correct.

3.1.3 Completeness and photometric error

To test the effects of observational completeness and photometric
error, and show how our method copes with them, we next add noise
to our mock catalogues, and apply completeness cuts to them. We set
the photometric noise level for all catalogues except DoubleErr
to 0.1 mag in all bands,9 based on typical levels of photometric
accuracy in recent large surveys such as Legacy Extragalactic UV
Survey (LEGUS) (Adamo et al. 2017). To test the sensitivity of our
results to the noise level, for DoubleErr we set the noise level
to 0.2 mag instead, comparable to the poorest levels of accuracy
in LEGUS. For either noise level, we generate the observed mag-
nitudes of all clusters by taking the true magnitudes in each band

9Here and throughout we use Vega magnitudes.

calculated by SLUG and adding a random offset drawn from a Gaus-
sian distribution with a dispersion 0.1 or 0.2 mag, as appropriate for
that catalogue.

We next apply a completeness cut, using a completeness function
comparable to that obtained by Adamo et al. (2017) for the galaxy
NGC 628 based on their mock cluster tests. Specifically, for all the
catalogues except CompMistmatch, we take the probability that
a given cluster makes it into the catalogue to be 100 per cent for V
≤ −5 mag, 0 for V ≥ −4 mag, and linearly varying between these
two limits for −5 mag < V < −4 mag, i.e. Pobs = −V − 4 mag.
For CompMismatch, we instead use a completeness function that
is 100 per cent for V ≤ −4.75 mag, 0 for V ≥ −4 mag, and varies
in between these two limits as Pobs = [(− V − 4)/0.75]2. For each
cluster, we assign a flag of ‘observed’ or ‘not observed’ based on
the V magnitude; for clusters in the partially complete range, we
randomly assign them one flag or the other with probability Pobs(V).
This process yields a list of ≈5000 observed clusters for of our mock
catalogues; the exact number in each case is given in Table 1.

As an example of the effects of noise and the completeness cut,
Fig. 1 shows the true distribution of cluster physical properties in
the Powerlaw catalogue, and the corresponding distribution for
those clusters flagged as observed. Figs 2 and 3 show the corre-
sponding observed CMD and colour–colour diagram. As the plots
shows, observational completeness truncates both the mass and age
distributions, and does so in a way that is correlated – clusters are
more likely to remain in the catalogue if they are either young or
massive, and are mostly removed if they are old and low mass.
However, the cut-off imposed by observational limits is not sharp in
either mass or age due to the effects of stochastic sampling, varying
extinction, and partial completeness. For example, for a fully sam-
pled (i.e. non-stochastic), unextincted stellar population with a mass
of 300 M�, the ages corresponding to 100 per cent, 50 per cent, and
0 per cent completeness (V = −5, −4.5, and −4 mag, respectively)
are 12.0, 19.1, and 53.7 Myr, respectively. However, in our Pow-
erlaw mock catalogue, we find that there are 13 observed clusters
with mass <300 M� at ages above 53.7 Myr, and 388 non-observed
clusters larger than 300 M� with ages below 12.0 Myr.
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SLUG IV: forward-modelling star cluster demographics 3557

Figure 1. Distribution of clusters in the Powerlaw mock catalogue. The
top set of panels shows the distribution of all clusters, while the bottom
set shows the distribution of those clusters that are observed. In each set
of panels, the central one shows the density of clusters (in clusters per
dex2), as indicated by the colour bar; points mark individual clusters in
sparsely populated regions. The enclosing contour corresponds to a number
of clusters per dex2 equal to the lowest value in the colour bar. Above and
to the right of the central panel, we show 1D histograms of the mass and
age distributions, in units of clusters per dex (i.e. the quantities plotted are
dN/dlog M and dN/dlog T).

The conventional means of avoiding this complication in
analysing cluster populations is to impose fairly severe cuts on the
data so as to ensure that the sample that is retained is well within
the zone of completeness, and massive enough to be relatively un-
affected by stochasticity. However, this approach is undesirable

Figure 2. Same as Fig. 1, except that now we show the distribution of
clusters in colour and magnitude rather than in their physical properties. The
blue lines with large grey points show evolutionary tracks for unextincted
clusters with fully sampled (i.e. non-stochastic) stellar populations over the
age range from 105 to 1010 yr. From top to bottom, the lines correspond
to cluster masses of 106, 104, and 102 M�. The points are logarithmically
spaced in age from 105 yr (lightest) to 1010 yr (darkest) at intervals of 1 dex.
The dashed black line indicates the 50 per cent completeness limit.

because it both discards much of the available information and re-
stricts the range of applicability of the resulting fits. For example,
our Powerlaw mock catalogue contains 5629 observed clusters.
Discarding all clusters with V > −6 mag, as is done for example
in Adamo et al. (2017), leaves only 2445, and thus amounts to
throwing out more than half the data. Any fits to the remaining data
could be used to constrain the distributions of mass and age only
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3558 M. R. Krumholz et al.

