
MNRAS 483, 3647–3658 (2019) doi:10.1093/mnras/sty3319
Advance Access publication 2018 December 7

The momentum budget of clustered supernova feedback in a 3D,
magnetized medium

Eric S. Gentry ,1‹ Mark R. Krumholz ,2 Piero Madau1,3 and Alessandro Lupi 4

1Department of Astronomy and Astrophysics, University of California at Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA
2Research School of Astronomy, Astrophysics, Australian National University, Canberra, ACT 2611, Australia
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ABSTRACT
While the evolution of superbubbles driven by clustered supernovae has been studied by nu-
merous authors, the resulting radial momentum yield is uncertain by as much as an order of
magnitude depending on the computational methods and assumed properties of the surround-
ing interstellar medium (ISM). In this work, we study the origin of these discrepancies, and
seek to determine the correct momentum budget for a homogeneous ISM. We carry out 3D
hydrodynamic and magnetohydrodynamic (MHD) simulations of clustered supernova explo-
sions, using a Lagrangian method and checking for convergence with respect to resolution. We
find that the terminal momentum of a shell driven by clustered supernovae is dictated primarily
by the mixing rate across the contact discontinuity between the hot and cold phases, and that
this energy mixing rate is dominated by numerical diffusion even at the highest resolution we
can complete, 0.03 M�. Magnetic fields also reduce the mixing rate, so that MHD simulations
produce higher momentum yields than HD ones at equal resolution. As a result, we obtain
only a lower limit on the momentum yield from clustered supernovae. Combining this with
our previous 1D results, which provide an upper limit because they allow almost no mixing
across the contact discontinuity, we conclude that the momentum yield per supernova from
clustered supernovae in a homogeneous ISM is bounded between 2 × 105 and 3 × 106 M�
km s−1. A converged value for the simple homogeneous ISM remains elusive.
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1 IN T RO D U C T I O N

Feedback from supernovae (SNe) is an important component of
understanding the interstellar medium (ISM), galactic winds, and
galactic evolution (e.g. McKee & Ostriker 1977; Dekel & Silk
1986; Murray, Quataert & Thompson 2005; Jenkins & Tripp 2011;
Kim, Kim & Ostriker 2011; Ostriker & Shetty 2011; Hopkins,
Quataert & Murray 2012; Creasey, Theuns & Bower 2013; Dekel
& Krumholz 2013; Faucher-Giguère, Quataert & Hopkins 2013;
Thompson & Krumholz 2016). Unfortunately, the processes gov-
erning the strength of SN feedback operate non-linearly and at
small scales. This makes it difficult to include the effects of SNe in
analytic models or large galactic simulations without a simplified
prescription for SN feedback.

In the past, most investigations of the key factors governing SN
feedback strength have focused on single, isolated SNe (e.g. Cheva-
lier 1974; Cioffi, McKee & Bertschinger 1988; Thornton et al. 1998;
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Iffrig & Hennebelle 2015). In reality, however, core collapse SNe
are clustered in space and time: massive stars are born in clusters,
and explode after ∼3–40 Myr, before these stars can significantly
disperse. The few studies that have looked at the feedback from
multiple clustered, interacting SNe have found conflicting results.
While some studies have found relatively small changes in the mo-
mentum from clustering SNe (Kim & Ostriker 2015; Walch & Naab
2015; Kim, Ostriker & Raileanu 2017), others have found that it
could increase the average momentum per SN to 5–10 times greater
than the traditional yields for isolated SNe (Keller et al. 2014; Gen-
try et al. 2017).

It has been suggested that the differences in results for clustered
SN simulations could stem from the different levels of mixing in
the simulations, from both physical and non-physical sources. Un-
fortunately, each recent simulation was idealized in significantly
different ways, which makes it difficult for us to directly isolate
which aspects were the primary drivers of the differences. Our goal
in this paper is to identify the causes of the discrepancies between
different published results, and resolve whether, when including ap-
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propriate physics, clustering does in fact lead to significant changes
in the terminal momentum of supernova remnants.

One of the key issues that we investigate is dimensionality and
resolution. We found that clustering produces an order of magni-
tude enhancement in momentum (Gentry et al. 2017), but these
results were based on 1D spherically symmetric simulations. As-
suming spherical symmetry is potentially misleading because we
know of fluid instabilities (such as the Vishniac instabilities and the
Rayleigh–Taylor instability) that affect SNR morphologies (Vish-
niac 1983, 1994; Mac Low & McCray 1988; Mac Low & Norman
1993; Krause et al. 2013; Fierlinger et al. 2016). Even small pertur-
bations can be amplified and noticeably change key properties of
SNR evolution. For isolated SN simulations, 1D and 3D simulations
do not produce significantly different terminal momenta (e.g. Kim
& Ostriker 2015, Martizzi, Faucher-Giguère & Quataert 2015, and
Walch & Naab 2015 all find differences of less than 60 per cent
between 1D and 3D), but it is worth re-investigating the issue for
clustered SNe. It could be that the longer time frame allows the
instabilities to grow to have larger effects.

Conversely, our 1D simulations achieved much higher resolution
than in any of the 3D simulations found in the literature. We found
that the terminal momentum for clustered SNe did not converge until
we reached peak resolutions better than 0.1 pc, far higher than the
resolutions of published 3D simulations. Moreover, we achieved
this convergence only by using pseudo-Lagrangian methods that
minimized numerical diffusion across the contact discontinuity at
the inner edge of the superbubble, whereas many of the published
3D results are based on Eulerian methods that, for fronts advecting
across the grid at high speed, are much more diffusive. Indeed, it is
noteworthy that the one published 3D result that finds a significant
momentum enhancement from clustering (Keller et al. 2014) uses a
Lagrangian method, while all the papers reporting no enhancement
are based on Eulerian methods. Clearly, given the conjoined issues
of resolution and dimensionality, further investigation is warranted.

Since the suppression and enhancement of mixing is a key un-
known for the feedback budget of clustered SNe, we also explore
the role of magnetic fields, which may reduce the amount of phys-
ical mixing. Our interest in this possibility comes primarily from
the example of cold fronts in galaxy clusters, where magnetic fields
draped across a shock front have been used to explain the stability
of these cold fronts against fluid instabilities (Vikhlinin, Markevitch
& Murray 2001; Markevitch & Vikhlinin 2007; although see also
Churazov & Inogamov 2004 who show that magnetic fields might
not be necessary for stabilizing cold fronts).

