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ABSTRACT
We present a flexible, detailed model for the evolution of galactic discs in a cosmological
context since z ≈ 4, including a physically motivated model for radial transport of gas and
stars within galactic discs. This expansion beyond traditional semi-analytic models that do
not include radial structure, or include only a prescribed radial structure, enables us to study
the internal structure of disc galaxies and the processes that drive it. In order to efficiently
explore the large parameter space allowed by this model, we construct a neural-network-
based emulator that can quickly return a reasonable approximation for many observables we
can extract from the model, e.g. the star formation rate or the half-mass stellar radius, at
different redshifts. We employ the emulator to constrain the model parameters with Bayesian
inference by comparing its predictions to 11 observed galaxy scaling relations at a variety of
redshifts. The constrained models agree well with observations, both those used to fit the data
and those not included in the fitting procedure. These models will be useful theoretical tools
for understanding the increasingly detailed observational data sets from Integral Field Units
(IFUs).

Key words: methods: statistical – galaxies: evolution – galaxies: kinematics and dynamics –
galaxies: spiral – galaxies: statistics – galaxies: structure.

1 IN T RO D U C T I O N

The basic story of how galaxies form and evolve is quite similar
to the vision laid out in classic papers nearly four decades ago
(White & Rees 1978; Fall & Efstathiou 1980; Blumenthal et al.
1984), wherein gas cools in the potential wells of cold dark
matter haloes. Galaxy formation modelling has also had extensive
success deriving a detailed array of inferences about galaxies
using the complementary tools of full hydrodynamic simulations
(e.g. Ceverino, Dekel & Bournaud 2010; Hopkins et al. 2014;
Vogelsberger et al. 2014; Schaye et al. 2015; Pillepich et al.
2018) and dark-matter-only simulations plus empirical modelling
(e.g. Behroozi, Wechsler & Conroy 2013a; Hearin & Watson
2013). Despite all of the success, the fundamental physics con-
trolling the evolution of galaxies remains poorly understood,
from galactic winds to star formation to quenching. Given these
unknowns, it is clear that many aspects of galaxy formation
need to be parametrized. Models that do so explicitly and with
sufficient speed to economically survey the space of plausible
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parameter values provide the potential to narrow constraints on
the parameters in question and guide future observational ef-
forts.

There is a long history of such models constructed independently
with a variety of strengths and weaknesses (e.g. Benson et al. 2003;
Bower et al. 2006; Cattaneo et al. 2006; Somerville et al. 2008b;
Guo et al. 2011; Lu et al. 2014; Henriques et al. 2015). Typically
these models are constructed explicitly on a foundation of halo
merger trees and treat the evolution of the galaxies themselves
in a reasonably simple way. The parameters are then adjusted to
fit the luminosity function of galaxies in various bands at various
redshifts to the degree possible. Quantities that depend on the radial
distribution of material in the galaxy can often only be inferred by
way of strong implicit or explicit assumptions that are unlikely to
be true in the general case.

Thanks to extensive observational efforts in the past decade, a
rich set of data is available that extend beyond luminosity functions.
Large populations of galaxies have been shown to follow numerous
strong correlations between stellar mass and a wide array of other
properties: gas fractions, star formation rates, metallicity of gas
and stars, physical size, central stellar surface densities, Sersic
index, angular momenta, and circular velocity. In parallel, new
relationships have been uncovered at the kpc scale by IFU surveys
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of nearby galaxies (Croom et al. 2012; Sánchez et al. 2012; Bundy
et al. 2015).

In order to compare theories to data at scales smaller than a
galaxy, including IFU data, and profiles of galaxies at all redshifts,
e.g. measurements of galaxy size, concentration, and more generally
star formation and density profiles (e.g. Bigiel & Blitz 2012; Lang
et al. 2014; Nelson et al. 2016; Tacchella et al. 2016), it is necessary
to include some spatial dependence in one’s model of galaxy evolu-
tion. Obviously cosmological hydrodynamic simulations meet this
requirement, but are generally too expensive to efficiently explore
the wide range of plausible parameter values. One-dimensional
simulations strike a good balance between the variety of quantities
they can model and the speed necessary to do so efficiently. A variety
of models have been developed along these lines aiming to fit one or
another particular observational relation (e.g. van den Bosch 2002a;
Dutton & Bosch 2009; Fu et al. 2013; Stevens, Croton & Mutch
2016).

In this paper we present a new one-dimensional model based
on the Gravitational Instability Dominated Galaxy Evolution Tool
(GIDGET; Forbes, Krumholz & Burkert 2012; Forbes et al. 2014a).
Our model includes a comprehensive set of parametrized physical
processes, some of which are similar to those included in many
semi-analytic models (SAMs), including cosmological accretion
and halo growth, metallicity-dependent molecular gas fractions and
star formation, galactic outflows that depend on star formation rate
and other galactic properties, the production, expulsion via winds,
and delayed return of α and iron-peak elements, and realistically
delayed gas return from older stellar populations. However, our
model also includes a number of ingredients that have not heretofore
been included in SAMs but which both theory and observation
suggest are important to the structure of real galaxies: the radial
transport of gas and stars via gravitational and magnetic torques,
and the role of this transport in regulating the galaxy rotation curve,
turbulence in the interstellar medium (ISM), and radial distribution
of metals. We aim to constrain the parameters describing all of these
processes, and to quantify the importance of each of them in setting
observable quantities, using a novel machine learning framework.

In this paper we present a reasonably sophisticated one-
dimensional model. We include a comprehensive set of
parametrized physical processes, and we aim to constrain these
parameters, and quantify the importance of each in setting individual
observable quantities. In particular we include prescriptions for
cosmological accretion and halo growth, metallicity-dependent
molecular gas fractions and star formation, extremely flexible
spatially dependent galactic outflows, the production, diffusion,
advection, and fountain-related mixing of α and iron-peak elements,
realistically delayed return of gas from intermediate-age and old
stellar populations, radial transport of gas and stars via viscous
torques, the driving of turbulence via these torques and stellar
feedback, and an evolving rotation curve calculated from the
instantaneous mass distribution.

Section 2 explains these prescriptions in detail, Section 3 details
the procedure used to compare the model to a wide array of obser-
vational relations, and Section 4 shows the fits thereby obtained,
and a quantification of the importances of each model parameter in
setting each observational quantity. We summarize in Section 5.

2 TH E MO D EL

To model a single galaxy as a function of time, we employ the
latest version of GIDGET (Forbes et al. 2012, 2014a). At its most
basic level, GIDGET solves the full equations of hydrodynamics and

stellar dynamics for the evolution of a thin, axisymmetric viscously
evolving disc. In the code, a galactic disc is discretized on to a radial
grid, with the gas and stellar column densities, velocity dispersions,
and metallicities tracked in every annulus. These quantities are
evolved forward in time under the assumptions that the disc is
axisymmetric (∂/∂φ = 0; i.e. no quantities are allowed to vary with
azimuthal coordinate φ), and thin (|vr|� σ � vφ ; i.e. the magnitude
of the velocity of any bulk radial motions |vr| must be smaller than
the velocity dispersion σ , which itself must be small compared to
the azimuthal velocity vφ), so that each of the quantities in question
is a function of radius and time only.

In the remainder of this section we describe the GIDGET model
for galaxy evolution. We give the evolution equations for the gas
and stars in a galaxy in Section 2.1. These equations depend on
a series of terms, which we explain in the subsequent sections.
In Section 2.2 we describe how we compute the galactic rotation
curve and its evolution. In Section 2.3 we present our model for
gravitational instability-driven transport of gas and stars within
galaxies. Section 2.4 explains our model for cosmological accretion,
and Sections 2.5 and 2.6 describe how we implement star formation
and stellar feedback. Throughout, we provide a full derivation
or explanation of the method only in places where our method
here differs from that in Forbes et al. (2014a). For other parts of
the method, we refer readers to that paper and to Forbes et al.
(2012). Physical and numerical parameters introduced throughout
this section are summarized in Table 1.

2.1 Hydrodynamics

The surface density of the gas (�) and that of the stars (�∗) are
tracked following the standard continuity equation in nx logarith-
mically spaced annuli between rmin and rmax so that excluding the
source and sink terms, mass would be exactly conserved.

∂�

∂t
= 1

2πr

∂Ṁ

∂r
+ �̇cos − (fR,inst + μ)�̇SF + �̇rec (1)

∂�∗
∂t

= 1

2πr

∂Ṁ∗
∂r

+ fR,inst�̇SF − �̇rec (2)

Mass moves between the annuli at a rate Ṁ for the gas and Ṁ∗
for the stars, with positive values indicating inward flow. These
quantities are non-trivial functions of radius and time, and will be
discussed in more detail in Section 2.3. Mass is added to the gaseous
component at each annulus via �̇cos, representing cosmological
accretion, which again depends on radius and time (see Section 2.4).
The star formation rate surface density at each radius is given by
�̇SF. Of the surface density of gas that forms stars each time-
step, only some fraction fR,inst ≈ 0.77 remains in long-lived stellar
remnants – the remainder is returned to the ISM via core-collapse
supernovae on time-scales short enough that we approximate them
as instantaneous following Tinsley (1980). Low- and intermediate-
mass stars also return mass to the ISM via stellar winds on much
longer time-scales. This is included via the term �̇rec, which we take
to be the following summation over each bin of stellar age tracked
by the simulation, each with age Ti,

�̇rec =
∑

i

�∗,i ·
{

0 if Ti < 40 Myr
d fml(Ti)/dTi otherwise

(3)

where, following Leitner & Kravtsov (2011), the fraction of mass
returned to the ISM from a mono-age stellar population of age T is
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Table 1. Parameters controlling individual runs of the GIDGET model.

Parameter Defined Varied Training set distributiona

Initial conditions
Halo mass at z = 0 Mh,0 Varied log − U (1011 M�, 1012 M�)
Reduction in initial stellar scale radius αr,∗,0 Section 2.7 Varied log − N (2, 0.3 dex)
Reduction in initial gas scale radius αr,g,0 Section 2.7 Varied log − N (2, 0.3 dex)
Initial metallicity relative to a fiducial guess χZ,offset Equation (49) Varied log − N (1, 1 dex)
Initial metallicity relative to a fiducial guess χZ,slope Equation (49) Varied N (0.3, 0.2)
Initial gas mass relative to a fiducial guess χfg,0 Equation (47) Varied log − N (2, 0.3 dex)
log10 offset in concentration–mass relation αcon Equation (12) Varied N (0, 0.3)
Modification to low-mass SMHMb slope 	β Equation (46) Varied N (0, 0.3)

Accretion
Maximum accretion efficiency εmax Equation (28) Varied U (0, 1)
Quenching mass (M�) Mq Equation (30) Varied log − N (1012, 0.48 dex)
Quenching efficiency εq Equation (30) Varied log − N (10−3, 1 dex)
Proportionality constant of accretion scale radius αr Section 2.4.3 Varied log − N (0.141, 0.48 dex)

Outflows
Scaling of mass loading factor with � α� Equation (40) Varied N (0, 1)
Scaling of mass loading factor with fg αf Equation (40) Varied N (0, 2)
Scaling of mass loading factor with Mh αMh Equation (40) Varied N (−1, 1)
Normalization of mass loading factor μ0 Equation (40) Varied log − N (0.01, 1 dex)
Mixing of SN ejecta with stellar winds ξ Equation (41) Varied Beta(1,2)
Mixing of wind material with inflows ξ acc Equation (45) Varied U (0, 1)

Star formation
Efficiency per freefall time εff Equation (31) Varied log − N (0.01, 0.3 dex)
Adjustment to asymptotic SN momentum injection χ inj Equation (6) Varied log − N (1, 0.3 dex)
Short-time-scale remnant fraction fR,inst Section 2.1 Fixed 0.77
Asymptotic remnant fraction fR,asym Section 2.2 Fixed 0.503
Yield of α-elements from Type II SNe yα Section 2.6 Fixed 0.0278
Yield of iron-peak elements from Type II SNe yFe Section 2.6 Fixed 0.001 17
Yield of α-elements from Type Ia SNe yIa,α Section 2.6 Fixed 0.2926
Yield of iron-peak elements from Type Ia SNe yIa,Fe Section 2.6 Fixed 0.6678

In-disc transport
Dissipation rate per disc height crossing time η Equation (6) Varied log − N (1.5, 0.3 dex)
The thermal velocity dispersion of the WNMc σ sf Equation (6) Fixed 7.6 km s−1

Threshold value of Q Qf Equation (23) Varied log − N (1.5, 0.3 dex)
Additional Shakura–Sunyaev α viscosity αMRI Equation (24) Varied log − N (0.05, 0.3 dex)
In-disc metal mixing rate kZ Equation (43) Varied log − N (0.025, 0.3 dex)

Numerics
Number of cells nx Section 2.1 Fixed 256
k cut-off scale to suppress vφ oscillations klim Equations (A4) and (A3) Fixed 10
Power to which to raise exponential cut-off nlim Equations (A4) and (A3) Fixed 2
Inner boundary of computational domain rmin Section 2.1 Fixed 10−3 R
Outer boundary of computational domain rmax Section 2.1 Fixed 119(M/1011 M�)1/4(αr/0.1) kpc
Minimum stellar velocity dispersion σ ∗,min Section 2.1 Fixed 10 km s−1

Starting redshift zstart Fixed 4

aThe prior distributions are either normal, denoted N (mean, standard deviation); lognormal, denoted log − N (median, standard deviation in log10 of
the variable); uniform, denoted U (minimum, maximum), log-uniform, denoted log − U (minimum,maximum); or beta (whose probability density function
is ∝ xα − 1(1 − x)β − 1), denoted Beta(α, β).
bStellar Mass - Halo Mass (SMHM)
cWarm Neutral Medium (WNM)

taken to be

fml(T ) = 0.046 ln

(
T

2.76 × 105 yr
+ 1

)
(4)

assuming a Chabrier (2003) IMF and the functional form of
Jungwiert, Combes & Palouš (2001). Finally, mass is ejected from
the disc permanently at a rate proportional to the local star formation
rate, where the ratio of the outflow rate to the star formation rate is
defined as the mass loading factor μ (see Section 2.6).