Figure 3. Same as Fig. 2, except that now we show the distribution in
colour–colour space rather than colour–magnitude space.

for masses above 104 M� and ages below 1 Gyr (or masses above
103.7 M� and ages below 200 Myr, the cuts used in Adamo et al.
2017), since only in this mass–age range are the data reasonably
complete.

3.2 Libraries

To analyse the mock catalogues, we require libraries of model clus-
ters. To produce these, we use SLUG to simulate 107 clusters using
the same combination of tracks, atmospheres, and metallicity as for
all the mock catalogues except LibMismatch. Cluster masses,
ages, and extinctions in the library are drawn randomly from the
distribution

plib(M,T , AV) ∝ pM(M)pT(T )pAV (AV) (28)

with

pM(M) ∝
⎧⎨
⎩

(
M

105 M�

)−1
, 102 < M

M� ≤ 105(
M

105 M�

)−2
, 105 < M

M� ≤ 107
(29)

pT(T ) ∝ 1

T
, 105 yr < T < 1.5 × 1010 yr (30)

pAV (AV) ∝ const, 0 < AV < 3 mag. (31)

This sampling is chosen to maximize the density of samples at
younger masses and ages where there is a larger amount of stochastic
variation in cluster colour and luminosity; we remind the reader that
the sampling density is explicitly accounted for in equation (9), and
thus this choice affects the result only in so far as it provides a better
or worse sampling of the underlying distribution. All other details
of the sampling procedure are identical to that used in Krumholz
et al. (2015a), and we refer readers to that paper for full details.

We adopt a bandwidth of h = 0.05 dex in the physical dimen-
sions and h = 0.05 mag in the photometric directions. Note that
the value of h enters the calculation only through evaluation of the
likelihood function, equation (12). This means that the value of h
in the physical dimensions has no effect on the results, because the
likelihood function only makes use of the photometric dimensions.
In the photometric dimensions, h enters only in quadrature sum
with the uncertainties σ , and thus the value of h does not affect the
results as long as h is significantly smaller than σ in all dimensions.
Our choices satisfy this condition, and in general, the condition
can always be satisfied as long as the library is large enough to
allow a choice of h satisfying this condition. For a more detailed
exploration of values of h and the density of sampling points in the
library, we refer readers to Krumholz et al. (2015a).

3.3 Analysis of the mock catalogues

We first focus on the Powerlaw, Truncated, and Mdd cata-
logues, which have uniform tracks, completeness, and errors, and
where the only differences are between the parameters describing
the cluster distribution; we discuss the remaining cases in the next
section. For each mock catalogue, we consider proposed distribu-
tions of cluster mass and age following the functional forms given
by equations (18) and (22); the free parameters are αM, Mbreak, and
either αT and Tmid (for equation 18) or γ mdd, and Tmdd, min (for equa-
tion 22). We leave Mmin and Tsf fixed as above. Our priors on αM,
αT, and γ mdd are flat. For log Mbreak, our priors are restricted by the
range of masses sampled in our library, and thus we adopt a prior
that is flat in log (Mbreak/M�) from 2 to 7. For the same reason we
adopt priors on log (Tmid/yr), and log (Tmdd, min/yr) that are flat from
5 to 10.17.

Since we cannot assume that we know the functional form of the
dust extinction, we choose to parametrize it with a simple piecewise-
linear form over the range 0−3 mag in our library. Specifically, we
define AV, i = i	AV mag for i = 0,. . . ,N, where 	AV = 3/N mag,
and our linear fit breaks the range from 0 to 3 mag into N intervals.
For an extinction AV in the range [AV, i, AV, i + 1), we set p(AV) =
pAV,i + (pAV,i+1 − pAV,i )(AV − AV,i)/	AV. The values of pAV,i for
i = 0,. . . ,N − 1, representing the values of the extinction PDF at
points AV, i, are free parameters to be fit, while the value of pAV,N is
fixed by the requirement that

∫
p(AV) dAV = 1. In the experiments,

we present here we adopt N = 6, corresponding to breaking the
extinction PDF into bins 0.5 mag wide, but our code leaves this

MNRAS 482, 3550–3566 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/482/3/3550/5145865 by The Australian N
ational U

niversity user on 07 D
ecem

ber 2018



SLUG IV: forward-modelling star cluster demographics 3559

as a free parameter to be set at run time. We adopt priors that are
flat in log pAV,i for i = 0,. . . ,N − 1, subject to the constraint that
pAV,N > 0.

We carry out the optimization of the parameters for both the mid
and mdd cases using 100 walkers and 500 iterations; visual inspec-
tion shows that the distribution of walkers stabilizes after ∼150 iter-
ations, so we discard the first 200 iterations and derive the posterior
PDFs from the remainder. For our sample catalogues, each MCMC
calculation requires ≈12 h on a workstation. To decide whether the
mid or mdd model provides a better fit to each data set, we com-
pute the Akaike information criterion (AIC) for each model (e.g.
Sharma 2017). Specifically, for the mid and mdd cases, we find the
largest value of the likelihood function p ({Li}, Nobs | θ , Nex, {σ i})
returned by any of the MCMC sample points, which we denote L̂,
and compute

AIC(mid,mdd) = 2k − 2 ln L̂(mid,mdd), (32)

where k = 11 is the number of parameters for both the mid and mdd
models: six parameters to describe the dust extinction distribution,
four to describe the joint mass–time distribution, and 1 to describe
the number of clusters Nex. The corresponding Akaike weight for
the mid-model,

w(mid) = e−	mid/2

e−	mid/2 + e−	mdd/2
(33)

	(mid,mdd) = AIC(mid,mdd) − min(AICmid, AICmdd), (34)

gives the probability that the mid-model is the better fit to the data.
Note that this method automatically marginalizes over the unknown
dust distribution.