In this paper, we first test the effects of bringing our simulations
from 1D to 3D and carry out a 3D convergence study, and then we
test the effects of adding magnetic fields into our 3D simulations. In
Section 2, we discuss our computational methods. In Section 3, we
discuss the results of our simulations, with a more detailed physical
analysis of the significance of those results in Section 4. In Section 5,
we discuss our conclusions and compare to other works.

2 C O M P U TAT I O NA L ME T H O D S

For this work we repeat one of the 1D simulations from Gentry
et al. (2017), and conduct 3D simulations of the same set-up at
a range of resolutions and including or excluding magnetic fields.
For the most part our 1D simulations reuse the code developed
by Gentry et al. (2017), with minor changes that we discuss in
Section 2.1. In Section 2.2, we discuss the methodology for our
3D simulations, for which we use the GIZMO code (Hopkins 2015;
Hopkins & Raives 2016). We use GIZMO for this work because it has

a Lagrangian hydrodynamic solver; in our previous 1D simulations,
we found that Lagrangian methods were more likely to converge
for simulations of clustered SNe (Gentry et al. 2017).

2.1 1D simulation

The methods for our 1D simulation are very similar to those used
in our previous work (Gentry et al. 2017), with only slight modi-
fications. First, we disable the injection of pre-SN winds, because
injecting small amounts of mass over extended periods is impracti-
cal at the resolutions we are able to achieve in the 3D simulations.
Second, we initialize the ISM to be at an equilibrium temperature (T
∼ 340 K or a specific internal energy of eint ∼ 3.5 × 1010 erg g−1 for
an initial ISM density of ρ0 = 1.33 mH cm−3 and gas-phase metal-
licity of Z = 0.02, rather than T ∼ 15 000 K).1 This simplifies the
analysis, as changes in energy now only occur in feedback-affected
gas. Furthermore the initial temperature makes little difference as
the gas would otherwise rapidly cool to its equilibrium state (the
15 000 K gas had a cooling time of a few kyr). Using these modified
methods we reran the most-studied cluster from our previous work,
one that had a stellar mass of M� = 103 M� (producing 11 SNe)
and was embedded in an ISM of initial density ρ0 = 1.33 mH cm−3

and an initial gas-phase metallicity of Z = 0.02.2 These changes
allowed for more direct comparison with our 3D simulations, and
do not affect our final conclusions.

The remainder of our methodology is identical to that of Gentry
et al. (2017), which we summarize here for convenience. To generate
a star cluster of given mass, we used the SLUG code (da Silva, Fu-
magalli & Krumholz 2012; da Silva, Fumagalli & Krumholz 2014;
Krumholz et al. 2015) to realistically sample a Kroupa (2002) IMF
of stars. We assume every star with an initial mass above 8 M�
explodes as a core collapse SN. The lifetimes of these massive stars
are computed using the stellar evolution tracks of Ekström et al.
(2012); the SN mass and metal yields are computed using the work
of Woosley & Heger (2007) while all SNe are assumed to have an
explosion energy of 1051 erg. This cluster of stars is embedded in
an initially static, homogeneous ISM, with each SN occurring at
the same location. The resulting superbubble is evolved using a 1D,
spherically symmetric, Lagrangian hydrodynamic solver first devel-
oped by Duffell (2016). Cells are split (merged) when they become
sufficiently larger (smaller) than the average resolution. Metallicity-
dependent cooling (assuming collisional ionization equilibrium) is
included using GRACKLE (Smith et al. 2017). The simulation is
evolved until the radial momentum reaches a maximum, at which
point it is assumed that the superbubble mixes into the ISM.

2.2 3D simulations

Rather than adapt our 1D code to work in 3D, we instead chose to
use the GIZMO simulation code (Hopkins 2015; Hopkins & Raives
2016), which includes a Lagrangian hydrodynamic solver with ad-
ditional support for magnetohydrodynamics (MHD). For all of our
runs, we used the Meshless Finite Mass solver on a periodic domain,
while ignoring the effects of gravity. We assume the gas follows an
ideal equation of state with a constant adiabatic index γ = 5/3,

1Throughout this paper we will quote temperatures calculated by GRACKLE

which accounts for temperature dependence in the mean molecular weight,
μ (Smith et al. 2017).
2This cluster can be found in the tables produced by Gentry et al. (2017)
using the id 25451948-485f-46fe-b87b-f4329d03b203.
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Clustered SNe in 3D, MHD 3649

Table 1. Initial Conditions. The mass resolution �m is not included for the
1D run, as it is neither constant in space nor time.

Name 1D/3D Bz, 0 β �x0 �m L
(μG) (pc) (M�) (pc)

1D 06 HD 1D 0 ∞ 0.6 1200
3D 07 HD 3D 0 ∞ 0.7 0.01 300
3D 10 HD 3D 0 ∞ 1.0 0.03 600
3D 13 HD 3D 0 ∞ 1.3 0.08 400
3D 20 HD 3D 0 ∞ 2.0 0.26 600
3D 40 HD 3D 0 ∞ 4.0 2.10 600
3D 20 MHD 3D 5 0.05 2.0 0.26 1200

as in our 1D simulation. When including magnetic fields, we used
GIZMO’s standard solver for ideal MHD, as detailed in Hopkins &
Raives (2016).

We modify the standard GIZMO code in two ways.3 First, we
added metallicity-dependent cooling using GRACKLE (Smith et al.
2017). Second, we inject SN ejecta, distributed in time, mass, and
metal content using the same realization of SN properties as our
1D simulation. At the time of each SN, we inject new gas particles
(each with mass approximately equal to the average existing par-
ticle mass) at random locations using a spherical Gaussian kernel
with a dispersion of 2 pc centred on the origin. Each new particle
has equal mass and metallicity, which are determined by the SN
ejecta yields.4 For simulations which include magnetic fields, we
linearly interpolate the magnetic field vector from nearby existing
particles to the origin, and initialize the new feedback particles with
that interpolated magnetic field vector. This procedure does not
exactly preserve ∇ · B = 0, but GIZMO’s divergence cleaning pro-
cedure rapidly damps away the non-solenoidal component of the
field produced by our injection procedure.