The gas velocity dispersion, including both internal and turbulent
kinetic energy, is evolved according to

∂σ

∂t
= σ

6πr�

∂

∂r
Ṁ + 5(∂σ/∂r)

6πr�
Ṁ + (β − 1)vφ

6πr3�σ
T + G − L

3σ�
. (5)

We use β = dln vφ /dln r to denote the local power-law index of the
rotation curve. The first two terms account for advection of kinetic
plus internal energy through the disc. The third term represents
viscous heating via local torques T , and the final term accounts for
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local heating and cooling, with the net energy gain rate per unit
surface area G − L. This rate is taken to be

G − L = χinj

〈
p

m∗

〉
σ�̇SF − η�σ 2κQ−1

g

(
1 + σ�∗

σzz�

)

×
(

1 − σ 2
sf

σ 2

)3/2

. (6)

The first term accounts for energy added to the gas by supernova
remnants as the momentum they acquired during the Sedov phase is
deposited into the ISM. The mean momentum added per unit stellar
mass formed is taken to be the standard value of 3000 km s−1,
and χ inj is a free parameter. The second term, excluding the final
factor, is simply the kinetic energy per unit area (3/2)�σ 2 divided
by a scale height crossing time, replacing the factor of 3/2 with a
free parameter η. This is based on the classic result that turbulent
kinetic energy decays in a crossing time (Mac Low et al. 1998;
Stone, Ostriker & Gammie 1998). The final factor truncates the
cooling as σ → σ sf. Once the velocity dispersion approaches the
gas temperature of the WNM, the large-scale turbulence no longer
dominates the energy, and the velocity dispersion is likely set by a
balance of heating and cooling (e.g. Wolfire et al. 2003), which we
take to be a free parameter σ sf.

Stars in the disc are also subject to transport, and hence a process
analogous to viscous heating. Moreover, as new stars are added to
the disc, they form with a velocity dispersion comparable to that of
the gas from which they form, which tends to decrease the velocity
dispersion of the overall population. We separately track the radial
(σ rr) and vertical (σ zz) velocity dispersions of the stars. The former
evolves according to

∂σrr

∂t
= 1

2πr�∗(σrr + σzz)

{
vφ(β − 1)

r2
T∗ + σ 2

rr

∂Ṁ∗
∂r

+ Ṁ∗

(
3σrr

∂σrr

∂r
+ 2σzz

∂σzz

∂r

)}
+ 1

2�∗σrr

�̇SFσ
2. (7)

The set of terms in braces encapsulates the viscous heating and
transport as derived from the Jeans equations in Forbes et al.
(2014a), while the final term accounts for the addition of new stars
to the population with the velocity dispersion of the gas, σ . As in
Forbes et al. (2014a), we assume that viscous heating has a lesser
effect on the vertical velocity dispersion of the stars σ zz than the
in-plane velocity dispersion σ rr by a factor of 2, so that

∂σzz

∂t
= 1

2

1

2πr�∗(σrr + σzz)

{
vφ(β − 1)

r2
T∗ + σ 2

rr

∂Ṁ∗
∂r

+ Ṁ∗

(
3σrr

∂σrr

∂r
+ 2σzz

∂σzz

∂r

)}
+ 1

2�∗σzz

�̇SFσ
2. (8)

Because the exact shape of the velocity ellipsoid is a secondary
effect for the observables we consider in this work, we do not vary
this factor of 2, but leave it to future work on the kinematics of low-z
discs. For numerical stability in evolving passive mono-age tracer
stellar populations, we also never allow the velocity dispersion of
the stars to drop below σ ∗,min = 10 km s−1.

2.2 Rotation curve

In contrast to previous work with GIDGET, we do not assume that the
circular velocity is constant in time. Instead, we self-consistently
calculate it based on the distribution of matter (�(r) and �∗(r)) in
the disc, and a model for ρDM as a function of redshift, halo mass,
and deviation from the redshift-dependent concentration–halo mass
relation.

The circular velocity1 at every point in the disc can be divided
into contributions from the central region, the dark matter halo, and
the self-gravity of the disc, respectively,

v2
φ = v2

φ,cen + v2
φ,dm + v2

φ,disc. (9)

In this context, the central region is the material inside the inner
cut-off of our logarithmic grid. This mass grows over time under
the assumption that any gas that arrives there by in-disc transport
or directly via cosmological accretion rapidly forms stars; i.e.

Ṁcentral = Ṁ∗
∣∣
r0

+ (Ṁ
∣∣
r0

+ Ṁacc(r < r0))
fR,asym

fR,asym + μ
. (10)

Here μ is the mass loading factor evaluated at the innermost cell
of the simulation, and Ṁ and Ṁ∗ are the in-disc transport rates of
gas and stars, respectively, as calculated in the following section.
The accretion rate within the inner radius of the domain, r0, is
Ṁacc(r < r0) = ∫ r0

0 �̇acc2πrdr . Mass added to the centre via gas,
both in-disc and from cosmological accretion, is reduced by a
factor fR,asym/(fR,asym + μ), which is the long-run fraction of some
initial gas mass that survives in long-lived stellar remnants. The
asymptotic remnant fraction, fR,asym is given by 1 − fml(13.7 Gyr)
≈ 0.503 according to equation (4). The contribution to the circular
velocity from this central material is easily computed as v2

φ,cen =
GMcentral/r .

The contribution from the dark matter halo is similarly straight-
forward, namely v2

φ,dm = GMdm(< r)/r . To compute the dark
matter mass interior to radius r, Mdm(<r), we need an explicit model
of the halo density profile, including its dependence on redshift and
halo mass. For an Einasto profile the mass interior to a given halo-
centric radius is

Mdm(< r) = πρsr
3
s 22−3/αe2/αα3/α−1�

(
3

α
,

2

α

(
r

rs

)α)
, (11)

where �(x, z) is the incomplete Gamma function
∫ z

0 e−t t x−1dt . The
parameters α, rs, and ρs must be set to fit the haloes formed in a
cosmological simulation. We adopt the results from the simulations
of Dutton & Macciò (2014) for the relationship between the halo
mass and redshift and the other parameters, allowing some offset in
the mass–concentration relation αcon,

c200 = 10a+bm+αcon (12)

α = 0.0095ν2 + 0.155, (13)

where the new constants a, b, m, and ν are given by the following

m = log10

(
Mhh

1012 M�

)
(14)

ν = 10−0.11+0.146m+0.0137m2+0.00123m3

× (
0.033 + 0.79(1 + z) + 0.176e−1.356z

)
(15)

a = 0.520 + (0.905 − 0.520) exp
(−0.617z1.21

)
(16)

b = −0.101 + 0.026z. (17)

1Note that in the derivation of the dynamical equations of the previous
section, we have neglected asymmetric drift, i.e. the difference between the
circular velocity set by the gravitational potential and the mean tangential
component of the velocity vφ .
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The value of ρs is set such that the dark matter mass within RVir is
in fact Mh,

ρs = Mh

[
πρsr

3
s 22−3/αe2/αα3/α−1�

(
3

α
,

2

α
cα

200

)]−1

. (18)

Finally, for the contribution to the rotation curve from the self-
gravity of the disc, we follow Binney & Tremaine (2008),

v2
φ,disc = −r

∫ ∞

0
S(k)J1(kr)kdk, (19)

where Ji(x) denotes the ith Bessel function of the first kind, and

S(k) = −2πG

∫ ∞

0
J0(kr)(�(r) + �∗(r))rdr. (20)

For the purposes of our simulations, we approximate the disc surface
density as a piecewise constant in each annulus. In so doing, we can
rewrite these equations as

v2
φ,disc = 2πrG

∑
i

(�i + �∗,i)

×
∫ ∞

0
dkJ1(kr)k

∫ ri+1/2

ri−1/2

J0(kr ′)r ′dr ′, (21)

where �i and �∗,i are the gas and stellar surface densities in the
ith annulus of the simulation, and ri ± 1/2 are the boundaries of the
annulus. Details of how these integrals are computed may be found
in Appendix A.

2.3 Gravitational instability

When cells in the disc have values of the multicomponent Toomre
(1964) Q value (defined in Romeo & Wiegert 2011) that fall below
Qf, a free parameter, they experience a torque that will tend to heat
and transport the gas. The physical motivation is that when Q is low
enough the disc will be subject to local gravitational instability,
which will induce turbulent heating whose ultimate source is
the gravitational potential of the galaxy (Bournaud et al. 2010;
Krumholz & Burkert 2010; Goldbaum, Krumholz & Forbes 2015,
2016; Behrendt, Burkert & Schartmann 2016). We note that when
Q is low, other mechanisms may direct changes in Q that would
contribute to self-regulation, including enhanced star formation and
hence stellar feedback (e.g. Faucher-Giguère, Quataert & Hopkins
2013). Such effects are already included in our model via the explicit
models for star formation and injection of turbulent energy from
supernovae.

To encapsulate this effect, we have used a set of basic equations
that includes viscous heating terms proportional to T , ∂T /∂r ∝ Ṁ ,
and ∂2T /∂r2 ∝ ∂Ṁ/∂r . The torque and the mass flux are related
via

Ṁ = −1

vφ(1 + β)

∂T
∂r

, (22)

which is a statement of the conservation of angular momentum
under the assumption of a slowly varying potential (Krumholz &
Burkert 2010). The torque T is set to zero in annuli where Q >

Qf. When Q < Qf, we compute the torque (and its derivatives) as a
solution to a simple boundary value problem such that

dQ/dt = (Qf − Q)vφ/r if Q < Qf . (23)

In other words, we assume that turbulence driven by gravitational

instability acts to return the disc to a marginally stable state on
a dynamical time-scale, and that more unstable discs experience
quicker reversion to Q = Qf. In addition to whatever torque is
obtained by solving this boundary value problem, a torque given
by

TMRI = 2παMRI�r2σ 2
sf (24)

is added following the α prescription of Shakura & Sunyaev (1973).
This accounts for the possibility that radial transport in the disc
may occur through some other mechanism besides gravitational
instability, though for simplicity we assume αMRI is constant in
time and space within a given model.

The stars experience an analogous set of torques and radial
derivatives thereof, denoted T∗, Ṁ∗ ∝ ∂T∗/∂r , and so forth. The
stars conserve their specific angular momentum so that

Ṁ∗ = −1

vφ(1 + β)

∂T∗
∂r

, (25)

as in Forbes et al. (2014a).T∗ is similarly set to zero when Q∗ > Qlim,
and to some non-zero value when Q∗ < Qlim, such that dQ∗/dt =
(Qlim − Q∗)vφ /(4rQ∗), as suggested by Sellwood & Carlberg (1984)
and Carlberg & Sellwood (1985).