We report values of w(mid) (and the analogously determined
w(mdd) = 1 − w(mid)), and posteriors on all parameters, in Ta-
ble 1. We also show corner plots for the highest weight models for
in Figs 4, 5, and 6, for the Powerlaw, Truncated, and MDD
catalogues, respectively. Examining the plots and the table, we can
draw a number of conclusions. First, the method does an extremely
good job at distinguishing whether mid or mdd is a better fit to the
data. The Akaike weights are unambiguous. Second, the method
recovers the input parameters extremely accurately. The recovered
mass function slopes αM are accurate to better than 0.1 in all cases,
and the power-law indices describing the age distribution (αT for
the mass-independent cases, γ mdd for the mass-dependent ones) are
recovered with similar accuracy. We also recover the locations of
breaks in the mass or age distributions with accuracies of 0.1−0.3
dex, with the sole exception of the Powerlaw case, where by
construction our sample should not be able to constrain Mbreak. In-
deed, in this case we find a very broad posterior PDF that rules
out a break mass below ∼105.5 M�, but otherwise leaves the value
unconstrained. In summary, we find that our new method offers
excellent performance for data sets of a sample size and at an error
level typical of modern observations.

3.4 Sensitivity of the method to errors

We next investigate how robust our method is against various types
of error, using the mock catalogues DoubleErr, LibMismatch,
and CompMismatch. To remind the reader, each of these mock
catalogues has the same physical parameters as Truncated, but
differs in the errors in some way. DoubleErr has photometric
errors of 0.2 mag instead of 0.1 mag, LibMismatch uses Padova
rather than MIST tracks, as well as a starburst attenuation curve

Figure 4. Corner plot showing the 1D and 2D histograms of the posterior
PDFs of the parameters αM, log Mbreak, αT, and log Tmid for the Powerlaw
mock catalogue, as determined by MCMC optimization. Nuisance param-
eters describing the dust extinction distribution have been omitted. Blue
histograms show 1D marginal PDFs for each parameter; red-coloured heat
maps show 2D probability densities on a logarithmic scale, with all panels
normalized to have a maximum of unity. The contour corresponds to a prob-
ability density of 10−2 on this scale, and scattered points show individual
MCMC samples outside this contour. Blue lines and points indicate the true
values for the input Powerlaw catalogue.

Figure 5. Same as Fig. 4 for the Truncated catalogue.

instead of a Milky Way extinction curve to model the effects of dust.
Finally, CompMismatch uses a different completeness function
than the one assumed in the analysis. We analyse each of these
cases using the same procedure as described in Section 3.3; we
run the MCMC in for 800 iterations instead of 500, and derive the
posterior PDF from the final 300, since we find that it takes slightly
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3560 M. R. Krumholz et al.

Figure 6. Same as Fig. 4 for the MDD catalogue. However, note that the
last two columns plotted (for the quantities γ mdd and Tmdd, min) are different
than in Fig. 4, since the AIC indicates that the mdd model is a better match
to this catalogue than the mid-model.

Figure 7. Same as Fig. 5 for the DoubleErr catalogue. Note that the
ranges on the axes for this figure are identical to those used in Fig. 5, so the
two may be compared directly.

longer for the posterior distributions to stabilize in at least some of
these cases.

We report the marginalized posteriors in Table 1, and show cor-
ner plots for the posteriors in Figs 7, 8, and 9 for the DoubleErr,
LibMismatch, and CompMismatch cases, respectively. As is
clear from the table and from comparing these three figures to
Fig. 5, in all three cases with increased errors we can still clearly
distinguish between mid and mdd, and still clearly identify the trun-
cation in the mass function and the break in the age distribution.
Doubling the photometric errors has remarkably little effect on the
accuracy of the resulting fits, likely because, given the large number

Figure 8. Same as Fig. 5 for the LibMismatch catalogue. Note that the
ranges on the axes for this figure are identical to those used in Fig. 5, so the
two may be compared directly.