We initialize the 3D simulations with the same static (v = 0)
homogeneous ISM as our 1D simulations (ρ = 1.33mH cm−3, Z
= 0.02, and T ∼ 340 K). For simulations with magnetic fields, we
include a homogeneous seed field, with B = (0, 0, 5) μG [identical
to Iffrig & Hennebelle (2015)], corresponding to a plasma β ≈
0.05. We place particles of mass �m on an evenly spaced grid of
spacing �x0, which extends for a box size of L. Particle locations are
perturbed on the mpc scale in order to avoid pathologies in GIZMO’s
density solver caused by the symmetric grid. In Table 1, we present
the parameters of the initial conditions. We typically5 run each
3D simulation for 40 Myr, by which point the radial momentum,
the quantity of primary interest for our study, had stabilized. We
also carry out a smaller set of simulations in which we give the
ISM a larger initial perturbation, whose magnitude shows a proper
physical dependence on resolution. We describe these simulations in
Appendix A, where we show that their results are nearly identical

3Our modifications of GIZMO and our analysis routines can be found at:
github.com/egentry/gizmo-clustered-SNe.
4While this approach leads to a well-sampled injection kernel at our higher
resolutions, the kernel is only sampled by about five new particles for each
SN in our lowest resolution run, 3D 40 HD. This undersampling is not ideal
and might slightly alter the bubble’s evolution, but the stochasticity this
introduces does not appear to affect our conclusions.
5The only exceptions are simulations 3D 07 HD and 3D 13 HD, which
cannot be run to completion because they have smaller box sizes in order to
minimize computational expense. These simulations are run until the shock
approximately reaches the edge of the box. They are not meant to provide
final values, but rather to enable us to investigate convergence of the results
up to the times when these runs end.

to those of our fiducial simulations. For this reason, we will not
discuss them further in the main text.

3 R ESULTS

In Table 2, we provide a summary of the key numeric results of
each simulation. First, we extract the time of maximum momentum
after the last SN (only accurate within about 0.5 Myr.) At that time
we extract the effective radius of the region affected by the bubble
(particles with speeds greater than 1 m s−1)

Reff =
⎛
⎝ 3

4π

∑
i:|vi |>1m s−1

Volumei

⎞
⎠

1/3

(1)

and the total mass of those particles, Maffected.6Next we extract the
kinetic energy Ekin and the change in the internal energy �Eint

of the entire domain (which should be approximately equal to the
values for the bubble-affected region). Finally, we extract the radial
momentum using three approaches: one by simply measuring the ra-
dial momentum at the same time as the previous quantities (denoted
pmax), another using a ‘ratchet’ approach justified and explained in
Section 3.2 (denoted pratchet), and third by extracting the momentum
at the last time achieved by all simulations (t = 6.46 Myr).

In the following subsections we discuss the results in greater
detail. First, we compare our 1D and 3D results in Section 3.1.
Second, we look at the effect of including magnetic fields in our 3D
simulations in Section 3.2.

3.1 Hydrodynamic results and convergence study

In Fig. 1, we show the radial momentum evolution of our median-
resolution completed 3D simulation without MHD (3D 20 HD),
and compare it to our 1D simulation. As can be seen in that figure,
we observe a significant difference between the final momenta in
our 1D and 3D simulations. While our 1D simulation of clustered
SNe shows a large gain in momentum per SN compared to the
isolated SN yield,7 our 3D simulation shows no such gain. That
discrepancy needs to be addressed.

This cannot be explained just by the fact that the 3D simulation
has a lower initial resolution. In our previous work we tested the
resolution dependence in our 1D simulations, and found that even
with an initial spatial resolution of 5 pc, we still measured a terminal
momentum yield roughly 10 times higher than what we find in
our 3D simulation here as long as we ran our code in pseudo-
Lagrangian rather than Eulerian mode (fig. 14 Gentry et al. 2017).
So the problem is not convergence in our 1D simulation, but we
have not yet shown whether our 3D results are converged.

To test for convergence in our 3D simulations, we compare our
simulations which differ only in resolution (3D 07 HD, 3D 10 HD,
3D 13 HD, 3D 20 HD, and 3D 40 HD); in Fig. 2, we show the mo-
mentum evolution of each simulation. From that figure, we conclude
that our 3D simulations do not appear converged, unlike our 1D sim-
ulations. The terminal momentum yield is increasing monotonically

6The exact velocity threshold is somewhat arbitrary, leading to roughly
10 per cent uncertainty in the affected mass depending on the chosen thresh-
old.
7We estimate the isolated SN momentum yield, 2.4 × 105 M� km s−1, using
the first SN of our 3D 20 HD simulation, although all of our 3D simulations
would give the same value within a few per cent. This is approximately
consistent with previous single SN simulations (e.g. Kim & Ostriker 2015;
Martizzi et al. 2015).
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Table 2. Results.

Name NSNe t Reff Maffected pmax/NSNe pratchet/NSNe pt = 6.46Myr/NSNe Ekin �Eint

(Myr) (pc) (106 M�) (100 M� km s−1) (100 M� km s−1) (100 M� km s−1) (1049 erg) (1049 erg)

1D 06 HD 11 94.8 552 23.2 33 978 33 978 5987 65.0 26.3
3D 07 HD 11 – – – – – 1027 – –
3D 10 HD 11 30.7 218 1.7 2425 2474 948 8.7 0.8
3D 13 HD 11 – – – – – 911 – –
3D 20 HD 11 30.7 200 1.5 2128 2182 862 7.4 0.8
3D 40 HD 11 31.7 209 1.8 2007 2039 901 6.8 7.0
3D 20 MHD 11 29.6 423 10.5 1213 2418 1020 12.6 13.1

Figure 1. Comparison of the momentum evolution of 1D and 3D sim-
ulations of the same cluster (simulations 1D 06 HD and 3D 20 HD, re-
spectively). The ‘isolated SN’ value is estimated using the first SN of the
3D 20 HD simulation, although it does not vary substantially between any
of our 3D simulations.

Figure 2. Resolution study of our 3D HD simulations.

as we increase the resolution, so our 3D results are converging in
the direction of our 1D results, but even at the highest resolution we
can afford the momentum yield remains well below the 1D case.
Thus we do not know if the 3D results would converge to the same
value as the 1D case, even with infinite resolution.