The heating mechanisms for the gas and stars are subtly different.
Stars are heated according to their stability parameter Q∗ =
σ rrκ/(πG�∗) where the epicyclic frequency κ = √

2(β + 1), and
β = dln vφ /dln r. In contrast, the torque experienced by the gas
depends on

Q ≈ QRW =

⎧⎪⎨
⎪⎩
(

W
T∗Q∗ + 1

TgQg

)−1
ifQ∗T∗ > QgTg(

1
T∗Q∗ + W

TgQg

)−1
ifQ∗T∗ < QgTg,

(26)

where the weight W = 2σrrσ/(σ 2
rr + σ 2), and T∗ ≈ 0.8 + 0.7σ zz/σ rr

and Tg ≈ 1.5 are corrections for the finite thickness of each
component. In other words the global stability of the disc, and
hence the torque on the gas, depends on both the gas and stars,
whereas the torques on the stars are assumed to only be affected by
the stability of the stars, determined by Q∗ alone. In practice this
means that we must choose Qlim � Qf , since otherwise the disc
may reach a state in which no torque on the gas T will be sufficient
to return the disc to Q = Qf. Intriguingly Romeo & Fathi (2016)
have demonstrated that the core of a nearby galaxy is in just such a
state, where the stars dominate the global gravitational instability of
the disc, potentially driving substantial turbulence in the gas phase.
This suggests that the interplay between gravitational instability of
different disc components, particularly their ability to drive torques
on the other components, warrants further study.

2.4 Accretion

2.4.1 Mean accretion rate

Following Bouché et al. (2010) the mean dark matter accretion rate
for a halo of mass Mh at a redshift z is taken to be

dMh

dt

∣∣∣∣
avg

= 34(Mh/1012 M�)1.14(1 + z)2.4 M� yr−1. (27)

The numerical values of these exponents are somewhat uncertain,
and there are alternative formulations for the halo growth rate (van
den Bosch 2002b; Wechsler et al. 2002; Genel et al. 2008; Neistein &
Dekel 2008; McBride, Fakhouri & Ma 2009), but this formula
captures the basic features of the growth of dark matter haloes.
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Baryons are accreted according to Ṁb = εaccfbdMh/dt . Essen-
tially, baryons are assumed to closely follow the dark matter. This
assumption is useful for its simplicity, though there are reasons to
expect it to fail. For instance, since z = 1 most of the growth
in halo mass has been due to the decrease in the mean density
of the Universe rather than due to new dark matter being added to
haloes (Diemer, More & Kravtsov 2013). However, Wetzel & Nagai
(2015) have shown in cosmological hydrodynamic simulations that
the growth of baryonic mass at small radii in a halo is actually closely
coupled to the growth of halo mass, despite pseudo-evolution.

A fit for εacc is provided by Faucher-Giguère, Kereš & Ma (2011)
for z > 2, but we continue to use it at lower redshift for simplicity,

εacc = εreduce min

(
εceil, 0.47

(
Mh

1012 M�

)−0.25 (1 + z

4

)0.38
)

.

(28)

We impose a maximum accretion efficiency εmax ≤ 1, which is a free
parameter that acts to allow inefficient accretion even in low-mass
haloes. Including this parameter was required to fit z = 0 galaxy
scaling relations in the simple equilibrium models in Forbes et al.
(2014b), and may be plausibly explained as pre-heating in low-
mass haloes by Lu et al. (2014) and Lu, Mo & Wechsler (2015a),
or mass lost from smaller galaxies that reside in the substructures
accreted along with the smooth flow of dark matter. Equation (28)
includes a factor εreduce, which will be specified in Section 2.4.4 to
account for quenching. This formula also captures a few important
physical features of gas accretion on to haloes, namely that higher
mass haloes have higher virial temperatures, so shock-heated gas
cools more slowly. Similarly, higher redshift haloes are denser, so
the cooling time is shorter, and the efficiency is higher.

2.4.2 Variability in the accretion rate

Equation (27) is useful as a starting point for understanding the
growth of haloes, but obviously it does not capture halo-to-halo
variance in the accretion history, or the effects of mergers. To
incorporate these elements into our model, we employ publicly
available halo merger trees from the Bolshoi simulation (Klypin,
Trujillo-Gomez & Primack 2011; Behroozi et al. 2013b). For each
tree, we construct the growth history of the main progenitor, and
identify haloes that merge into the main halo between each output
snapshot of Bolshoi. The finite resolution of the N-body simulation
means that haloes below a certain mass are not formed in the
simulation, and that not all z = 0 haloes have a main progenitor
at the higher redshifts where we begin our 1D calculations, e.g.
z = 4.

In order to get around this resolution limit, we rely on the fact that
the growth of structure in a cold dark matter universe is self-similar
below a characteristic halo mass M∗. Rather than following the
growth of a galaxy in a particular halo with a particular final mass
in Bolshoi, we scale each main progenitor growth history so that it
can be used to simulate a galaxy in a halo of any mass, though in
practice we restrict ourselves to using trees whose final halo mass
is within 0.25 dex of the halo we wish to simulate if possible. If we
wish to simulate a halo whose mass is below the resolution limit,
we pick a tree from the lowest half dex of available trees.

To do so, we simply take the instantaneous mass and redshift
of the Bolshoi main progenitor halo, use equation (27) to find
the average dark matter accretion rate for haloes at that mass and

redshift, and record x such that

10x = min

(
dMh/dt |Bolshoi

dMh/dt(Mh,Bolshoi, z)|avg
, 10−5

)
. (29)

Each merger tree is thereby reduced to a sequence of x values.
GIDGET uses this sequence as an input – starting from any redshift
zero halo mass Mh,0, the accretion rate is computed as dMh/dt|avg10x.
The halo mass Mh is integrated backwards according to this
accretion history.

This methodology relies on the distribution of the logarithm of
accretion rates about the median being close to constant across time
and halo mass, with only the centre of the distribution changing.
This approximation is reasonable in the dark matter simulations
themselves (Neistein & Dekel 2008; Neistein, Macciò & Dekel
2010; Rodrı́guez-Puebla et al. 2016), and may be the source of
scatter in the star-forming main sequence (Forbes et al. 2014b;
Rodrı́guez-Puebla et al. 2016), the mass–metallicity relation, and
the anticorrelation in metallicity and star formation rate at fixed
mass (Forbes et al. 2014b).

Another feature of equation (29) is the requirement that x > −5.
Many of the halo mass assembly histories in Bolshoi contain at
least some period of time wherein the halo loses mass. This is the
result of a variety of physical effects, as well as the difficulty of
correctly assigning N-body particles to haloes at each snapshot in
the simulation (Behroozi et al. 2015; Lee et al. 2016). Even if the
effect is physical, e.g. stripping of a halo by a close encounter, it is
unlikely that the galaxy itself will be strongly affected by the halo’s
mass-loss given the difference in physical scale. We therefore simply
assume that the accretion rate is essentially zero during this time.
There is a danger that some of the subsequent accretion recorded
in the accretion history will be spurious (e.g. the halo reacquiring
particles that should have been identified as part of the halo the
whole time), but there is no way to distinguish these scenarios from
the merger trees alone.

Along with the sequence of x values recorded from the Bolshoi
merger trees, we can identify haloes that disappear from one
snapshot to the next in the tree. For each, again employing the
argument that the growth of structure is roughly self-similar, we
record the ratio of the mass of the disappearing halo to the mass
of the main progenitor halo at that redshift. For simplicity, at
each redshift we record the mass ratio of the top two mergers.
For the vast majority of haloes at a given redshift, there are no
mergers between two Bolshoi snapshots, and of the mergers, most
correspond to haloes near the resolution limit of Bolshoi. When
GIDGET reconstructs the mass accretion history starting from an
arbitrary new initial halo mass, each merger is redimensionalized
by multiplying the recorded mass ratio by the halo mass in the
reconstructed halo mass history at the same redshift where the
merger occurred in Bolshoi. The stellar mass of the merging galaxy
is then inferred by employing the stellar mass–halo mass relation
from Moster et al. (2010). This stellar mass is tracked as a separate
component M∗,halo, and has no direct effect on the simulation.

2.4.3 Radial distribution of the accretion rate

Another consideration regarding accretion is its radial distribution
�̇cos in the galaxy. A variety of approaches have been used to address
this question. A seminal paper on this subject is Mo, Mao & White
(1998), which assumes the development of an exponential disc with
a specific angular momentum (sAM) equal to a fixed fraction of
the dark matter sAM. A similar approach accounting for adiabatic
contraction and evolution of dark matter internal structure with time
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was developed by Somerville et al. (2008a) and used in subsequent
semi-analytic modelling (e.g. Somerville et al. 2008b; Popping et al.
2016). Note that these approaches do not specify �̇cos per se, but
rather the final distribution of baryons in the disc. A more detailed
method, still relying on properties of the dark matter, is to estimate
the sAM profile of the halo, and the rate at which gas at a particular
sAM in the halo cools. That gas is then added to a computational
grid discretized in sAM (van den Bosch 2002a; Dutton et al. 2007).

The fundamental assumption of the approaches above is that
gas closely follows dark matter, not just in terms of its density
distribution, but also in terms of its angular momentum. Some
recent cosmological hydrodynamic simulations suggest that this
is not the case. Rather, gas inflowing on to a galaxy can have
comparatively large sAM (Danovich et al. 2015) as the result
of inflow along cold filaments (e.g. Dekel et al. 2009), though
the survival of these streams is controversial (Nelson et al. 2015;
Mandelker et al. 2016). In the picture presented by Danovich et al.
(2015), the gas does eventually reach a sAM distribution in line
with expectations from simpler considerations (Mo et al. 1998),
and suggested by the observations (Burkert et al. 2016), but this
may be a coincidence. Indeed, in some simulations it appears that,
while the dark matter and baryonic sAM content of a population of
galaxies is quite similar in magnitude, on a halo-to-halo basis there
is little correlation between the two (Jiang et al. 2018; though see
also Obreja et al. 2016 and Grand et al. 2017).

Given the large theoretical uncertainties, we adopt essentially the
simplest assumption, which is that gas accretes in an exponential
surface density profile with a scale length equal to a fixed fraction
of the instantaneous virial radius, i.e. �̇cos ∝ exp(−r/(αRRVir)).
This is similar to our approach in Forbes et al. (2014a), and in the
semi-analytic work of Fu et al. (2013).

2.4.4 Quenching

A number of galaxy properties are observed to be bimodally dis-
tributed, with disc-like/blue/star-forming galaxies separated from
spheroidal/red/quenched galaxies, and relatively few galaxies in
between. Although it is possible for low-mass galaxies to fall into
the quenched category, such galaxies are found almost exclusively
in dense environments. Galaxies appear to undergo a separate
quenching process when they grow to a certain halo mass, so mass
and environment can each separately cause quenching (Peng et al.
2010, 2012). For the purposes of our model, we are only following
galaxies that are the main progenitors of z = 0 galaxies, and we
include no information about each galaxy’s position in the universe
relative to any other. We are therefore almost exclusively concerned
with mass quenching, rather than environment quenching.

The quenching of high-mass galaxies likely requires feedback
from supermassive black holes. Exact implementations from differ-
ent simulations and models vary immensely, and thus far we have
not explicitly implemented a model for the growth of black holes in
our model. Instead we employ a simple halo quenching model, in
which galaxies that reach a certain halo mass suffer severely reduced
baryonic accretion (Dekel & Birnboim 2006, 2008). This has the
advantage of being able to capture the turnover in the stellar mass–
halo mass relation, and account for much of the bimodality observed
in galaxies, but is unable to capture the occasional rejuvenation (the
transition of a galaxy from red back to blue) of galaxies as suggested
both observationally (Pandya et al. 2016) and theoretically (Pontzen
et al. 2017). Since our work is mainly focused on the internal
properties of spiral and dwarf galaxies, which are not quenched,

we do not attempt to implement a more realistic model that could
capture these effects.

To implement this form of mass quenching, we adopt the
following simple model. The baryonic accretion efficiency specified
by equation (28) is reduced by a further factor εreduce,

εreduce =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 Mh < Mq

√
εq z > 1.5 + log10(Mh/Mq) and Mh > Mq

εq z < 1.5 + log10(Mh/Mq) and Mh > Mq.

(30)

These divisions roughly correspond to those proposed in Dekel &
Birnboim (2008). In the absence of a stable accretion shock, gas is
able to cool efficiently and accrete on to the galaxy, so the accretion
efficiency is not reduced. In the regime where hot haloes exist but gas
may accrete via narrow cold streams, the efficiency is reduced, but
only moderately. When the width of accreting streams approaches
the virial radius, the galaxy is fully quenched. One could imagine
many variations on this scheme, but the exact choice is not obvious,
so for now we use this simple prescription.