Figure 9. Same as Fig. 5 for the CompMismatch catalogue. Note that the
ranges on the axes for this figure are identical to those used in Fig. 5, so the
two may be compared directly.

of clusters in the catalogue, the limiting factor in the accuracy of
the fits is stochastic sampling and the degeneracies it induces in the
tracks, not the accuracy with which individual clusters’ photometry
can be measured. The main effect of using a library that does not
precisely match the data is to induce a systematic shift in the poste-
riors, while leaving the shape and width of the posterior distribution
largely unchanged. The best-fitting mass function and age distribu-
tion slopes for LibMismatch are displaced from their true values
(αM = −2 and αT = −1) to αM = −1.9 and αT = −0.95, while
the truncation mass and break in the age distribution are shifted
to log (Mbreak/M�) = 4.76 (true value 5.0) and log (Tmid/yr) = 7.9
(true value 8.0). Using an incorrect completeness function (as in
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SLUG IV: forward-modelling star cluster demographics 3561

CompMismatch) has a similar effect, but smaller in magnitude.
This may well be a function of our parametrization: the effect of
using an incorrect estimate of our completeness is to induce artifi-
cial wiggles in the completeness-corrected luminosity function at
low luminosity. However, since we are forcing the functional forms
of our physical distributions to be power laws without any such
wiggles, the wiggles do not greatly alter the best-fitting power-law
slopes. Overall our results suggest that fits to cluster demographics
likely to be limited to an accuracy of ≈± 0.1 in the age and mass
function slopes, and a few tenths of a dex in age or mass truncations.

It is important to note that the results of our fit to the LibMis-
match catalogue differ from both the true values and the estimates
we find for the Truncated case by amounts that range from one
to a few standard deviations. This implies that our method is suffi-
ciently sensitive that, for our sample size of a few thousand clusters,
the accuracy of the results is ultimately limited by the quality of
the underlying physical models, rather than by the data quality or
statistics. We emphasize that this is a highly non-trivial statement.
Even for samples of this size, analysis using conventional methods
generally yields results where the choice of tracks or libraries does
not change the best-fitting values by more than the statistical error
bars (e.g. Adamo et al. 2017), and even using a method that fully
accounts for stochastic sampling and returns the full posterior dis-
tribution, estimates of for the mass and age of individual clusters
are relatively insensitive to the choice of underlying stellar model
(Krumholz et al. 2015a). It is only because our method is capable of
exploiting all the information present in a realistically sized sample
of clusters that we have reached a point where we are limited by
systematic rather than statistical uncertainties.

4 C O M PA R I S O N TO C O N V E N T I O NA L
M E T H O D S

We have now demonstrated that our new method is capable of re-
covering the parameters describing a cluster population with high
accuracy, and that it is robust against plausible systematic and ran-
dom errors. We now turn to the question of how well our method
performs compared to more conventional approaches that do not
involve full forward modelling. We therefore re-analyse the Pow-
erlaw and Truncated catalogues using a conventional method.
There are a wide range of such methods, which differ from one an-
other significantly in their details. We have chosen a methodology
based on those used in a number of recent publications, and that
should be broadly representative of the strengths and weaknesses of
current techniques. As we will see below, the conventional method
performs far worse when operating on the same data.

4.1 Fitting individual clusters

In any conventional method to derive cluster population properties,
the first step is to derive the properties of the individual star clusters
from their photometry assuming that the IMF is fully sampled, so
that the relationship between photometry and physical properties is
deterministic and we can assign a single best-fitting mass and age. To
facilitate this we generate a grid of SLUG simulations of star clusters
at a range of ages and extinctions with a fully sampled IMF, i.e. with
no stochasticity. We then find the best-fitting age and extinction for
each catalogue cluster by calculating the minimum χ2 between the
colours of the model grid and the colours in the catalogue, and
find the best-fitting age by scaling the absolute magnitudes of the
cluster to those of the model grid. We give a full explanation of the
procedure in Appendix B.

Figure 10. Comparison between true and best-fitting cluster masses and
ages, for all clusters in thePowerlawmock catalogue for which the reduced
χ2 value of the fit is <5. In the top panel, the heat map shows the density
of clusters, measured in bins 0.25 dex wide, in the plane of log Mtrue versus
log Mfit, where the former is the true cluster mass and the latter is the best
fit determined from the procedure outlined in the main text. The black
contour marks a density of 10−1.5 relative to the maximum, points show
individual clusters in low-density regions, and the grey line shows the one-
to-one line where a perfect fit would lie. The flanking histograms show
the distributions of true and best-fitting mass. The bottom panel shows the
analogous comparison between actual and best-fitting clusters ages, with
bins 0.5 dex wide for the histograms.

To test how well this method performs, in Fig. 10 we compare the
best-fitting and true masses and ages of the clusters in the Power-
law mock catalogue; results for other catalogues are qualitatively
similar, and so for now we simply focus on the Powerlaw case.
When making this figure, we only include clusters for which the
reduced χ2 value (=χ2/2, since we have five photometric bands and
three model parameters) of the fit is <5 on the grounds that larger
values indicate a poor fit. This cut removes just under 20 per cent

MNRAS 482, 3550–3566 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/482/3/3550/5145865 by The Australian N
ational U

niversity user on 07 D
ecem

ber 2018



3562 M. R. Krumholz et al.

of the clusters in the mock catalogue, and the results are not very
sensitive to the exact threshold used to remove bad fits. We see that,
in agreement with our expectations, the masses and ages recovered
by the fitting procedure are for the most part accurate to within a
factor of a few for clusters whose true mass is above ∼104 M�, or
whose true age is above 108 yr. In this mass and age range (which are
largely overlapping in the observed catalogue, since only a massive
cluster will be bright enough to be detected at ages above ∼108 yr),
stochastic sampling of the IMF has minor effects, so full sampling
is a reasonable approach. At lower masses and ages, the scatter is
substantially larger, but the majority of the data still cluster around
the one-to-one line.