We further illustrate the non-convergence in Fig. 3, which shows
the momentum of the shell at 6.46 Myr, the latest time we are able

Figure 3. Resolution study of our 3D HD simulations at the last time
achieved by all simulations. Colours are consistent with the resolution study
figures above. The black dashed line shows the best power-law fit to all 3D
HD simulations except the worst resolution simulation (3D 40 HD). Both
axes are plotted using log scales.

to reach at all resolutions. As the figure shows, with the exception of
the lowest resolution run there is a clear trend of increasing momen-
tum at higher resolution; we discuss possible explanations for the
anomalous behaviour of the lowest resolution run in Appendix B.
A simple power-law fit to the points at resolutions of �x0 = 2 pc or
better suggests that the momentum is increasing with resolution as
p ∝ �x−0.16

0 . If we naively extrapolate this trend to the peak initial
resolution of 0.03 pc achieved in our 1D simulations, the predicted
momentum would be a factor of ∼2 larger than the highest reso-
lution run shown, though this may well be an underestimate since
Fig. 3 shows that the momentum appears to increase with resolution
somewhat faster than predicted by a simple power-law fit. In any
event, it is clear that, even at a resolution of 0.7 pc, our results are
not converged.

To gain additional insight into the resolution-dependence of our
results, and the differences between the 1D and 3D runs, we show
a density slice through the centre of simulation 3D 20 HD at t =
7.53 Myr shown in Fig. 4. Clearly in 3D, the interface between the
hot bubble interior and the cold shell is not spherically symmetric.
These anisotropies are the result of physical instabilities (such as the
Vishniac instabilities and the Rayleigh–Taylor instability) amplify-
ing numerical inhomogeneities in the background ISM (Vishniac
1983, 1994; Mac Low & McCray 1988; Mac Low & Norman 1993;
Krause et al. 2013; Fierlinger et al. 2016; Yadav et al. 2017). To see
how this might affect the terminal momentum, we turn to density–
temperature phase diagrams which are shown in Fig. 5. These phase
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Clustered SNe in 3D, MHD 3651

Figure 4. Reference density slice of the median resolution completed 3D
simulation (3D 20 HD) at t = 7.53 Myr, approximately 0.03 Myr after the
sixth SN.

diagrams correspond to a time soon after the sixth SN, with a de-
lay long enough to allow the injected energy to spread throughout
the bubble but sufficiently short to avoid significant energy losses
due to cooling in any simulation. All 3D simulations have about
1.1 × 1051 erg more total energy than the start of the simulations,
but 1D 06 HD retains more energy from previous SNe, and con-
tains about 2.7 × 1051 erg of total energy relative to the simulation
start. When we look at the mass-weighted phase diagram for our
highest resolution completed simulation (3D 10 HD), we see that
the mass is dominated by a cold dense shell, with a minority of
mass in less-dense warm and hot phases (>103 K).8 Even when we
vary the resolution, we only find negligible changes in the fraction
of mass in the cold phase; the cold phase (T < 103 K) contributes
99.2 per cent of the affected mass in every completed simulation
of our resolution study (3D 10 HD, 3D 20 HD, and 3D 40 HD).
What does change is the density and temperature distribution of
the warm/hot gas (T > 103 K). As we increase the resolution, the
warm/hot gas shifts to lower and lower densities. This effect is very
apparent for gas near the peak of the cooling curve (specifically
3 × 104 K <T < 3 × 105 K), which has a mass-weighted median
density of ∼10−1 mH cm−3 in our lowest resolution run, and ∼10−2

mH cm−3 in our highest resolution completed run.
This has a significant impact on the overall cooling times of

the simulations. The right column of Fig. 5 shows that while the
cold, dense phase dominates the mass, the minority of mass in
the warm/hot phases dominates the cooling rate. This is important
because resolution primarily affects these warm/hot phases, and it
affects those phases by shifting them to higher densities at lower
resolution, causing each particle to become more efficient at cooling.
This results in significantly shorter cooling times: from 27 Myr at
the best resolution to 0.3 Myr at the worst resolution, nearly two
orders of magnitude difference. This increase primarily occurs in
the warm/hot phases; at all resolutions gas warmer than 103 K
constitutes slightly less than 1 per cent of the total mass, but this
mass is responsible for 81 per cent of the cooling at our highest

8We also see a negligible amount of mass at unusually low temperatures,
<100 K. These particles are SN ejecta, which have very high metallicities
that have been frozen-in due to the Lagrangian nature of the code.

resolution completed run, and > 99 per cent of the cooling at our
lowest resolution.

When we look at the phase diagrams for our 1D simulation, we
see significant differences in the distributions of mass and cooling
rate, leading to the very different behaviour of the 1D simulation.
In particular, the 1D simulation completely lacks material at in-
termediate densities (∼10−2−100 mH cm−3) due to how well the
1D simulation retains the contact discontinuity. The diffuse bubble-
dense shell transition occurs within only a few cells, and the entire
dense shell is resolved by just 5–10 cells. In our 3D simulations,
these intermediate densities contribute a negligible amount of mass,
but are responsible for much of the cooling. Without this interme-
diate phase material, almost all of the cooling in the 1D simulation
occurs in the dense shell. We defer further discussion about the
physical nature of the intermediate-temperature gas, and to what
extent its properties are determined by physics versus numerics in
the various simulations, in Section 4.

3.2 Magnetic fields

In Section 3.1, we showed that our numerical methods and reso-
lution are not sufficient to achieve converged values of final radial
momentum and other key parameters due to physical instabilities
that develop within the superbubble shell. As described in Section 1,
we expect that magnetic fields might affect the growth of physical
instabilities, so we also run an MHD simulation as described in
Section 2.2 to test the impact of magnetic fields on the final mo-
mentum. While the more standard method of extracting momen-
tum, pmax, quoted in Table 2 appears to show that the inclusion of
magnetic fields significantly decreases the final momentum, in this
subsection we show that that method for estimating the asymptotic
momentum (finding the maximum momentum following the last
SN) is an oversimplification for simulations with magnetic fields.
When we better isolate the momentum added by SNe, we find that
adding magnetic fields can actually increase the momentum yield
at fixed resolution. Indeed, our �x0 = 2.0 pc MHD run produces a
larger momentum injection than our �x0 = 1.0 pc HD run.