2.5 Star formation

Stars form according to a combination of ideas outlined in Krumholz
(2012) and Krumholz (2013). We assume that the star formation
surface density follows

�̇∗ = εfffH2�/tff . (31)

The efficiency per freefall time εff is a free parameter of order
1 per cent, as estimated observationally (Krumholz & Tan 2007;
Krumholz, Dekel & McKee 2012; Salim, Federrath & Kewley 2015;
Usero et al. 2015; Heyer et al. 2016; Vutisalchavakul, Evans II &
Heyer 2016; Leroy et al. 2017; Onus, Krumholz & Federrath 2018)
and understood theoretically as a consequence of turbulence in self-
gravitating gas (e.g. Krumholz & McKee 2005; Federrath & Klessen
2012; Padoan, Haugbølle & Nordlund 2012). Finally, the freefall
time-scale tff can be estimated as the minimum of the freefall time
within a single molecular cloud, and the disc crossing time in the
case that the ISM is globally gravitationally unstable (Krumholz
et al. 2012). That is,

tff = min(tGMC, tToomre)

tGMC = π1/4

√
8

σ

G(�3
GMC�)1/4

(32)

tToomre =
√

3π2Q2
g

64(β + 1)

√
1 + �∗σ

�σzz

r

vφ

,

where �GMC ≈ 85 M� pc−2 is a typical giant molecular cloud
(GMC) surface density (Bolatto et al. 2008), and as in equation (6),
the second factor in tToomre is a correction for the finite thickness of
the disc.

In the past we have estimated the fraction of hydrogen mass in a
molecular phase, fH2 , according to Krumholz, McKee & Tumlinson
(2008, 2009a,b), but this prescription has difficulty reproducing the
small but non-zero molecular gas fraction at low column densities.
By combining aspects of Krumholz et al. (2009b) and Ostriker,
McKee & Leroy (2010), Krumholz (2013) developed a model to
self-consistently estimate the star formation rate and molecular
hydrogen fraction even in cases where Krumholz et al. (2009b)
broke down.

MNRAS 487, 3581–3606 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/487/3/3581/5513462 by C
onsolidation Plus Q

U
EEN

 user on 08 July 2019



3588 J. C. Forbes, M. R. Krumholz, and J. S. Speagle

The Krumholz (2013) model is iterative. Given a fixed total
gas surface density �, gas-phase metallicity relative to solar Z

′
,

density of collissionless matter ρsd (including stars, stellar remnants,
and dark matter), and tff as defined above, the model solves for a
value of �̇∗ that produces a self-consistent molecular fraction fH2 ,
interstellar radiation field G′

0, and particle density of the cold neutral
medium (CNM) nCNM.

The molecular fraction is taken to be

fH2 =
{

1 − (3/4)s/(1 + 0.25s) if s < 2

0 if s ≥ 2
(33)

where

s = ln
(
1 + 0.6χ + 0.01χ2

)
0.6τc

(34)

τc = 0.066fcZ
′�0. (35)

These equations are the same in Krumholz et al. (2009b) and
Krumholz (2013); here fc is the clumping factor, which should
be ∼5 if these equations are applied on � 1 kpc scales, or ∼1 on
smaller scales. The value of τ c is normalized for a column density
of �0 = �/1 M� pc2. To evaluate this equation we also need to
specify

χ = 7.2G′
0/n1, (36)

where n1 is the density of the CNM nCNM in units of 10 cm−3. The
interstellar radiation field is assumed to scale with the star formation
surface density relative to the solar neighbourhood value,

G′
0 = �̇SF

2.5 × 10−3 M� pc2 Myr−1 . (37)

The final piece of the model, and the key difference between
Krumholz et al. (2009b) and Krumholz (2013), is that nCNM =
max (nCNM,2p, nCNM,hydro), where

nCNM,2p = 23G′
0

(
1 + 3.1Z′0.365

4.1

)−1

(38)

and

nCNM,hydro = πG�2
H I

4.4αkBTCNM,max

{
1 + 2RH2

+
[

(1 + 2RH2 )2 + 32ζdαf̃wc2
wρsd

πG�2
H I

]1/2}
. (39)

Here RH2 = �H2/�HI, and we are using α ∼ 3, the ratio of mid-
plane pressure in a galaxy to thermal pressure, TCNM,max ≈ 243,
the maximum temperature for the CNM (Wolfire et al. 2003), a
correction factor ζ d ≈ 0.33 depending on the shape of the gas density
profile, the sound speed of the warm neutral medium cw ≈ 8km/s,
and the mass-weighted thermal velocity dispersion divided by the
c2

w, f̃w ≈ 0.5 (Ostriker et al. 2010). We adopt the approximated
values quoted here for all galaxies at all times.

2.6 Feedback and metals

The formation of stars leads to several forms of feedback on the
ISM. We make some crude approximations in our model given our
lack of spatial information and resolution. In every radial cell, we
take the surface density of gas ejected by feedback to be proportional
to the local star formation rate surface density. Following Creasey,
Theuns & Bower (2013), the proportionality constant μ = �̇out/�̇∗,

known as the mass loading factor, is taken to have a power-law
dependence on the local surface density and the ratio of gas density
to total density within the mid-plane, i.e. the gas fraction in the
terminology of Creasey et al. (2013),

μ = μ0

(
�

10 M� pc−2

)α�
(

�/0.1

� + ρsdH

)αf
(

Mh

1012 M�

)αM

. (40)

We additionally include an explicit dependence on halo mass, to
allow the model to capture the vastly different velocity scales
and potential well depths of different galaxies. As in the previous
subsection, ρsd is the density of stars and dark matter in the disc
mid-plane, and H is the local gas scale height.

The metal content of galactic winds is extremely difficult to
observe directly, but can be a large contributor to the metal budget of
a galaxy (Peeples et al. 2014). A natural assumption to make is that
at the radius where mass is being ejected, the metallicity of this wind
material will be the same as the metallicity of the local ISM. This is
plausible, but assumes that the metal-enriched ejecta of supernovae
and stellar winds (each of which may contribute appreciably to the
ejection of gas from the galaxy) are well mixed with ambient gas
and not preferentially incorporated into the galactic wind. We relax
that assumption by introducing the parameter ξ , defined so that the
metallicity of the galactic wind is

Zw = Z + ξ
y

max(μ, 1 − fR,inst)
. (41)

Note that Z and the associated quantities in this equation are in
general vectors representing an arbitrary number of metal fields.
When ξ = 0, the material being ejected from the galaxy has a
metallicity equal to that of the ambient ISM. When ξ = 1, every
newly produced gram of metals is ejected from the galaxy. The
yield, y, is the metal mass returned to the ISM per mass of stars
formed. As in Section 2.1, fR,inst is the fraction of mass in newly
formed stars that remains in stellar remnants as opposed to being
quickly returned to the ISM via supernovae.

As in Forbes et al. (2014a), metals are added according to the
instantaneous recycling approximation, advected in flows within
the disc, accreted along with infalling material, and diffused within
the disc.

∂(�Z)

∂t
= 1

2πr

∂(ṀZ)

∂r
+ Zacc�̇cos

+ (y − fR,instZ − μZw)�̇SF + ∂

∂r
κZ

∂(�Z)

∂r
+ yIaRIa

(42)

in analogy to the continuity equation for gas, equation (1). The
value of the diffusion coefficient κZ is taken from Yang & Krumholz
(2012) as in Forbes et al. (2014a),

κZ = min

(
3.32 × 10−3kZ

κσ 4

G2�2
, rσ

)
, (43)

where κ is the epicyclic frequency, not to be confused with
the diffusion coefficient κZ. We include a free parameter kZ for
flexibility, and we require that the diffusion coefficient not exceed
rσ , the product of the largest size scale and velocity scale we would
expect to be relevant for turbulent mixing. In practice we end up
reducing the allowable values of kZ to the order of a few per cent
to prevent spurious rapid diffusion in the outer parts of discs where
σ 4/�2 can become quite large.

Rather than a single metal field, iron-peak and α elements
are tracked separately following Kim et al. (2014). We therefore
treat each of Z, y, yIa, Zw, and Zacc as a two-component vector
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corresponding to α and Fe. The two components of the yield y
corresponding to the quantity of metals formed per unit mass of
star formation in Type II supernovae, and yIa, the mass of metals
produced per Type Ia supernova are of course different. The values
of the yields are included in Table 1, and are obtained by multiplying
the oxygen or iron yield, per mass of stars formed in the case of
Type II supernovae (Woosley & Heger 2007), or per Type Ia event
(the W7 model of Iwamoto et al. 1999), by the ratio of α elements
to oxygen or iron-group elements to iron in the Sun (Asplund et al.
2009). The rate of Type Ia supernovae per unit area in the disc is
taken to be

RIa = 2.0 × 10−3 M−1
�

∑
i

�∗,i

1 − fml(Ti)

1/ ln(100)

Ti

I0.1<Ti<10. (44)

The overall normalization is the number of Type Ia supernovae
per unit stellar mass formed. Our value of 2 × 10−3 is somewhat
larger than that inferred by Maoz, Mannucci & Brandt (2012)
observationally, but it has been adjusted by hand to better match the
α/Fe ratio in our simulations. The sum over i stellar populations is a
numerical approximation to the true continuous age distribution.
The factor of (1 − fml) is a matter of accounting; �∗,i is the
instantaneous stellar mass surface density, as opposed to the surface
density of stars at the time of formation. The difference between the
two is this factor assuming a large enough number of populations
is used that each may be considered approximately mono-age. This
is not a stringent requirement because fml is only logarithmically
dependent on age, with a characteristic time-scale far shorter than
the 100 Myr lower cut-off described by the indicator function
I0.1<Ti<10, which is 1 when Ti is between 0.1 and 10 Gyr, and 0
otherwise. Finally the factor of 1/ln (100) normalizes the 1/T term
such that (1/ ln(100))

∫
T −1I0.1<T <10 dt = 1.

A major difference between Forbes et al. (2014a) and our
prescription here is the inclusion of a galactic fountain term, which
allows metals ejected in the galactic wind to be reincorporated to the
accretion flow, and thereby mixed throughout the galaxy, as occurs
in cosmological simulations (e.g. Oppenheimer & Davé 2008; Ma
et al. 2016). Therefore, instead of Zacc = ZIGM, assumed constant
over the course of a simulation, we set

Zacc = ZIGM + ξacc

∫
2πrμ�̇SFZwdr/Ṁext. (45)

The mixing parameter ξ acc must be between 0 and 1, corresponding
to no mixing of outflows and inflows or total reaccretion of all
ejected metals, respectively.

2.7 Initial conditions

Galaxies are initiated at z= 4 as discs that are exponential in both gas
and stars, though the two are allowed to have differing scale lengths.
The metallicities are taken to be uniform in radius, and identical to
the metallicity of accreting gas prior to mixing with outflowing
metals, i.e. ZIGM. The velocity dispersions of both gas and stars are
set such that the galaxy is instantaneously gravitationally stable, i.e.
Q∗ > Qlim and Q > Qf.

To set the absolute value of the metallicity, stellar mass, and
gas fraction we turn directly to observational constraints. The halo
mass at the start of the simulation is pre-ordained by the particular
accretion history that has been chosen, integrated backwards from
the model’s given Mh,0. Given the halo mass, stellar masses are set
according to the results of Moster, Naab & White (2013) at z = 4 at

all masses (though of course this is an extrapolation at low masses).

M∗
Mh

= 2Nz

((
Mh

M1

)−βz−	β

+
(

Mh

M1

)γz

)−1

(46)

Each parameter, namely Nz, M1, βz, and γ z, is set according to the
best-fitting values from Moster et al. (2013). The low-mass power-
law slope of this relation, set by βz, is given an unknown constant
offset 	β.

The gas mass is set following the fit to observational data given
in Hopkins et al. (2009). Given a stellar mass, we compute the gas
mass and multiply it by a factor χfg ,

Mg = χfgM∗/(1/fg,0 − 1), (47)

where at z = 4 we set the initial guess for the gas fraction fg,0

following Hopkins et al. (2009)

fg,0 =
(
1 − τ4

(
1 − f 1.5

0

))−2/3

1 + (M∗/109.15 M�)0.4
(48)

and τ 4 = 12.27/(12.27 + 1.60) is the fractional lookback time at z =
4 compared to the age of the Universe. Since this is an extrapolation
from data that is itself uncertain, we treat this as a rough guess and
assign χfg a large prior range.

To estimate the initial metallicity and the metallicity of subse-
quent mass accretion, we begin with the simple power-law relation
between stellar mass and gas-phase metallicity observed by Lee
et al. (2006) in the local Universe for low-mass galaxies. At the
beginning of each simulation, once the initial z = 4 stellar mass
is determined (based on Mh,0, the accretion history, and a stellar
mass–halo mass relation as described above), we assign

log10 ZIGM = −3.05 + χZ,slope log10

(
M∗(z = 4)

1010 M�

)
+ log10 χZ,offset. (49)

The value of −3.05 begins with the corresponding value for Lee
et al. (2006). The normalization is then adjusted to convert from
units of 12 + log10(O/H) to absolute metallicity units, and further
reduced by a factor of 20, since we expect the IGM to have an
appreciably lower metallicity than z= 0 galaxies. The normalization
and slope are then given broad prior ranges.