There are also a few extreme outliers very far from the one-to-
one line. These typically have a true mass is below ∼1000 M� and
age ∼107 yr, but the best-fitting mass is >106 M�, and the best-
fitting age above ∼109 yr. This phenomenon occurs when stochastic
sampling of the IMF in a low-mass, middle-aged cluster whose light
is dominated by a small number of evolved stars happens to produce
colours quite similar those of a much more massive, older stellar
population whose light is dominated by a large number of low-mass
stars. Because the conventional method does not include stochastic
sampling, no models in the right age range match the colours as well
as the older model, and thus the age and mass are catastrophically
misestimated.

4.2 Mass and age cuts

To handle the problem of incompleteness, the next step in a con-
ventional analysis is to cut the sample based on mass and age,
restricting to ranges that are thought to be reasonably complete. We
therefore next remove from the mock catalogue any clusters whose
best-fitting age is >108.5 yr or whose best-fitting mass is <103.75

M�; these cuts are quite comparable to those normally used for star
cluster analysis (e.g. Adamo et al. 2017; Chandar et al. 2017; John-
son et al. 2017), and roughly corresponds to the region in age–mass
space where almost all clusters will lie at V ≤ −5 mag, and thus
in the range where our catalogue is complete. This combined with
the cut on quality of fit reduces the Powerlaw catalogue to 366
clusters (from the original 5629), i.e. only 6.5 per cent of the origi-
nal sample passes all the cuts. The reason that the mass–age cut so
severely reduces the size of the available data is that, although any
cluster with mass above 103.75 M� and age below 108.5 yr is very
likely to have V < −5 mag and thus be bright enough to make it
into the observed catalogue, the converse is not true, i.e. having V <

−5 mag in no way guarantees that the mass is above 103.75 M� and
age below 108.5 yr. Indeed, because low-mass clusters are intrinsi-
cally much more common than more massive ones, the majority of
the clusters bright enough to be observed have best-fitting masses
that place them below our mass limit. They are bright enough to be
observed because they are much younger than 108.5 yr. We could
retain more of these clusters by using a lower mass cut, but only at
the price of having an even more severe age cut in order to ensure
completeness. The trade-off between age and mass cuts that we
have made is comparable to the ones used by previous authors.

We plot the distribution of mass and age for the remaining clusters
for the Powerlaw catalogue in Fig. 11. One particularly noticeable
effect in this plot is that the lowest bins of fitted mass contain a very
significant number of interlopers whose true mass is smaller, visible
as the large tail of clusters extending into the grey region in the upper
panel of Fig. 11. This is not a small effect: the true number of clusters
in the mass range log M/M� = 3.75−4.0, only considering clusters
that make it into the fitted sample (i.e. excluding those that have
been dropped because their best-fitting mass is too small, or because

Figure 11. Same as Fig. 10, but now including only those clusters with
a best-fitting mass above log (M/M�) = 103.75 and best-fitting age below
log (T/yr) = 8.5. The grey regions show the ranges of mass and age removed
by the cut.

they do not have good χ2 values) is 64, while the fitting procedure
produces 141, i.e. more than double the correct count. This bias has
the effect of slightly flattening the best-fitting mass distribution. Its
origin lies in the fact that low-mass clusters are intrinsically more
common than high-mass ones, and thus there are many more low-
mass clusters scattering to high-mass fits than high-mass clusters
scattering to lower masses. The problem is worsened by the use of a
mass cut, which creates an asymmetry: clusters whose fitted masses
scatter below their true ones are preferentially removed from the
sample, while those whose fitted masses scatter above their true
ones are preferentially included.

4.3 Fitting the distributions

The final step in a conventional analysis is to fit the remaining
data to constrain the properties of the population. Numerous fitting
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techniques exist in the literature, and it is not our goal here to
perform a comprehensive comparison among them, so we select
one representative example: we bin the data uniformly by mass and
by age, using the binning shown in Fig. 11, then perform χ2 fits
to the resulting binned distributions using the bin centres as the
independent variable and bin number counts with Poisson errors as
the dependent variable. A number of recent publications have used
this method (e.g. Silva-Villa et al. 2014; Chandar et al. 2015, 2017).
For simplicity, we only consider mid for this exercise, since for mdd
we would need to fit the joint mass–age distribution, or fit multiple
age distributions at constant mass or mass distributions at constant
age.

For the mass distribution, we fit to both exponentially truncated
and pure power laws (i.e. to functional forms dN/dM ∝ MαM and
to dN/dM ∝ MαM e−M/Mbreak ). We plot the resulting best fits against
the binned data and the true input distributions in Fig. 12. We see that
binning in mass does allow one to qualitatively recover roughly the
correct mass distributions, but with significant defects compared to
the forward-modelling method. First, the truncated-power-law fits
return αM = −1.82 ± 0.11, log Mbreak = 6.47 ± 0.93 (1σ error
bars) and αM = −2.07 ± 0.10, log Mbreak = 5.22 ± 0.2 for the
Powerlaw and Truncated cases, respectively; compared to the
results given in Table 1 the central values for αM are significantly
further from the true value (αM = −2), and the error bars are larger
by a factor of 3−5; one should also recall that even these error bars
are underestimates, since they include only shot noise in the bin
counts and not errors in the assigned masses.