First, to illustrate why the interpretation of the MHD simulation
is more complex, in Fig. 6 we compare its momentum evolution
to those of the non-magnetized simulations. The MHD simulation
initially shows an increased momentum yield relative to the corre-
sponding simulation without magnetic fields at the same resolution
(3D 20 MHD), but then the momentum decreases due to magnetic
tension forces. The reason for this is obvious if we examine a den-
sity slice at an earlier time, 9 as shown in Fig. 7: the expanding
shell bends magnetic field lines outward, and the field lines exert a
corresponding magnetic tension that reduces the radial momentum
of the expanding shell. This effect is so strong that the momentum
peaks after just seven SNe; the remaining four SNe clearly add
momentum but not enough to overcome the steady decline.

Due to this effect, the quantity pmax (the maximum momentum
after the last SN) that we have used to characterize the hydrody-
namic simulations is somewhat misleading, since our goal is to
study the momentum injected by SNe, not the combined effects of

9We chose to look at an earlier snapshot, when the magnetization has only
perturbed the bubble structure, rather than the later time shown in Fig. 4,
when the magnetization would have caused a strong, non-linear change in
the structure which could not be treated as a perturbation. In both cases the
magnetic tension is present, but the earlier time makes it more straightfor-
ward to compare to the non-magnetized runs.
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3652 E. S. Gentry et al.

Figure 5. Phase diagrams for our completed HD simulations at t = 7.53 Myr, about 0.03 Myr after the sixth SN, when all simulations still retain almost all of
the energy from the most recent SN. The left column shows the distribution of mass within temperature-density space, and the right column shows the cooling
rate distribution within the space. The rows show the non-magnetized simulations with initial resolution worsening from top to bottom. To the right of each
row, we give the cooling time of each simulation, tcool ≡ Eint/Ėcool, for reference.

SNe and magnetic confinement. To avoid this, we define an alterna-
tive quantity pratchet. To compute this quantity we sum any positive
changes in radial momentum between snapshots, while ignoring
any negative changes. We plot pratchet in Fig. 6, and report the final
value in Table 2. As expected, for the non-magnetic runs pratchet and
pmax are essentially the same, and thus examining pratchet allows us
to make an apples-to-apples comparison between the magnetic and
non-magnetic results.

This comparison is revealing, in that it shows that our simulation
with magnetic fields (3D 20 MHD) injects about 10 per cent more
momentum than the analogous simulations without magnetic fields
(3D 20 HD). The full explanation for this difference will likely
be complicated – for example, the bubble morphology and phase

structure are significantly altered at late times relative to the non-
magnetized runs – but we can see if our results are at least consistent
with the hypothesis that magnetic fields could inhibit the growth of
instabilities, leading to less phase mixing and cooling. To test this
hypothesis, we compare phase diagrams for the resolution-matched
magnetized and non-magnetized runs in Fig. 8, shown at the same
time (t = 2.56 Myr) as Fig. 7. There we see that magnetic fields
have an effect similar to that of increasing resolution in Fig. 5: both
suppress the growth of fluid instabilities, causing the material near
the peak of the cooling curve to stay at lower densities where it
cools less efficiently. For gas near the peak of the cooling curve
(specifically 3 × 104 K <T < 3 × 105 K), the median density
of the non-magnetized run is 1.7 × 10−1 mH cm−3, while in the
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Figure 6. Same as Fig. 2, except now including the momentum evolution of
our MHD simulation (3D 20 MHD; blue dashed curve), as well its ‘ratchet’-
filtered momentum evolution, pratchet (red dashed curve), and excluding our
incomplete HD runs (3D 07 HD and 3D 13 HD).

Figure 7. Same as Fig. 4, except now for simulation 3D 20 MHD with
approximate magnetic field lines overplotted, and at an earlier time (t =
2.56 Myr; approximately 0.02 Myr after the third SN).

magnetized run it is 1.4 × 10−1 mH cm−3 – a modest change, but
a change in the predicted direction. As a result the overall cooling
time is about two times longer in the MHD run. Thus by suppressing
the growth of instabilities, the inclusion of magnetic fields results
in a longer overall cooling time which should contribute to a higher
yield of momentum.

4 A NA LY SIS

In Section 3, we showed our broad results, which have three key
features: (1) Our 1D Lagrangian simulation finishes with about
10 times more momentum than our 3D simulations, and is converged
with respect to resolution. (2) Our 3D HD simulations show a
general increase in momentum as resolution improves, but are not
converged even at the highest resolutions we can reach [similar to
the 1D Eulerian simulations of Gentry et al. (2017), which are not

converged even at a resolution of 0.31 pc]. (3) Our MHD simulations
show less momentum than the resolution-matched HD simulation
when the momentum is estimated directly, but more momentum
when our ‘ratchet’ filter is used.

The phase diagrams shown in Figs 5 and 8 reveal that the changes
in momentum budget appear to be associated with changes in the
total mass and mean density of gas at temperatures of ≈105 K, near
the peak of the cooling curve, which dominates the cooling budget.
In this section we seek to understand the physical origin of these
differences, with the goal of understanding whether the converged
1D or non-converged 3D results are likely to be closer to reality.

4.1 What determines convergence or non-convergence?

As a first step in this analysis, we investigate why our 1D Lagrangian
simulations are converged while our 3D simulations are not. A
simplistic view of superbubble cooling is one where the diffuse
bubble interior contains most of the thermal energy but is radiatively
inefficient, while the cold dense shell is radiatively efficient but
does not have significant amounts of thermal energy to radiate. The
cooling rate is then set by how quickly energy can transfer from one
phase to the other.

The minimum amount of energy transfer comes from the fact that
the hot overpressured bubble is doing work on the shell, transferring
thermal energy from the interior into kinetic energy of the shell. As
the shell sweeps up and shocks new material, some of this kinetic
energy will be transferred into thermal energy within the shell,
where it can be easily radiated. To lowest order, we predict this
mechanical process would result in the following cooling rate:

Ėcool,mechanical = 4πR2
shockVshockρ0

(
V 2

shock

2

)
. (2)

This expression assumes a supersonic shock, and that all of the
energy that is converted from kinetic to internal energy is immedi-
ately radiated away. At each simulation snapshot, we can compute
Rshock and Vshock

10 and compute the expected cooling rate using
equation (2). We can then compare that to the observed cooling
rate, calculated by GRACKLE for each snapshot.