3 SE A R C H I N G FO R A G O O D F I T

The model we have described in the previous sections is essentially
a more detailed and flexible semi-analytic model. We include more
physics, e.g. viscous gas and stellar transport, feedback and star
formation dependent on local disc properties, and no imposition of
a particular baryonic profile, but in so doing we have more physics
to parametrize. In many situations, as described in the previous
section, there is a reasonable estimate of the unknown parameter
available from observations or simulations. In other cases, as for
feedback where even the basic physical processes responsible for
driving galactic winds are still unclear, the parameters are poorly
constrained.

Our goal in this section is to identify a set of values for
the physical parameters described in the previous section that
simultaneously reproduce a wide variety of observational data. A
natural approach would be to operate within a Bayesian framework,
inferring the values of the physical parameters via a Markov chain
Monte Carlo (MCMC) or similar method, where the likelihood
function simultaneously compared the results of GIDGET runs to
a diverse set of observational data spanning mass, redshift, and
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physical characteristics of a galaxy. Unfortunately, this approach
done naively is prohibitively expensive due to the runtimes of
GIDGET, of the order of 10 min, depending on the parameter values.
To make the problem computationally feasible, we instead run the
MCMC using an emulator that estimates the results of the GIDGET

model given a particular point in parameter space using machine
learning, rather than running a new set of models each time the
likelihood is evaluated. This corresponds to a speed-up of about six
orders of magnitude in calls to the likelihood function.

To train the emulator, we must first run GIDGET a reasonably
large number of times to provide examples to the machine learning
algorithm. Each run provides an example of the map between the
inputs (or features), i.e. a point in parameter space, and the outputs
(or targets), i.e. observable quantities that can be compared to data,
including e.g. the stellar mass of the galaxy at z = 3, or the gas-
phase metallicity at z = 1. To generate this training set, we define a
distribution over parameter space that will be closely related to (but
crucially different from) the prior that will be used in the Bayesian
inference step. The training set consists of 41 393 model galaxies,
which is sufficient to provide accurate predictions for a number
of observables with a few caveats. Vigilance against overfitting in
certain corners of parameter space is critical, and not all observables
can be accurately predicted with this sample, at least with the
algorithms we have tried. None the less the emulator’s speed allows
us to run an MCMC to convergence, producing as many draws of the
parameters from the posterior distribution as we would like. These
parameters can then be used as inputs to a set of full GIDGET models,
allowing us first to verify that the emulator + MCMC has done a
good job fitting the data that was included in the likelihood function
and second to make predictions for many other quantities that were
not included in the fit. Each step in this process is described in more
detail in this section.

3.1 Training set and priors

The first step in this process is to define the parameter space through
which we will search. Most of these parameters have been defined
in the previous section. Table 1 summarizes the parameters used
and the distributions from which they are drawn when creating the
training set. The joint distribution of these parameters is the product
of the distribution on the individual parameters; i.e., each parameter
is assumed to be independent.

Ultimately this distribution will serve as the basis for an infor-
mative Bayesian prior; i.e., we are actively making judgements
about the acceptable ranges these parameters can have. This is
unavoidable when using an emulator because the general-purpose
fitting algorithms we use perform poorly outside of the region of
parameter space covered by the training set.

To set the values used in Table 1, we use lognormal distributions
for variables parametrizing uncertain physics but requiring positive
values, typically simply asserting factor of 2 or 3 uncertainties. This
includes εff, η, Qf, and αr. The star formation efficiency per freefall
time εff has had its uncertainty estimated empirically in Krumholz
(2012). The energy dissipation rate per disc crossing time η has been
measured in idealized simulations (Mac Low et al. 1998; Stone et al.
1998), but could be somewhat different in a realistic galactic disc
(see e.g. Birnboim, Federrath & Krumholz 2018). The critical value
of Q, Qf, is well known to be unity in the isothermal linear regime
(Toomre 1964), but it is likely somewhat higher in galactic discs
with more realistic physics (Elmegreen 2011; Inoue et al. 2016).

The parameters controlling the mass loading factor are substan-
tially more uncertain. The predicted value of the mass loading factor

varies substantially (Zahid et al. 2012; Vogelsberger et al. 2013;
Muratov et al. 2015; Schroetter et al. 2016), and even within a
single study, the statistical uncertainty in how the mass loading
factor scales is substantial (Creasey et al. 2013). As a result, the
lognormal scatter in the normalization, μ0, is much larger than a
factor of 2, and the allowed scatter in the scaling exponents is large.
A value of μ0 that gave reasonable fits to the stellar mass–halo
mass relation was found by hand, and the training set distribution
of μ0 is centred near this value. This central value is substantially
smaller than 1 since other factors in the local value of μ can be quite
large, if their power-law indices are anything besides zero. One of
the most important aspects of the value of μ is whether or not it is
above or below ∼1. When μ � 1, it plays a minor role in setting the
equilibrium values of the column density (Forbes et al. 2014a) and
metallicity (Forbes et al. 2014b) of the disc, while for μ � 1, it may
become the dominant contributor (Lu, Blanc & Benson 2015b). By
setting μ0 to a typically small value, the model is given freedom
to determine which column densities, gas fractions, or halo masses
will have μ � 1.

Several parameters are physically constrained to lie between
0 and 1. For most of these we adopt a relatively uninformative
distribution, namely the uniform distribution from 0 to 1. These
include ξmix, the degree to which outflowing metals are reincor-
porated in inflows, and the maximum accretion efficiency εmax.
The degree to which supernova ejecta are mixed into the ISM
before they participate in the launching of a galactic outflow, ξ ,
is, while still broadly distributed, pushed towards lower values,
namely Beta(1, 2). This reflects the fact that many models assume
ξ = 0, largely because it is the simplest assumption. We also know
that ξ must not be too close to unity, since galaxies undoubtedly
retain some of the metals they produce. Formally the quenching
efficiency εquench must also be between 0 and 1, but we expect
εquench � 1, so we adopt a lognormal distribution centred on a small
value.

Given this distribution of physical parameters, we then proceed
to draw points from this distribution and run GIDGET models. To
do so we also need to specify a halo mass and an accretion history.
These quantities are not fitted in the inference process, and so will
not have a corresponding factor in the prior. For the training set, we
simply choose a z = 0 halo mass log-uniformly distributed between
1011 and 1012 M�, and a random draw from the Bolshoi accretion
histories. The z = 0 halo mass and a particular average of the set
of x values specifying the accretion history are included as features
that the machine learning algorithm has access to – basically the
purpose of the emulator is to do the job of the full GIDGET model,
so the emulator should be provided with as much information as
possible.

Each time a point from parameter space is drawn, including a
z = 0 halo mass and accretion history, a single GIDGET model is
run. Because the range of parameters is quite large, there can be
unexpected combinations of parameters that are pathological and
produce models that crash or take too long to run. The scale in
parameter space at which these regions arise can be both large and
small. That is, models can fail both in well-defined large regions
of parameter space that produce unrealistic instabilities, and in
otherwise well-behaved regions because for the exact values being
simulated, one cell of the simulation happens to develop a sharp
feature that limits the time-step to very small values. These model
failure regimes have different implications for the emulator that will
be discussed in the next section. The 41 393 model galaxies quoted
as the size of the training set earlier in this section refers to the
number of successfully run models.
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3.2 Emulator

The training set provides many examples of the map from a set of
parameters that we denote � to a set of outputs denoted ψ . The
values of ψ will be used in the likelihood function discussed in the
next subsection. Explicitly,

� = {
Mh,0, αr , αr,∗,0, αr,g,0, χfg,0,

α�, αfg , μ0, αMh , χZ,slope, χZ,offset, ξmix,

η, Qf , αMRI, εquench, εmax, αcon, kZ,

ξ, εff, 	β, Mquench, χinj, 〈10x〉16
i=1

}
. (50)

This is a combination of the z= 0 halo mass, Mh,0, the physical quan-
tities we would ultimately like to constrain, and a representation of
the accretion history denoted 〈10x〉16

i=1. This is simply shorthand to
say that, instead of using the full 1000-element representation of the
accretion history, we average the values of 10x within constant-sized
redshift intervals of 	z = 0.25 so that the redshift range between
z = 0 and z = 4 is divided into 16 intervals.

Each time a model is run, we extract and record 200 quantities
based on the model output and discard the full model history to
avoid storing excessive amounts of data. These 200 quantities are
20 different ‘integrated’ quantities, i.e. quantities that involve a sum
or average over the entire computational domain, at four different
redshifts (z = 0, 1, 2, and 3). We also record six quantities at
20 different radii at z = 0. Since many of these quantities will not
enter the likelihood function, and several proved difficult to emulate
with our particular training set, we focus on the following seven
integrated quantities, which will be predicted at the four different
redshifts for a total of 28 targets for the emulator. Explicitly the
integrated quantities are

ψ = {Mh, M∗, sSFR, 〈Z〉SF, MH2/M∗, r∗, 〈σ 〉SF, v2.2}. (51)

The halo mass Mh has the same meaning it has throughout the paper.
The stellar mass M∗ refers to the instantaneous stellar mass obtained
by adding up �∗ times the area of each cell in the computational
domain, and adding Mcentral (the stellar mass contained within the
inner radius of the computational domain as discussed following
equation (10)). In order to compare this to observations based on
SED fitting, we will have to adjust this mass to account for stellar
mass that has already been returned to the ISM (where we have
made this adjustment, we will denote the stellar mass M∗,orig. The
specific star formation rate is the star formation rate divided by
M∗, where the star formation rate is obtained by summing �̇SF

∗
times the area of each annulus, and adding the second term in
equation (10), which corresponds to short-time-scale star formation
occurring in the unresolved central part of our galaxy. Both the gas-
phase metallicity and the gas velocity dispersion are averaged over
the star formation rate, meaning they are summed at each radius
weighted by �̇SF

∗ times the area of the cell, and then divided by the
star formation rate. This is a crude way of imitating observational
effects, since both metallicity and velocity dispersion at higher
redshifts are estimated using light from star-forming regions, so
the inferred average values of σ and Z in the observations should be
light-weighted, or roughly star-formation-weighted. The H2 mass
is simply integrated over the computational domain, and r∗ refers to
the half-mass radius of the stars, counting stellar mass in the same
way we describe above to determine M∗. The circular velocity at 2.2
scale lengths is estimated by evaluating vφ in the simulation at r∗ ×
2.2/1.68, where the factor of 1.68 is the ratio between the half-mass
radius and the scale length of an exponential disc.

Ideally we would like to find a mapping from � to ψ that is fast to
evaluate and accurate, at least for values of � encompassed by the
training set. Ideally we would also like a single map from � to ψ ,
and not many maps from � to each separate component of ψ . This
has the advantage of better preserving covariance between different
components of ψ , and speeding up the evaluation of predictions
for ψ .

This problem is well suited to a variety of machine learning
regression algorithms, and we have experimented with many of
the options available in SKLEARN (Pedregosa et al. 2011). Each
regression scheme involves a fundamentally different approach,
with a corresponding set of hyperparameters. We have found
that in general the things that make the largest difference in the
performance of the regression are the choice of algorithm, the
standardization of the inputs, and excluding hard-to-fit targets from
the fit. Particular values of the hyperparameters make relatively little
difference (unless extreme values are chosen).

Following their success in Kamdar, Turk & Brunner (2016), we
experimented with different versions of random forests, which make
predictions by averaging the results of many individual decision
trees. We ultimately moved away from random forests for two
reasons: Their performance as measured by R2 tended to be a
bit lower than other algorithms for this particular problem, and
their predictions were piecewise-constant. In other words, within
some volume of parameter space, if none of the decision trees
happened to predict a different value of a given quantity, the
random forest produces the same prediction for every point in that
volume. While this is not necessarily a problem if the goal is to
maximize accuracy without overfitting the data, it does not work
well when those predictions are entering the likelihood function
of an MCMC because within these volumes of parameter space,
there are no gradients, and the resulting posterior distribution is
noticeably pixellated when projected into two dimensions.

In addition to random forests, we experimented with regularized
linear regression. These models had several key advantages. First,
they performed quite well in terms of R2, particularly when the
input and output parameters were scaled to have zero mean and
unity variance, and particularly when cross-terms were included in
the feature vector. In other words, the algorithm was given not just
�, but also the product of every pair of quantities in �. In addition to
their high accuracy, the linear models were relatively insensitive to
the inclusion of moderately difficult targets, and worked extremely
well with the MCMC algorithm as a direct result of the fact that
all predictions were quadratic in the features; the MCMC would
quickly converge to the global maximum without any difficulty. It
is possible that by more carefully selecting which cross-terms to
include, and potentially including at least a few even higher order
quantities, (e.g. M3

h,0), the accuracy could have been improved even
further.