Moreover, unlike the forward-modelling method, the binned
method does not always successfully distinguish between pure-
and truncated-power-law fits. For the Powerlaw catalogue, the
reduced χ2 values for the truncated- and pure-power-law fits are
2.6 and 2.1, respectively, so the pure-power law is a marginally
better fit, as it should be since the data really do lack the statistical
power to distinguish the two cases. However, for the Truncated
catalogue, the truncated- and pure-power-law fits have reduced χ2

values of 0.32 and 0.95 respectively, so the pure-power-law fit is
actually preferred on the grounds that the truncated-power law is
overfitting the data. Indeed, one could have guessed this simply from
Fig. 12, since the pure-power-law fit falls within the Poisson error
bars for every bin. For this catalogue, our new method successfully
recovers an important result that the conventional one misses. The
reasons for the new method’s superior performance are obvious: the
conventional χ2 method introduces a significant source of error by
assigning each cluster a single best-fitting mass, discards more than
90 per cent of the sample due to the mass and age cuts it requires,
then and discards even more information by binning the data that
remain.

We show the analogous result for the binned age distributions
in Fig. 13; the fits shown are to a distribution dN/dT ∝ T for T
< Tmid and dN/dT ∝ T αT for T > Tmid, with Tmid and αT as our
fit variables. Again, we see that the results of χ2 fitting have a
rough qualitative resemblance to the input distributions, but that
the properties recovered are considerably less accurate. For the
Powerlaw catalogue, the best-fitting values are αT =−1.34 ± 0.39
and log Tmid = 6.44 ± 0.37, while the true inputs are αT = −1,
log Tmid = 6.5; the slope is poorly determined in part due to the
undercount in the 107.5−108 yr bin (also visible in Fig. 11), which
drags the best-fitting slope downward and results in a poor fit quality
overall (reduced χ2 of 40). This is an artefact of trajectory of a fully
sampled cluster through colour space in this age range, which makes
it easy to mistake an older cluster for a younger one; such artefacts
are known peril in χ2 fitting methods, as illustrated for example by

Figure 12. Binned mass distributions for the Powerlaw, Truncated,
and Mdd catalogues (top to bottom, as indicated). Solid blue points indicate
the number counts for clusters of all ages below 108.5 yr; horizontal error
bars show the width of each bin, and vertical error bars show Poisson errors
on the number count. Open circles show the number counts for the same bins
for clusters ages <10, 10−100, and >100 Myr, as indicated; the horizontal
positions of these points have been perturbed slightly, and error bars on
them suppressed, to reduce confusion. The black solid and dashed lines
show the best truncated- and pure-power-law fits to the solid points (see
the main text), while the black dotted line shows the true mass distribution,
normalized to match the data in the lowest mass bin; we omit the true mass
distribution for the Mdd case because it is not time-independent.

the age-striping visible in fig. 10 of Chandar et al. (2010) or fig. 14
of Adamo et al. (2017). Our new method avoids this problem by
retaining the full posterior PDF rather than simply using the best fit,
and Table 1 shows that our method recovers αT with uncertainties
an order of magnitude smaller: ≈0.02 rather than ≈0.2.

For the Truncated catalogue, the conventional χ2 method re-
turns a best-fitting slope of αT = −0.31 ± 0.29 and is unable to
determine a meaningful value of log Tmid (formally the uncertainty
in this parameter diverges), whereas the true inputs are αT = −1.0
and log Tmid = 8. It is not surprising that the method fails to recover
log Tmid, since the break in the age distribution in the input data lies
very close to the age of 108.5 yr above which we had to discard data
due to incompleteness in the conventional method. The recovered
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Figure 13. Same as Fig. 12, but showing the binned age distributions instead
of mass distributions.

slope αT = −0.31 ± 0.29 is essentially within 1σ of the correct
slope (which is 0) for the age range below 108 yr covered by the
remaining data. However, this only serves to illustrate a further ad-
vantage of our new method that it does not require such severe cuts
on the data to cope with incompleteness.

In summary, we find that the new method we have introduced out-
performs the traditional one across all dimensions. It returns more
accurate parameter estimates with much smaller uncertainties, and
across a wider domain in cluster mass and age, and it successfully
distinguishes between truncated and non-truncated mass distribu-
tions in cases where conventional methods cannot.

5 SU M M A RY A N D C O N C L U S I O N

We introduce a new forward-modelling method to determine the
demographics of a population of star clusters from unresolved pho-
tometry. The basic idea of the method is to consider a proposed dis-
tribution of cluster masses and ages, apply kernel density estimation
to a pre-computed library of models weighted by the observational
completeness to predict the observed luminosity distribution, and
adjust the proposed mass and age distributions to optimize agree-
ment between the observed and predicted luminosity distributions.