We begin our predicted-versus-actual cooling rate comparisons
with our 1D Lagrangian simulation (1D 06 HD) shown in the top
panel of Fig. 9. In that figure we can see that even though our
mechanical shock model is simple, it does a generally good job
predicting the observed cooling rate. On the other hand, we can
repeat this with a simulation that is identical to 1D 06 HD except it
uses an Eulerian hydrodynamic solver, leading to the results shown
in the middle panel of Fig. 9. This reveals a very different picture:
there are many times when the observed cooling rate is over an
order of magnitude greater than our mechanical shock model would
predict. And when the observed rate is lower than predicted, it is
because the shell has already transitioned from a non-linear shock
to a linear sound wave, for which we know equation (2) should
not hold. While the mechanical shock model can explain most
of the behaviour behind the 1D Lagrangian simulation, in the 1D
Eulerian simulation the chosen numerical methods lead to much
higher cooling rates which must be powered by additional thermal

10For our 3D simulations, we estimate Rshock as the mean radius of the
overdense particles and Vshock as the mean radial velocity of the overdense
particles. For our 1D simulations, we determine Rshock as the outermost
overdense cell (see Gentry et al. 2017), and determine Vshock by taking the
difference of Rshock between snapshots.
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Figure 8. Same as Fig. 5, except at the earlier time shown in Fig. 7 (t = 2.56 Myr), and only showing the magnetized simulation (3D 20 MHD) and the
corresponding non-magnetized simulation with the same resolution (3D 20 HD).

energy being pumped into the shell. When we apply this same
approach to one of our 3D Lagrangian simulations (specifically
simulation 3D 20 HD, shown in the bottom panel of Fig. 9), we
find a behaviour similar to the 1D Eulerian simulation and very
different from the 1D Lagrangian simulation: the actual cooling
rates often far exceed the rate predicted by our mechanical shock
cooling model.

This analysis makes it clear why the 1D Lagrangian simulations
are converged: the radiative cooling rate has reached the minimum
allowed by the physical situation of an adiabatic fluid doing work
on a medium with a short radiative cooling time. Consequently,
increasing the resolution cannot further reduce the rate of radiative
loss; it is already as low as physically allowed. If we run the same
problem in 1D Eulerian mode, or in 3D but at much lower resolution,
the cooling rate is far in excess of the minimum. Cooling is powered
not primarily by adiabatic compression of the cold gas followed by
radiative loss, but by direct transfer of thermal energy between the
hot and cold phases without doing any mechanical work. The rate
of transfer is clearly resolution-dependent, which explains why the
1D Eulerian and 3D simulations are not converged.

4.2 Conduction and numerical mixing across the interface

Since the key difference between the converged 1D Lagrangian
simulations and the unconverged 3D simulations is the relative im-
portance of energy transfer by mechanical work versus other mech-
anisms, we next investigate the expected rate of non-mechanical
energy transfer in reality, and how that compares to the rate in our
simulations.

In a bistable radiative medium such as the one we are simulating,
conductive transfer occurs across an interface whose characteristic

width, known as the Field length, is given by (Begelman & McKee
1990)

λF =
(

κT

n2	

)1/2

, (3)

where κ is the thermal conductivity and 	 is the cooling function.
The conductive heat flux is F ∼ κT/λF, so the total rate at which
energy conducts across an interface of area A and is lost to radiation
is

Ėcond ∼ Ėcool ∼ A
κT

λF

. (4)

Fig. 5 shows that, for simulation 3D 40 HD at time t = 7.53 Myr,
typical values for the gas that dominates the cooling are n = 1 cm−3

and T = 4 × 105 K. Using Begelman & McKee’s expression for
thermal conductivity, assuming no suppression by magnetic fields
and no saturation, together with the approximate cooling function 	

from Koyama & Inutsuka (2002, their equation 4, which we use for
simplicity, rather than performing the full GRACKLE calculation), we
find λF ≈ 0.003 pc. Using the lower density n ≈ 10−1 cm−3 found in
our highest resolution completed 3D simulation (3D 10 HD) would
increase this to λF ≈ 0.03 pc. By contrast, our best 3D simulation
resolution is an order of magnitude larger; only our 1D Lagrangian
simulation approaches this resolution. Thus the true physical width
of the interface is far from resolved in any of our 3D simulations.

In our simulations, as opposed to reality, the width of the in-
terface is set by numerical resolution. We illustrate this point in
Fig. 10, which shows temperature and density slices from our high-
est resolution simulation (3D 07 HD) shortly after the second SN.
We summarize the physical properties of the hot–cold interface,
defined as material between 3 × 104 K and 3 × 105 K, roughly cor-
responding to the peak of the cooling curve, in Table 3; we include
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Figure 9. Comparison of the numeric cooling rate with the cooling rate pre-
dicted by our mechanical shock model, equation (2), for our 1D Lagrangian
simulation (1D 06 HD; top), our 1D Eulerian simulation (1D 06 HD, but
run with the code in Eulerian mode; middle), and our 3D HD simulation
with 2 pc initial resolution (3D 20 HD; bottom).

Figure 10. Density (top) and temperature (bottom) slices of the highest res-
olution 3D simulation (3D 07 HD) at t = 1.01 Myr, approximately 0.5 Myr
after the second SN. The lighter cyan and darker red contours correspond to
temperatures 3 × 104 K and 3 × 105 K, respectively, which are roughly the
bounds of the peak of the cooling curve.

3D 40 HD for completeness, but warn that, at this early time, its
interface is poorly sampled by only 16 particles, and thus the results
for it are not particularly meaningful. The main conclusion to make
from Fig. 10 and Table 3 is that the physical width of the interface
region is of order a particle smoothing length, so the width of the
interface is determined by numerics rather than physics.

What is the impact of this underresolution on the rate of radiative
loss? Though we do not include explicit conduction (nor would it
matter if we did, since our failure to resolve λF would lead us to
greatly underestimate the true conduction rate), any finite-resolution
numerical method necessarily has some conduction-like dissipation
at the resolution scale. It is convenient to characterize this dissipa-
tion in terms of the effective Péclet number of the method, which
is related to the effective thermal conductivity of the numerical
scheme κnum by

Pe ∼ LvnkB

κnum
, (5)
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Table 3. Interface properties at t = 1.01 Myr (0.5 Myr after the second SN). Here Npaticles and m are the number of
particles and total mass in the interface (defined as the set of particles with temperatures in the range 3 × 104−3 × 105

K, near the peak of the cooling curve), rmedian is the median radius of interface particles, hmedian is the median scale
length of interface particles, �rIQR is the interquartile range of interface particle radii.