In the end, we settled on using neural networks simply because
they were the most accurate. High accuracy is absolutely crucial in
this problem because the MCMC algorithm is excellent at finding
the best-fitting parameters according to the emulator. If some corner
of parameter space where the emulator does a poor job happens to
yield a high posterior probability, the MCMC will converge around
this point, yielding a solution that does not actually fit the data.
To further reduce the likelihood of this outcome, we combine the
predictions of three different neural networks by taking the median
value of the three predictions for each target. In particular the three
neural networks all have regularization parameters α = 10−5 and
use tanh activation functions, but they have different structures. One
has 3 layers of 100 neurons each, one has a 556-neuron first layer
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with a 111-neuron second layer, and the third network has a 1112-
neuron first layer with a 222-neuron second layer. These numbers
are multiples (1x and 2x) of the size of the neural network that can in
principle learn a data set the size of our training set with negligibly
small error according to Huang (2003). This particular combination
was one of a few that we tried and seems to perform the best overall
on the metrics discussed in Appendix B of all the models we tried.
We should note though that the largest gain in performance comes
from using any decently sized neural network with α � 10−2, with
scaled inputs (see below), and having eliminated any difficult-to-
predict components of ψ .

In order to make these assessments and evaluate the performance
of different models, we follow a rudimentary version of the standard
procedure in machine learning: We reserve 10 per cent of the models
produced for the training set for use as a validation set. Each model
is trained on the remaining 90 per cent of the training set. Once the
model is trained, the model is used to predict the values of y given
the values of � in the validation set. The predicted values of y are
then compared to the true values of y in a variety of ways that will
be discussed in Appendix B.

To make the regression behave more sensibly, we normalize both
the features and targets in the following sense. Logarithms are taken
of quantities that are amenable to being viewed in log-space – this
is a subjective assessment, but in practice it means any quantity
except those which can take on negative values, the exponents
used in some of the physics prescriptions described in the previous
section, and quantities whose priors have appreciable mass over the
whole interval from 0 to 1, e.g. εmax. Additionally, the features are
standardized, i.e. subjected to a linear transformation such that their
median becomes zero and their distance to the median is reduced
by the interquartile range. We note that the transform uses only
information from the training set, since we do not want even a small
amount of information about the out-of-sample validation set to be
used when constructing the fit.

Despite the good performance of the emulator, great care must
be taken when using it in the context of an MCMC. As described
above and in more detail in Appendix B, the performance of each
version of the emulator is assessed by comparing the true values of
a validation set to the values predicted by the model when applied
to the features of that data set. This validation set is just a random
subset of the original training set, so no assessment is being made
of the model’s performance outside of this original training set.
Indeed the performance metrics are weighted towards where the
training set is densest, where we also expect the regression itself to
be the most accurate. Therefore, despite good performance overall,
the emulator is likely to be unreliable in regions of parameter space
sparsely covered by the training set. These locations are largely in
the tails of the distribution used to draw the training set, but they
can also arise in regions where GIDGET itself is more likely to fail.

In order to steer the MCMC away from regions where the
emulator is likely to be unreliable, we implement the following
safeguards. The prior used in the inference process is a narrower
version of the distribution used to draw the training set. In particular,
every normal or lognormal distribution has its width (in linear- and
log-space, respectively) reduced by 30 per cent. In addition to this
reduction, we impose a hard boundary on the prior distribution at
±2σ (again in linear- and log-space, respectively). Outside of this
range, the prior is identically zero. Additionally the prior on ξ ,
which has a Beta(1, 2) in the training set distribution, is narrowed to
Beta(1, 3), concentrating more of the probability mass in at lower
values of ξ . The priors on 	β and χfg,0 were also altered after
initial runs of the MCMC to avoid solutions where formally more

baryons than the cosmic baryon fraction were included in the initial
conditions. In particular the new priors for these variables became
	β ∼ N (0, 0.7 × 0.2) (where the factor of 0.7 is the same one that
was applied to all normally and lognormally distributed variables),
and χfg,0 ∼ log − N (1.5, 0.7 × 0.11 dex).

To address regions of parameter space where models may
be sparse owing to unforeseen pathological interactions between
extreme values of certain parameters, we add a ‘veto’ layer to
the prior. That is, we search for a way to identify these regions
automatically, and when such a region is identified, the prior in that
region is set to zero. We are making the assumption that if GIDGET

models consistently fail in that region of parameter space, that region
is unlikely to contain the true parameters governing galaxies. An
example case arises when αfg is sufficiently negative; as the gas
fraction decreases, the mass loading factor grows, decreasing the
gas fraction further. The process runs away until the simulation is
ended by passing a lower limit for the time-step. This particular
instability likely accounts for most of the predictable model failures
encountered when constructing the training set.2

We explored a few ways to determine veto regions. The main
goal was to steer the MCMC clear of regions devoid of successful
models while being careful not to throw out valid regions of
parameter space. Our training set for this task is similar to the
training set used for the regression problem, except this time
all ∼40 000 successful runs are treated simply as one class, and
the ∼120 000 models that failed are treated as another class.
Simple classification schemes tended not to produce substantial
improvements because most of these failures were basically evenly
distributed throughout the training set. Instead we used a logistic
regression with L1 regularization and a regularization parameter
C = 1. No cross-terms of � were used, just � itself. The logistic
regression provides a prediction for the probability that a given
model is a failure. We set this threshold to maximize the quantity
Fβ = (1 + β2)PR/(β2P + R), which measures the quality of a
classification when recall (R) is valued β times as much as precision
P . We use β = 0.01 to reflect our desire to avoid throwing out valid
regions of parameter space. Because of the small value of β and the
wide distribution of the failures, this step only ends up excluding
about 1 per cent of the failures, but about 95 per cent of the models
excluded are failures in the validation set.

With the veto region, the narrower parameter space, and the hard
limits on how far a parameter is allowed to deviate from its prior,
the emulator is ready for use in evaluating the likelihood function.

3.3 Likelihood function

The regressions discussed in the previous section allow us to quickly
evaluate, given a point in the space of model parameters, any
target quantity predicted by the regression model. The next step
is to construct a likelihood function that compares these fitted
quantities to a variety of observational data about galaxies. Table 2
shows a summary of the observational data that we will employ

2The unpredictable failures seem to be associated with the separation
between Qf and Qlim, the critical Q values for the multicomponent disc
and the stars alone, respectively. When these values are set too close to each
other, it increases the probability that the model will run into a numerical
difficulty in which extreme response by the gas is necessary to maintain
marginal gravitational instability because the stars by themselves contribute
substantially to the two-component Q if they haven’t had sufficient time to
heat up.
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Table 2. Observational relations used to fit the model, or just for visual comparison.

Relation See Used in fit at redshifta Assumed scatter Reference(s)

M∗–Mh Fig. 2 0,1,2,3 0.15 dex Moster et al. (2013)
– 0.19 Behroozi et al. (2013a)
– 0.2, 1 Garrison-Kimmel et al. (2017)

sSFR–M∗ Fig. 3 – – Brinchmann et al. (2004)
– – Whitaker et al. (2014)

0,1,2,3 0.34 dex Lilly et al. (2013)
0,1,2,3 0.28 dex Speagle et al. (2014)

Z∗–M∗ Fig. 3 – 0.17 dex Gallazzi et al. (2005); Kirby et al. (2013)

Z–M∗ Fig. 3 0 0.117 dex Tremonti et al. (2004); Lee et al. (2006)
1,2,3 – Genzel et al. (2015)

MH2 /M∗–M∗ Fig. 3 0,1,2,3 – Genzel et al. (2015)
– – Saintonge et al. (2011)

MH I/M∗–M∗ Fig. 3 – – Peeples & Shankar (2011); Papastergis et al. (2012)

�1–M∗ Fig. 4 – – Fang et al. (2013)
– – Barro et al. (2017)

r∗–M∗ Fig. 4 0,1,2,3 0.1 dex van der Wel et al. (2014)
0 – Baldry et al. (2012)

rH I–MH I Fig. 5 – – Broeils & Rhee (1997)

c82–M∗ Fig. 4 – 20% Dutton (2009)

vφ,2.2–M∗ Fig. 4 0 0.058 dex Miller et al. (2011, 2012)

�/�n–r/Rvir Fig. 6 – – Kravtsov (2013)

aDashes in this column (–) indicate that the data is plotted in the referenced figure, but is not used in the likelihood function.

later (in Figs 2–4), a subset of which is used in the likelihood
function.

We construct the likelihood function L, formally the joint
probability distribution function of the data set D given a particular
set of model parameters �inf, as follows. Note that the model
parameters we are inferring here are not quite the same as the
set of features that are used as inputs to the emulator (denoted � in
the previous section). In particular, �inf does not include the halo
mass or accretion history: The values of those quantities are not
up for constraint, but rather the likelihood function has a fixed set
of halo masses and accretion histories it uses throughout the entire
inference process. We also include several parameters in �inf to
help account for additional systematic errors. First, we allow the
errorbars on certain relations to be increased by a factor fσ with a
prior given by a Pareto distribution3 with shape parameter α = 3.
In practice, the MCMC always prefers to leave this value at fσ = 1
except in the early phases of the MCMC run. We also allow each
variable in ψ to be adjusted by a constant factor, since each of the
quantities to which we are comparing is itself derived from the data
via a model. For now we keep these quantities fixed in mass and
redshift. We denote the set of predictions that will be used in the
likelihood following these adjustments

ψ̃ = {
Mh(z), M∗(z)10δM, sSFR(z)10δSFR−δM, (52)

〈Z〉SFR(z)10δZg , MH2 (z)/M∗(z)10δMH2 −δM, (53)

r∗(z)10δr , 〈σ 〉SFR(z)10δσ , v2.2(z)10δv
}
. (54)

3The probability density function for a Pareto-distributed variable x with
shape parameter α is α/xα + 1 for x > 1, and 0 otherwise.

Each δ is given a truncated normal prior distribution, with the
truncation at 2σ . Most of these truncated Gaussians have widths
of 0.1 dex, except δr, δv, and δσ , which each have widths of
0.05 dex since these quantities are less reliant on models for their
derivation.

At the most basic level, we would like to compare the models
to the data assuming something resembling a normal distribution,
and as is common practice we will assume each data point is
independent, allowing us to simply multiply the densities to obtain
the joint density. Despite this simplifying assumption, we are still
faced with several hurdles. First, the observations are not symmetric
about the median. Second, the coverage of the data is highly variable
– different observational data sets have coverage over different
mass ranges which change as a function of redshift. Third, it is
often the case that at a fixed mass, different observational data
sets have mutually inconsistent estimates of the observable in
question.

To account for the asymmetry, we use a 1D density function
similar to the normal distribution, but with a skewness parameter ε

from Mudholkar & Hutson (2000; for an approach similar in spirit
see Espinoza & Jordán 2015). Its canonical form is

f0(x|ε) = (2π)−1/2

⎧⎨
⎩

exp
(
− x2

2(1+ε)2

)
if x < 0

exp
(
− x2

2(1−ε)2

)
if x ≥ 0

(55)

for −1 < ε < 1. Adding a shape and location parameter, the full
‘epsilon-skew-normal’ (ESN) PDF is ESN(x|μ, σ , ε) = σ−1f0((x −
μ)/σ | ε). Given the 16th, 50th, and 84th percentiles of the data at a
fixed mass, which we’ll denote q16, q50, and q84 (typically these are
linearly interpolated values in log-space because these quantities
are only given at a discrete set of masses), we can compute μ, σ ,
and ε such that at that fixed mass the ESN distribution has the same
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quantiles as the data. The quantile function is given analytically
in Mudholkar & Hutson (2000), so it is straightforward to solve
numerically for ε given the value of e.g. (q84 − q50)/(q50 − q16),
which cancels out the shape and location parameters, yielding a pure
function of ε. Once ε is known, σ and μ can be found analytically.
Note that this computation is always done in log-space, since the
distributions of the observable quantities at a fixed mass are roughly
lognormal.

To address the second issue, namely uneven data coverage, we
considered simply not counting model predictions that lie outside
the mass range covered by the data. This has the disadvantage of
introducing a sharp discontinuity in the likelihood function, and
incentivizing a pile-up of galaxies on one side or another of this
cut-off. Although the sampler is not totally free to adjust the stellar
masses to achieve this since it must also fit the stellar mass–halo
mass relation, it may be willing to pay a penalty in that fit to
stay on the correct side of the cliff in the likelihood. To avoid
discontinuities of this sort, we proceed as follows. Outside of the
covered mass range, we linearly extrapolate q50 in log-space. For
the other quantiles, we take q84 − q50 and q50 − q16 at the last point
covered by the data, and assert that these values inflate exponentially
with log distance from the last mass at which there is data by a factor
exp (4(	log10M)2). In other words, we retain the asymmetry of the
closest data point, but increase the size of the error bars. Doing
so too quickly risks behaviour similar to the sharp discontinuity,
while doing so too slowly risks constraining the model with a pure
extrapolation.