Our method does not require that the data be binned, allows analysis
of heterogenous data sets where not all regions have been observed
to the same depth or with the same filters, does not require that data
be limited to a particular range of mass or age, and naturally ac-
counts for the effects of stochastic sampling of the stellar IMF. The
method is computationally efficient enough that a catalogue of star
clusters comparable to those obtained via recent HST campaigns
can be analysed in approximately half a day of computing time on
a workstation.

We test our method on synthetic data sets and show that we are
able to recover correct demographics for the underlying populations
with very high accuracy; typical statistical uncertainties on slopes
of the mass and age distributions are only ∼0.01 dex. Our method
distinguishes between alternative models for star cluster age distri-
butions, including truncated versus power-law mass functions, and
mid versus mdd, with very high confidence. The performance of
our method compares very favourable with that of traditional χ2

fitting methods, whereby one obtains a best-fitting mass and age
for each individual star cluster, and then fits the demographics of
the population. We show that this method produces uncertainties on
the slopes of mass and age distributions that are as much as an or-
der of magnitude larger than our forward-modelling technique, and
often lacks the statistical power to distinguish between alternative
physical scenarios for star cluster demographics. By repeating our
analysis with different set of stellar tracks and dust distributions, we
find that systematic errors in the slopes of mass and age distributions
are ≈0.1 dex, significantly larger than the statistical uncertainties
our method produces, and thus our method is as accurate as possi-
ble given our current knowledge of stellar evolution and interstellar
dust physics. Indeed, it is not beyond the realm of possibility that
application of this method with different libraries of models could
be used to diagnose which stellar evolution models are best able to
match reality.

We implement our method as part of the SLUG suite of stochastic
stellar population and statistics tools. The software for the method
and for all the tests presented in this paper, along with the mock
catalogues on which we performed our tests and the full outputs
of our MCMC analysis, are available from the SLUG website at
http://www.slugsps.com/cluster-population-pipeline.

In future work, we will apply the method presented here to
the large sample of star clusters produced by the LEGUS survey
(Calzetti et al. 2015; Adamo et al. 2017). In addition to providing an
analysis of star cluster demographics with considerably greater ac-
curacy than any previous method, this will enable us to obtain much
better estimates for the properties of individual clusters. Krumholz
et al. (2015a) showed that the largest uncertainty in the posterior
probability distributions for the masses and ages for individual star
clusters is the prior distribution, i.e. one’s starting estimate of the
frequency with which particular masses and ages arise in the popula-
tion. By combining the methods outlined in Krumholz et al. (2015a)
with the population demographics, we determine from the method
implemented here, we will be able to mitigate this uncertainty con-
siderably, thereby improving our estimates cluster by cluster as well
for the population as a whole.
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A P P E N D I X A : A L G O R I T H M F O R FA S T
E VA L UAT I O N O F T H E LI K E L I H O O D
F U N C T I O N

Here, we describe the algorithm we use for fast evaluation of the
sum

s =
Nlib∑
j=1

wj(θ )N(Li − Lj | h′) (A1)

in the likelihood function (equation 12). The algorithm proceeds
in three steps. First, we arrange the Nlib clusters in the library in a
KD-tree of NF dimensions based on their luminosities Lj. (Recall
that Lj has NF dimensions.) We maintain separate KD-trees for each
set of filters that are present in the observed sample. For each node
k in the KD-tree, we compute the bounding box, i.e. the smallest
NF-dimensional rectangular prism aligned with the cardinal axes
that contains Lj for each cluster luminosity Lj in the node. We also
record the weight wj(θ ) of each cluster, and the summed weight wk

of all the clusters contained in each node. This is an order Nlibln Nlib

operation, but need only be done once at the start of the calculation.
The second step in the algorithm is that, when we wish to change

model parameters θ , we recalculate the weights wj(θ) of each in-
dividual cluster, and the summed weights wk of all nodes in the
tree. This is an order Nlib operation, but need only be done once
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for each set of trial parameters θ , not once per cluster, and can be
parallelized trivially. On a workstation-level machine, using library
of 107 clusters, this step requires a few tenths of a second.

The third step is evaluation of the sum given by equation (A1)
for each observed cluster luminosity Li. We carry out this step via
a divide and conquer algorithm of order ln Nlib:

(i) Let nodes be a list of nodes in the tree; for each node k in the
list, we record an estimate sk of its contribution to the sum and an
upper bound 	sk on the error in this estimate, computed whenever
a node is added to the list in step (iii). That is, for any node k, the
contribution of the clusters within that node to s is strictly bounded
between sk − 	sk and sk + 	sk.

(ii) Evaluate the current estimate of the sum s = ∑
ksk and the

upper bound on the error 	s = ∑
k	sk, where the sums run over

all nodes in the list nodes. If 	s/s is smaller than some specified
tolerance, stop iterating and return s. If not identify the node k with
the largest value of 	sk.