Name Nparticles m rmedian hmedian �rIQR �rIQR/hmedian

(M�) (pc) (pc) (pc)

3D 40 HD 16 33.6 37.0 15.4 8.5 0.6
3D 20 HD 159 41.8 39.1 9.8 8.3 0.8
3D 13 HD 485 37.8 43.3 6.6 6.4 1.0
3D 10 HD 1303 42.8 45.4 4.9 5.1 1.0
3D 07 HD 4436 43.2 47.4 3.3 4.3 1.3

where L and v are the characteristic length and velocity scales.
The exact value of the Péclet number will depend on the numerical
method. In Eulerian methods where effective conduction is due to
fluids mixing at the resolution scale �x, we expect to have Pe ∼ 1
for L ∼ �x. In a Lagrangian method Pe will be substantially larger,
since mixing is suppressed. Ignoring this complication, if we replace
κ with κnum and λF with the interface width λI in equation (4), the
numerical conductive transport and cooling rates are then

Ėcond,num ∼ Pe−1AnkBT v (�x/λI ) . (6)

Using the same values of n and T given above, the approximate
velocity v ≈ 40 km s−1 for the shock at the time shown in Fig. 10,
and our empirical finding that �x/λI ∼ 1, we find that for a method
with Pe = 1 at the resolution scale, Ėcond,num ≈ 10Ėcond, i.e. under-
resolving the interface causes us to overestimate the rate of energy
loss by a factor of ∼10. This overcooling problem is substantially
reduced for the 1D Lagrangian simulation, since compared to the
other simulations it has both a smaller value of �x/λI (due to its high
resolution) and a larger value of Pe (due to its Lagrangian method).
Conversely, this analysis strongly suggests that the ultimate reason
for non-convergence in our 3D simulations is that their rates of
energy loss are dominated by resolution-dependent artificial con-
duction. Thus the terminal momentum in these simulations must be
regarded as a lower limit on the true value.

4.3 The role of 3D instabilities

Before accepting the conclusion that artificial conduction is the
culprit for our non-convergence, however, we should examine an
alternative hypothesis. The total conductive transport rate (equa-
tion 4) depends not just on the conductive flux, but on the area of
the interface. Examining Fig. 10, it is clear that the area of the in-
terface is affected by 3D instabilities that are not properly captured
in the 1D simulations. Could the non-convergence in 3D be a result
of the area not being converged, rather than the conductive flux not
being converged? This hypothesis might at first seem plausible, be-
cause many instabilities (such as the Rayleigh–Taylor, Richtmyer–
Meshkov, and Vishniac) initially grow fastest at the smallest scales
(e.g. Taylor 1950; Richtmyer 1960; Vishniac 1983; Michaut et al.
2012). If the area of the interface is determined by the amount of
time that it takes perturbations to grow from the resolution scale that
might explain why our highest resolution simulation has the lowest
cooling rate: because it had the smallest perturbations to start, and
it has the smallest interface area later on, and thus the smallest rate
of conduction.

However, we can ultimately rule out this hypothesis for two rea-
sons. First, if the rate of mixing and radiative loss were set by
processes developing from grid-scale perturbations, then changing

the initial perturbation strength and scaling should have a notice-
able impact on the cooling rate. However, as shown in Appendix A,
our non-convergence is quite robust to the details of the grid-scale
perturbations. The results are not any more converged when we
impose perturbations whose power spectral density is independent
of resolution over all resolved scales, and increasing the initial per-
turbation strength by a factor of >25 has negligible effects on the
outcome. Second, once they are strongly non-linear, interface insta-
bilities are typically dominated by larger rather than smaller modes.
Examining Fig. 10, it is clear that even just after the second su-
pernova we already have strongly non-linear perturbations in the
shell, with each spike well resolved by many particles. If linear
growth of instabilities from the grid scale were the source of our
non-convergence, we would expect to see the greatest resolution
dependence at early times, when the perturbations are smallest, and
convergence between the runs at later time, when the instabilities
reach non-linear saturation. Examining Fig. 2, however, shows ex-
actly the opposite pattern: resolution matters more at later times
than at earlier ones.

However, simply because we can rule out the hypothesis that the
non-convergence of the 3D simulations is a result of our failure to
capture the growth of 3D instabilities, it does not follow that the
instabilities are not important. Fig. 10 clearly shows that the area
of the interface in 3D is clearly larger than 4πR2

shock, and thus the
rate of conduction across the interface should be higher than it is
in our 1D simulations. Thus while our 3D simulations represent
a lower limit on the terminal momentum, we must regard the 1D
simulations as representing an upper limit, since the interface in 1D
has the smallest possible area.

5 C O N C L U S I O N S

In this paper, we revisit the question of whether clustering of SNe
leads to significant differences in the amount of momentum and
kinetic energy that supernova remnants deliver to the ISM. This
question is strongly debated in the literature, with published results
offering a menu of answers that range from a relatively modest
increase or decrease (Kim & Ostriker 2015; Walch & Naab 2015;
Kim et al. 2017) to a substantial increase (Keller et al. 2014; Gentry
et al. 2017). We investigate whether this discrepancy in results is due
to numerical or physical effects, and to what extent it might depend
on whether the flow is modelled as magnetized or non-magnetized.

Our results offer some encouragement and also some unhappy
news regarding the prospects for treating supernova feedback in
galactic and cosmological simulations. The encouraging aspect of
our findings is that we have identified the likely cause of the discrep-
ancy between the published results. We find that the key physical
mechanism driving the differences between our runs, and almost
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certainly between other published results, is the rate of mixing
across the contact discontinuity between the hot interior of a super-
bubble and the cool gas in the shell around it. Our 1D Lagrangian
results (Gentry et al. 2017) maintain the contact discontinuity nearly
perfectly, and give it the smallest possible area, and this explains
why they produce large gains in terminal momentum per supernova
due to clustering. However, these results likely represent an upper
limit on the momentum gain, because they do not properly capture
instabilities that increase the area of the contact discontinuity and
thus encourage mixing across it.