Finally, to address the issue of multiple conflicting data sets at a
fixed mass, we simply set the likelihood to an even mixture of the
different data sets. The final likelihood function is then

L(D|�inf ) =
Nrelations∏

i=1

Nbins∏
j=1

Ntrials∑
k=1

N−1
trials

Ndata sets∑
l=1

× (
N−1

data setsESN (ψ̃ijk|μ(q ijkl), fσ σ (qijkl), ε(q ijkl))
)
.

(56)

Here qijkl is shorthand for q16, q50, and q84, the quantiles of the data
at a particular mass that determine the values of μ, σ , and ε of each
epsilon-skew-normal distribution as described above. ψ̃ijk is the
adjusted set of predicted values from the emulator for a particular
relation (i) and z = 0 halo mass (j and k) given the values of �inf,
which is not quite the same as � as discussed at the beginning of
the section.

The data to which we are comparing extend over a large range
of masses and presumably different accretion histories, so for
each point �inf in the parameter space for which we wish to
evaluate the likelihood, we employ a grid of Ntrial × Nbins =
200 galaxies with different accretion histories covering the range
of Mh,0 from 1011 M� to 1012 M�, but all with the same value
of �inf. These 200 samples are divided evenly into Nbins = 10
bins in Mh,0. Within these bins the likelihood of each model is
averaged (essentially averaging over different possible accretion
histories), and then each bin’s average likelihood is treated as an
independent data point and these likelihoods are multiplied together.
In principle Ntrials could be arbitrarily large, and is only limited
by computational power. Nbins should, however, remain reasonably
small and should be set by the typical systematic error in mass.
Each time the likelihood is evaluated, the same 200 accretion
histories are used. The outer sum over i denotes the Nrelations =
29 different observational samples at a variety of redshifts to which
the model is compared. The inner average over Ndata sets applies

when multiple data sets have overlapping coverage. The predicted
value of the dependent variable, ypred,ij is compared to the data
evaluated at xpred,ijk. Note also that this comparison is done in log10-
space.

For data sets in Table 2 with an explicitly assumed scatter, q84 and
q16 are taken to be the median ± the stated scatter rather than the
true quantiles of the data. By default the distribution we adopt in the
likelihood function, i.e. the error assigned to an observation, is taken
to be the population distribution, rather than e.g. the standard error
on the median. Implicit in this assumption is that the scatter observed
in the population is comparable to, and perhaps even set by, the
systematic uncertainty in the variable in question. This assumption
is borne out in cases where we plot multiple observational reports
of a given scaling relation (see Figs 2–4).

4 R ESULTS

With a prior, a likelihood, and a fast way to evaluate it, we can
now embark on a the standard procedure to draw samples from the
joint posterior distribution p(�inf |D) ∝ p(�inf )L(D|�inf ), thereby
fitting the model at up to four different redshifts to eight different
galaxy scaling relations: the stellar mass–halo mass relation, the
star-forming main sequence, the (gas-phase) mass–metallicity re-
lation, the stellar mass–molecular gas mass relation, the mass–size
relation, the Tully–Fisher relation, and the relationship between
star formation rate and gas velocity dispersion. We use the pop-
ular affine-invariant ensemble MCMC sampler EMCEE (Foreman-
Mackey et al. 2013) in its parallel tempering mode, which aids the
MCMC in converging if there are multiple posterior maxima, where
several sets of walkers are run in parallel with different temperatures,
i.e. sampling from posterior-like distributions where the likelihood
is downweighted as the temperature increasesL(D|�inf )1/T p(�inf ).
We use 13 temperatures, each one spaced a factor of

√
2 higher

than the previous one, each with 400 walkers, run for about 50 000
iterations.

The marginal posterior distributions of each parameter are shown
in Fig. 1. The grey histograms are the marginal 1D posterior
distributions themselves. For comparison, the green line shows
the prior of each parameter, i.e. the narrow prior actually used
in the inference process, not the distribution from which the
training set was drawn. In most, though not all, cases the prior
and the posterior are substantially different, indicating that the set
of observations to which we are comparing provides meaningful
constraints on the parameters in question. Also shown are estimates
for the posterior mode of each run, plotted as light blue vertical
lines. These modes are estimated as the posterior sample whose
30th nearest-neighbour is least distant. Distances are measured in
the same space used by the MCMC, namely one in which the
logarithm of many of the parameters has been taken, and the
parameter values have been linearly scaled by their interquartile
range.

We see first that it is quite normal for the posterior distribution
to be concentrated right at the hard boundary imposed by the 2σ

cut-off in the prior. The solution favoured by this combination
of physical model, priors, and data has a number of interesting
features. The feedback parameters are such that massive galaxies
have very low mass loading factors (since μ0 � 1), but low-mass
galaxies need strong feedback, given the large negative values of
αMh . These winds are highly metal-enhanced (as seen by the large
values of ξ ). The reaccretion of metals from winds is also quite
important, given the large inferred value of ξ acc. The galaxies
also begin life with more stellar mass and gas mass than one
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Figure 1. Marginal distributions of the posterior. Each panel shows the prior (green), the posterior (grey), and an estimate of the global posterior mode (vertical
cyan lines).

might expect, given the large negative values of 	β and positive
values of χfg . The accretion distribution is taken to be quite flat
in radius (given the large value of αr). Gravitational instability
is quite important in this posterior distribution, and Qf is quite
large, favouring easy movement through the disc, while a simple
α viscosity (represented by the value of αMRI) is disfavoured in
importance.

The 1D marginal distributions of the posterior already reveal quite
a lot about how the fit works, but we can gain additional insight
by looking at the correlations between each physical variable.
The largest 40 correlations in absolute value, corresponding to

the top ∼10 per cent of correlations among all possible pairs of
parameters, are shown in Table 3. The variables allowing systematic
offsets in the observable quantities are well represented among
these correlations, giving us a quick sense of which observables
are most strongly affected by which physical parameters (e.g.
vφ and αcon, or σ and χ inj). There are also important trade-offs
between the physical parameters, chief among them εceil and αr.
Essentially the larger αr is, the more of the accretion profile ends
up falling at very large radii, in which case a larger value of
εceil is necessary to supply the gas needed to form the observed
stars.
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Table 3. Largest correlations in the posterior distribution.

Variable 1 Variable 2 Correlation

δvφ αcon − 0.690 925 775 145
εceil log10αr 0.517 586 893 214
αMh log10μ0 0.511 483 375 8
δσ log10εff − 0.506 273 219 2
δσ log10χ inj − 0.498 335 422 386
δr∗ log10εff − 0.494 524 799 007
χdlogZ/dlogM ξ acc − 0.444 850 693 792
δσ ξ acc − 0.417 609 635 046
δσ log10η 0.396 466 878 406
ξ acc αfg 0.394 964 186 987
αMh α� 0.383 804 694 949
δZg δM 0.382 155 536 477
log10MQ log10kZ − 0.380 137 238 756
δM αMh

− 0.373 905 582 251
δr∗ ξ acc − 0.367 786 448 618
δσ χdlogZ/dlogM 0.351 559 006 854
δr∗ log10χZIGM − 0.351 400 881 742
log10η αfg − 0.343 319 841 545
log10εquench αfg − 0.337 655 782 018
log10MQ log10 εquench 0.324 114 694 97
log10χ inj log10 εquench − 0.321 362 299 208
log10MQ log10αMRI − 0.319 873 706 753
χdlogZ/dlogM log10εff − 0.319 490 839 609
log10χZIGM log10αr, ∗, 0 0.319 330 567 119
log10 Qf log10χZIGM 0.318 563 7491 47
δ SFR δM 0.317 409 994 256
log10MQ αfg − 0.308 359 158 663
ξ acc αMh − 0.307 739 361 047
log10η ξ acc − 0.306 755 458 255
χdlogZ/dlogM log10MQ 0.303 294 525 319
log10Qf log10η 0.302 970 166 563
log10 εff log10χZIGM 0.301 910 425 097
εceil log10Qf 0.300 314 976 296
δσ log10MQ 0.294 728 010 292
log10εff log10Qf 0.293 989 114 344
δZg log10 μ0 0.291 845 453 057
χdlogZ/dlogM log10 αMRI − 0.289 593 339 158
εceil log10 η 0.286 666 051 006
log10 χ inj log10 εff 0.286 587 872 447
log10 εff log10 αMRI 0.284 022 258 999

Figs 2–5 show the results of resimulating samples from the
posterior distribution. In particular, we draw 180 samples4 from
the posterior distribution. These plots are organized as follows.
Each row corresponds to a different observational relation, and each
column shows a different redshift. The points show the resimulated
sample of galaxies, while the coloured bands show the observational
data. In cases where observations are not available at a given
redshift, and where the galaxies extend outside the mass range of
the observations, these points are genuine predictions. Entire panels
where the models are not being compared directly to observations
are labelled as predictions, ‘PRED,’ while panels where at least
some models are being compared to data are labelled ‘FIT’ and em-
phasized with a thicker black border. The general impression left by
these figures is that the parameters identified as part of the posterior
distribution, despite all the estimates that go into generating it, do
a reasonable job of reproducing the data to which it was fit. The
points in each figure are coloured by their z = 0 halo mass Mh,0.

4Note that not all of these models successfully run to z = 0.

In fitting the stellar mass–halo mass relation (Fig. 2), we see
that the simulations fit the Moster et al. (2013) relation reasonably
well at z = 0, but across all redshifts the stellar masses moderately
exceed the Moster et al. (2013) values. This is both concerning and
interesting. Because we rely on the stellar mass–halo mass relation
to ‘regularize’ the fit, i.e. to prevent the model from having too much
freedom to adjust the x-axis values of all the observed relations, we
include the Moster et al. (2013) constraints at all redshifts at all
masses. Of course, this is an extrapolation, particularly at high
redshift, where that model has not been constrained with low-mass
galaxies. Hence, we are seeing that the MCMC is willing to sacrifice
a good fit to Moster et al. (2013) (by using 	β < 0) in favour of
better fitting all of the other data. In the end this is compelling
evidence that Moster et al. (2013) underpredict the stellar mass of
low-mass haloes at high redshift. This is in line with other lines of
evidence from dynamical mass measurements (Burkert et al. 2016)
and simplified modelling at higher redshifts (Tacchella et al. 2018).
Fig. 3 shows relations associated with the global gaseous processes,
i.e. star formation rate, metallicity, and gas fractions. Despite the
general reasonableness of the fit, there are several areas of tension,
especially the mass–metallicity relation. This is likely in part due
to the uncertainty in the z = 0 relation, where different metallicity
calibrations lead to different slopes and normalizations (Kewley &
Ellison 2008). The likelihood function treats each relation as
plausible, so a mixture model may not be sufficient to account for
the systematic uncertainties in this relation. Despite this tension,
there is also the remarkable success that the Z∗–M∗ relation, despite
not being included in the likelihood, fits almost perfectly. Also
notable in Fig. 3 is a common feature of the fitting procedure. At
high redshifts, the observations are restricted to high-mass objects,
whereas our models are limited to galaxies that are unlikely to live in
groups or clusters at z = 0 in order to minimize the effects of mergers
and quenching. The observations therefore provide little constraint
on the models at the highest redshifts. Either improved prescriptions
for mergers and quenching, or some principled means to use higher-
mass models at z ∼ 3 while ignoring the results of those models at
lower redshift, will be required to fully leverage the high-redshift
data.

Fig. 4 shows relations associated with the stellar structure of
the galaxy, namely the half-mass radius, the Tully–Fisher relation,
the concentration, and the central stellar density. Here the fits are
remarkably good, with the possible exception of the low-�1 part of
the �1–M∗ relation at high z. In part this may be attributed to the
disconnect between the Barro et al. (2017) and Fang et al. (2013)
relations. Regardless, this is a remarkable success of the model
because neither 〈�∗〉1 kpc nor c82 was used in the fit.

The values fitted for the Tully–Fisher relation agree reason-
ably well with the data as reported by Miller et al. (2011).
Given that the model has some slight tension with the stellar
mass–halo mass relations inferred by abundance matching (see
Fig. 2), it is perhaps surprising that the models also agree with
the circular velocity measured at sufficiently large radii, but as
we saw at the top of Table 3, the model has some freedom
to adjust its concentration as a trade-off to this velocity, and it
does so by increasing the concentration, consistent with expec-
tations for some baryonic contraction in these modestly massive
galaxies.

Rounding out the plots of quantities used in the fitting procedure is
Fig. 5, which shows relations that do not depend directly on stellar
mass, in particular the strong correlation observed by Broeils &
Rhee (1997) between a galaxy’s mass in H I and the radius at which
the H I surface density first drops to 1 M� pc−2. Once again we find
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Disc evolution 3597

Figure 2. The stellar mass–halo mass relation at a variety of redshifts. Each point is a simulated galaxy coloured by its z = 0 halo mass, while the shaded
regions represent the mean relation and scatters from Moster et al. (2013) (red). Also shown are versions of this relation from Garrison-Kimmel et al. (2017)
and Behroozi et al. (2013a).

that the agreement between the data and the model is quite good
despite not being included in the fit.