(iii) Remove the node with the largest 	sk from nodes, and
add its left and right children, which we denote 
 and r, to nodes.
Compute s
 and 	s
 as follows (and similarly for sr and 	sr):

(a) If node 
 is a leaf (i.e. it has no children), set s
 =∑
w(θ)N(Li − Lj | h′), where the sum runs over all clusters

in the leaf. Set 	s
 = 0. That is, if the node is a leaf, directly
evaluate the contribution to the sum of all clusters in that leaf,
and set the maximum possible error to zero.

(b) If node 
 is not a leaf, find the vectors 	Lnear and 	Lfar

between Li and the nearest and farthest points in the bounding
box of node 
, where distances are measured in units of h′. That
is, 	Lnear = Li − Lb for the point Lb within the bounding box
of node 
 that minimizes d = ∑NF

n=1(Li,n − Lb,n)2/h′
n

2; similarly,
	Lfar is computed for the point Lb that maximizes d. Note that
if Li is inside the bounding box, then 	Lnear = 0. Set

s
 = w


N(	Lnear | h′) + N(	Lfar | h′)
2

(A2)

	s
 = w


N(	Lnear | h′) − N(	Lfar | h′)
2

. (A3)

Intuitively, this amounts to finding the maximum (minimum)
possible contribution of the clusters in node 
 to the sum, which
would occur if all the clusters in that node were at the nearest
(farthest) point within the bounding box. We then set the central
estimate of the contribution of that node to the sum to the average
of the minimum and maximum possible contributions, and the
error to half the distance between them.

(iv) Go back to step (ii).

The algorithm begins by adding the root node of the KD-tree to
the list nodes, with sk and 	sk for it evaluated as in step (iii). We
then iterate until the convergence condition in step (ii) is satisfied.
The algorithm is efficient because (1) it quickly eliminates parts of
the KD-tree that are far from Li, and thus make small contributions
to s and 	s, and (2) it removes the need to examine individual
clusters whose separation in luminosity space is � h′, since these
will be grouped into the same node, and nodes whose bounding
boxes are � h′ in size will have 	sk � sk. In practice, we find that
evaluation of s to 1 per cent accuracy requires examining hundreds
to thousands of nodes, depending on the number of filters NF, the

bandwidth h′, the number of points Nlib in the library, and the
density of library points in the vicinity of Li. In our tests with five
filters, a bandwidth of 0.05−0.1 mag, and 107 library points, typical
evaluation times were ∼100 μs per cluster on a workstation.

A P P E N D I X B: ME T H O D F O R χ2 FITTING

Here, we explain in detail the method we use to fit the mass,
age, and extinction for each catalogue cluster for our conven-
tional analysis. The first step is to generate a grid of SLUG mod-
els with a fully sampled IMF. We use a fixed cluster mass of
106 M�, since in the non-stochastic case the photometry can be
rescaled trivially to any chosen mass; specifically, if our SLUG run
with a mass of 106 M� produces a magnitude mi,model in filter i,
then the corresponding prediction for a cluster of mass M is sim-
ply mi = mi,model − 2.5(log M − 6). We output model predictions
mi,model at a set of times from 105 to 1010 yr, with outputs spaced at
0.01 dex. We repeat this calculation at dust extinctions from AV =
0 to 3 mag in steps of 0.05 mag. The result is a grid of 30 561
models, each with predicted photometry in the same five bands as
our mock catalogues as a function of cluster age and extinction.

To fit obtain the best-fitting mass, age, and extinction, we proceed
as follows. First, for each catalogue cluster, we find a best-fitting
mass at each point in our age-extinction grid by finding the value
Mfit that minimizes

χ2 =
∑

i

[
mi,cat − mi,model + 2.5(log Mfit − 6)

]2

σ 2
i

, (B1)

where mi,cat is the magnitude of the catalogue star cluster in band i,
σ i is the error on this value (0.1 mag for all our mock catalogues),
and mi,model is the magnitude for the model grid point. Note that
the required value of Mfit can be obtained analytically simply by
solving the equation dχ2/dlog Mfit = 0. We record the corresponding
minimum value of χ2 at each grid point for each cluster. Second, for
each cluster in the mock catalogue, we then find the grid point that
produces the smallest χ2 value, which we denote χ2

min. We assign
the age and extinction of that point as the best-fitting values for
that cluster, and the corresponding mass recorded for that grid point
as its best-fitting mass. Third, to derive the 68 per cent confidence
interval, we find all the grid points for which χ2 < χ2

min + 2.3,
where the factor 2.3 comes from the numerical experiments of
Avni (1976), and find the minimum and maximum mass, age, and
extinction among them.

Note that our method for deriving cluster mass and age identical
to that used in Adamo et al. (2010), which has been used for star
cluster analysis by a number of authors (e.g. Silva-Villa et al. 2014;
Adamo et al. 2015, 2017). We have developed our own code rather
than using the Adamo et al. (2010) code because that code uses
simple stellar populations computed with YGGDRASIL (Zackrisson
et al. 2011), whereas we wish to use photometry generated by
SLUG so that our treatment of stellar evolution, stellar atmospheres,
nebular emission, and dust extinction is identical to that used to
generate the mock data and the libraries used for our new method.
However, we have verified that the differences in the cluster masses
and ages derived by our code versus the Adamo et al. (2010) code
are for the most part within the error bars.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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