In 3D, both physical instabilities and numerical mixing produce
intermediate temperature gas that radiates rapidly and saps the en-
ergy of the superbubble, lowering the terminal momentum. Due to
this mixing, we are unable to obtain a converged result for the ter-
minal momentum; we find that the terminal momentum continues
to increase with resolution even at the highest resolution that we
complete (1 pc initial linear resolution, 0.03 M� mass resolution).
The cause of this effect is clear: as we increase the resolution, we
find that the mean density and total mass of gas near the peak of the
cooling curve continuously decreases (indicating a decrease in mix-
ing), and this typically leads to a decrease in the amount of energy
lost to radiation. Consequently, we are forced to conclude that even
at our highest resolution in 3D, the mixing and energy transfer rate
across the contact discontinuity is dominated by numerical mixing.
As a result, our estimate of the momentum per supernova is only a
lower limit.

Our tests with magnetic fields reinforce this conclusion. We find
that magnetic fields suppress the growth rate of physical instabili-
ties. This leads an magnetized simulation to inject more momentum
per supernova than a non-magnetized simulation, but both still inject
far less than the no-mixing case. This is consistent with the conclu-
sion that physical mixing is present in our simulations but numerical
mixing is the dominant source. In the real ISM, magnetic fields are
doubtless present, so this effect should not be neglected, especially
in simulations that are not dominated by numerical mixing.

Our findings cloud the prospects for obtaining a good first-
principles estimate of the true supernova momentum yield in a
homogeneous ISM. Our peak spatial resolution is higher than that
achieved in previous 3D simulations, and we used Lagrangian meth-
ods rather than Eulerian methods. We note that our choice of La-
grangian rather than Eulerian methods was based on a 1D rather
than 3D experiment, and that our results are likely affected by mul-
tiple definitions of resolution, such as the mass resolution of ejecta,
and not just the peak spatial resolution. None the less, we are unable
to reach convergence. We are forced to conclude that the true mo-
mentum yield from clustered SNe in a homogeneous ISM remains
substantially uncertain. At this point we can only bound it between
≈2.4 × 105 M� km s−1 per SN (our non-converged 3D result) and
≈3.4 × 106 M� km s−1 per SN (our converged but 1D result).
The 1D result certainly produces too much momentum, since 3D
instabilities must enhance the conduction rate at least somewhat
by increasing the area of the hot–cold interface. Similarly, our 3D
results produce too little momentum, since our 3D results remain
dominated by numerical conduction even at the highest attainable
resolution; we do not know how close a converged 3D result would
lie to the 1D, no-mixing limit.

We conclude by noting that we have not thus far investigated
the effects of using a realistically turbulent, multiphase ISM. The
presence of density inhomogeneities could well lead to higher rates
of mixing across the contact discontinuity, and thus a reduction
in the supernova momentum yield. However, we urge caution in
interpreting the results of any investigations of these phenomena,
since we have shown that even state-of-the-art simulation methods

operating at the highest affordable resolutions cannot reach con-
vergence in what should be substantially simpler problems. It is
conceivable that the more complex density field of a realistic ISM
might make it easier to reach convergence, but such a hope would
need to be demonstrated rigorously using convergence studies in
multiple numerical methods.
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APPENDIX A : SENSITIVITY TO INITIAL
P E RTU R BAT I O N S

In the fiducial 3D simulations presented in the main text, we set up
the initial GIZMO particle positions by placing them in a uniform
grid and then randomly perturbing each particle position using a
Gaussian kernel with a dispersion of 10−3 times the initial spatial
resolution. This results in an uncorrelated artificial density pertur-
bation with a standard deviation of about 2 × 10−4 times the mean
density as inferred by GIZMO’s density solver, regardless of resolu-
tion.

In order to understand the effect of this perturbation, and how
our results depend on its magnitude and whether that magnitude
scales with resolution, we rerun a subset of our simulations with an
additional perturbation. In addition to the artificial coordinate-based
perturbation, we apply a ‘physical-like’ perturbation field directly
to the particle masses and densities. To realize this, we generate a
white (uncorrelated) Gaussian perturbation field with a magnitude
of 5 per cent of the mean density sampled on the grid of our highest
resolution completed simulation (3D 10 HD). For our lower reso-
lution runs, we average the perturbation over appropriately larger
apertures, matching what should happen if this were a physical
perturbation. This averaging results in a decreasing perturbation
magnitude at worsening resolution, but the magnitude is always
at least a factor of 25 larger than the standard coordinate-based
perturbation, and the power spectral density of the perturbation is
the same at all resolved scales in all simulations. This resolution-
dependence is a key difference from the artificial perturbation in
our primary runs which has a magnitude that does not change with
resolution. This process also introduces minor spatial correlations,
as some higher resolution particles are equidistant between lower
resolution particles, and their perturbation must be shared between
multiple lower resolution particles.

In Fig. A1, we show the results of rerunning our three completed
3D HD simulations (3D 10 HD, 3D 20 HD, and 3D 40 HD) with
these alternative initial conditions.11 We find that the details of
the initial perturbation has very little effect compared to changing
the resolution; increasing the perturbation magnitude by a factor
of more than 25 has a smaller effect than increasing the spatial
resolution by a factor of 2.

11The variant of 3D 10 HD with the additional perturbation has only been
run for about 15 Myr due to its computational cost, but we do not expect
our conclusions would change if it were run to completion.

Figure A1. Comparison of the momentum evolution of our completed 3D
simulations (3D 10 HD, 3D 20 HD, 3D 40 HD), and similar simulations
with an additional, stronger perturbation with magnitudes that correctly
scale with resolution.

APPENDI X B: SI MULATI ON 3D 40 HD A S A N
OUTLI ER AT EARLY TI MES

In the resolution study (e.g. Fig. 2) we see that the momenta of our
simulations are well-ordered with respect to resolution at late times
but that between the second and third SNe our lowest resolution
simulation (3D 40 HD) has more momentum than our highest res-
olution simulation (3D 07 HD). We conjecture that this anomalous
behaviour of 3D 40 HD is related to our SN injection method. As
noted in Section 3.1, a typical SN is added using only ∼5 new par-
ticles in 3D 40 HD, leading to an undersampled injection kernel.
While it is not clear precisely why undersampling would lead to a
systematic increase in momentum, it is strongly suggestive that our
simulations start behaving differently right as we hit the resolution
limit of one of our methods.

Fortunately, this does not appear to affect our late-time results
or our major conclusions. At early times, we recommend treat-
ing 3D 40 HD as an outlier, in which case the momentum will be
monotonic with respect to resolution at effectively all times.
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