Also shown is a comparison to the compilation of data from
Krumholz et al. (2018), in particular the correlation between
star formation rate and gas-phase velocity dispersion. Although
this relation has been claimed as evidence for the importance
of stellar feedback in driving velocity dispersion, Krumholz &
Burkhart (2016) and Krumholz et al. (2018) have shown that a
similar correlation arises from the viscous transport associated with
gravitational instability, and that a hybrid model including both
effects does the best job of explaining the data. The full evolutionary
calculations we consider here have at their core the same physics, but
include more details. The models presented here do not quite reach
the large observed values of σ seen in the data, which is probably
among the largest tensions between our model and the data. These
models are perfectly capable of producing the necessary large
velocity dispersions, by including gravitational instability which
kicks in at a large value of Q. Indeed the best-fitting models do
include large values of Qf, but also large values of αr, which sends
much of the gas to larger radii and moderates the resulting gravity-
driven turbulence. Essentially, in order to fit the rest of the data, the
model is willing to live with slightly lower values of 〈σ 〉SF in this
diagram.

We now turn to the issue of validating the model, i.e. comparing
it to relevant data not used in the fits. We have already seen several
instances of this in Figs 3 and 4, namely the relations between
c82 and M∗, MH I/M∗ and M∗, Z∗ and M∗, and 〈�〉1 kpc and M∗.
According to Dutton (2009), the relationship between mass and
concentration essentially follows a gradual transition from profiles
consistent with exponential discs to profiles consistent with de
Vocaleurs profiles (de Vaucouleurs & Pence 1978) as the stellar mass
crosses the characteristic quenching mass. Interestingly, both blue
and red galaxies follow similar relations, so the relationship between
the quenching of star formation and the morphological bimodality
of galaxies is not one-to-one, though both transformations are
associated with the same mass scale. Recall that the emulator did
not perform well when predicting values of c82, so it was removed
from the likelihood function and not used in the fitting process.
None the less the models drawn from the posterior distributions
do a decent job of reproducing the features of the data, namely

a transition from low-concentration disc-like profiles to higher-
concentration, higher-Sersic-index profiles at stellar masses around
1010 M�.

Rather than comparing simple statistics extracted from the radial
profiles of the stars, we can explicitly compare the stellar profiles
produced in our simulations to observational data. Kravtsov (2013)
provides a convenient means to do so by pointing out that galaxies
across 6 decades in stellar mass appear to follow a consistent
relationship between an appropriately normalized stellar column
density and a radius scaled to the estimated virial radius of their dark
matter halo. Defining rn = 0.015RVir and �n = 0.448M/r2

n , M being
the total mass of gas or stars in the profile, the stellar profiles fall
along a relation reasonably approximated as exponential between an
r/rn of about 1 and 3. This exponential profile is shown as a black
line, along with model profiles in Fig. 6 coloured according to
their instantaneous halo mass, just as in earlier figures, with yellow
indicating high masses and purple low. Not only are the models in
reasonable agreement with the suggested scaled exponential stellar
profile at z = 0, at least within a few scale lengths, comparing Fig. 6
with fig. 2 of Kravtsov (2013) shows that the deviations of real
galaxies from this exponential profile are also consistent with the
model: At both r/rn < 1 and r/rn > 3, the model profiles and the data
exceed the exponential profile. The data do not quite reach �∗/�n

∼ 1 as our models do, but this is precisely where the dynamics of
our model are not reliable given that σ ∗/vcirc is no longer far below
unity.

The lower panel compares the surface density of gas to the
exponential profile suggested by Kravtsov (2013), which he explains
may be rescaled directly from the universal exponential profile of
gas in disc galaxies proposed by Bigiel & Blitz (2012). Here the
model galaxies fall substantially below the observed relation as
a result of the large scale length of the cosmologically accreting
gas. This suggests that perhaps improved fits could be made
by allowing more freedom in the radial profile of cosmological
accretion.

Figs 7 and 8 show the raw profiles from which other quantities
shown thus far have been derived. For the sake of a visual
comparison, we have also included a few data sets from the Milky
Way for comparison with the massive galaxies (which appear as
yellow lines). The H I and H2 profiles shown by black lines are
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3598 J. C. Forbes, M. R. Krumholz, and J. S. Speagle

Figure 3. Comparison with gas-related galaxy scaling relations. As in Fig. 2, model galaxies are shown as points coloured by their z = 0 halo mass. Each
column shows a different redshift, and each row shows a different quantity plotted against the galaxy’s stellar mass. Data from Brinchmann et al. (2004),
Speagle et al. (2014), Whitaker et al. (2012), Whitaker et al. (2014), Lee et al. (2006), Genzel et al. (2015), Hayward & Hopkins (2017), Kewley & Ellison
(2008), Tremonti et al. (2004), Gallazzi et al. (2005), Kirby et al. (2013), Saintonge et al. (2011), Papastergis et al. (2012), and Peeples & Shankar (2011) are
shown for comparison.

taken from Nakanishi & Sofue (2003) and Nakanishi & Sofue
(2006), respectively. The former also compiled the estimates for
the gas scale height as a function of radius shown in Fig. 8. The
red lines for the H I and H2 profiles are derived from Herschel
data as presented in Pineda et al. (2013). The rotation curve of
the Milky Way shown in Fig. 8 was compiled by Bhattacharjee
et al. (2014). Once again the models look reasonable in comparison
to these data, despite not being tuned to fit these particular data
sets.

These plots also offer some further insights into the behaviour
of the model galaxies. Based on the evolution of the specific star
formation rate �̇SF/�∗ (Fig. 7) and the average z = 0 age of the
stellar population (Fig. 8), we see that galaxies slow down their

star formation from the inside out. This is consistent with the
measurements presented by Tacchella et al. (2015) for massive
star-forming galaxies at z ∼ 2 at a mass range somewhat larger
than the models under consideration here, and Nelson et al. (2016)
at lower masses and redshifts. The cause in the models of these
profiles of �̇SF/�∗ and stellar age is not completely clear. There
are likely several factors that contribute. First, as discussed in
Forbes et al. (2014a), the shut-off of radial transport of gas
by gravitational instability once the column density falls below
what is necessary to sustain Q ∼ 1 tends to quench galaxies
from their centres. This effect is mitigated slightly by a radial
profile of gas accretion that extends to the centre of the galaxy,
as well as the non-negligible radial transport from other sources
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Disc evolution 3599

Figure 4. A comparison with galaxy scaling relations related to the radial distribution of stars. Model galaxies are shown as points coloured by their z = 0
halo mass; observational relations are shown as coloured bands. Data from Baldry et al. (2012), Shen et al. (2003), van der Wel et al. (2014), Miller et al.
(2011), Dutton (2009), Fang et al. (2013), and Barro et al. (2017) are shown for comparison.

parametrized as αMRI. Another effect that may contribute is the
transport of stars themselves via spiral arms. On average this
effect pushes stars to smaller galactic radii regardless of what the
gas is doing, leading to larger values of the denominator when
calculating sSFR, namely �∗, with only secondary effects on the
numerator.

Metallicity gradients are generally quite flat in star-forming disc
galaxies out to at least ∼2 optical radii (Werk et al. 2011). The
models reproduce this behaviour in high-mass galaxies, but moving
to masses slightly below the Milky Way’s or to higher redshifts we
see that this is not universally true. Lower-mass galaxies can have
jumps in their metallicity profiles corresponding to the radii to which
metals produced near the centre of the galaxies can be diffused or
advected through the disc. The galaxy outskirts are not totally devoid
of metals owing to the effects of the galactic fountain, but they do
not appear to keep up with the in-disc transport, which after all is
operating in gas with much higher densities. These modest drop-
offs in metallicity beyond a few effective radii are not inconsistent
with the data, but it is difficult to make that measurement so far
out.

5 SU M M A RY

Despite rapid progress in the hydrodynamical simulation of galaxies
over the past few years, much remains fundamentally unknown
about the physics of how galaxies operate. At the same time, rich
new data sets from IFU surveys have expanded our view of local
galaxies from the single central fibre of SDSS. These two facts
together point to the usefulness of a flexible, reasonably inexpensive,
physical model for the evolution of galaxies that can still make
predictions for galaxy properties resolved in radius.

In this work we have presented a first step towards this goal.
We have developed a code to evolve discs under the simplifying
assumptions of axisymmetry and thinness. The computational
elements are annuli spaced logarithmically in radius, with each
annulus containing the surface density, velocity dispersion, and α

and Fe abundances for gas and stellar populations in uniformly
spaced age bins. In addition, each stellar population has a separate
vertical (out-of-plane) and radial (in-plane) velocity dispersion.
These quantities are evolved under non-trivial treatments of star
formation (regulated by local molecular gas content), galactic
winds, cosmological accretion, radial mixing of metals, an ac-
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3600 J. C. Forbes, M. R. Krumholz, and J. S. Speagle

Figure 5. A comparison with galaxy scaling relations that do not depend explicitly on stellar mass. Model galaxies are shown as points coloured by their z =
0 halo mass; observational relations are shown as coloured bands. Data from Broeils & Rhee (1997) and Krumholz et al. (2018) are shown for comparison.

Figure 6. Scaled radial profiles of gas and stars. Model gas and stellar surface densities are scaled following Kravtsov (2013) (see text) and plotted as coloured
lines, with purple representing lower values of the halo mass at that epoch and yellow representing higher halo masses. The blue line is the z = 0 relation
suggested by Kravtsov (2013) – the dotted line is just this line repeated at higher redshifts.

counting of the galaxy’s rotation curve, the dynamical heating
and radial transport of stars by spiral arms, and the driving of
interstellar turbulence and gaseous radial transport by gravitational
instability.

Throughout, we take the approach of parametrizing uncertain
physical ingredients. These parameters may then be constrained by
comparing the model to data with a Bayesian approach. Doing so
naively turns out to be prohibitively expensive because the evolution
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Disc evolution 3601

Figure 7. Radial distributions. Various quantities for models drawn from the posterior distribution are shown as a function of rE,∗, defined as the radius
containing half of a galaxy’s stellar mass. A simple comparison with Milky Way data from Nakanishi & Sofue (2003) and Nakanishi & Sofue (2006) for H I

and H2 respectively is shown in black, while the red lines in those plots are derived from Herschel data in Pineda et al. (2013).

of a single galaxy, while many orders of magnitude cheaper than a
cosmological zoom-in simulation, still requires of order 10 minutes
depending on the values of the physical parameters. We have
therefore developed an emulator that can quickly predict a small
set of quantities calculable from the simulations given a point in
parameter space. This allows us to run MCMCs in a reasonable
amount of time.

The best-fitting model employs metal-enhanced galactic winds,
and outflows that are modest overall. Cosmologically accreting
material is distributed with a large scale length, and gravitational
instability plays a substantial role in redistributing gas and stars.
Systematic offsets in each observable quantity are explicitly in-

cluded in the fit, and these parameters are well represented among
the largest 2D correlations between different posterior quantities,
which provides an estimate of which observable quantities are most
strongly influenced by which parameters in the vicinity of the best
fit.

Overall the model does a good job of reproducing the data to
which it was fit. Despite the large number of parameters, this is a
non-trivial achievement. The model was required to fit 11 different
galaxy scaling relations at up to 4 different redshifts, and in practice
many of these observables are primarily influenced by the same
handful of parameters. We have also shown reasonable agreement
between the model and observations not used at all in the fits.
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3602 J. C. Forbes, M. R. Krumholz, and J. S. Speagle

Figure 8. More radial distributions. The scale height data for the Milky Way are from Nakanishi & Sofue (2003), and the rotation curve data are from
Bhattacharjee, Chaudhury & Kundu (2014).

We suggest that the emulator technique, suitably applied, will
be extremely helpful in employing flexible but computationally
non-trivial models to fit an increasingly rich range of observa-
tional data. We anticipate that the general-purpose models that
we have constrained here will be helpful for understanding a
wide range of problems, from the origin of scatter in galaxy
scaling relations and behaviours of disc galaxies across the star-
forming main sequence, to the structure of disc galaxies in terms
of their gas, stars, angular momentum and metals, and even
cosmological distribution functions, e.g. the probability density of
H I column densities originating in galactic discs, or CO intensity
mapping.
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Kereš D., Quataert E., 2016, MNRAS, 456, 2140
Mac Low M.-M., Klessen R. S., Burkert A., Smith M. D., 1998, Phys. Rev.

Lett., 80, 2754

MNRAS 487, 3581–3606 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/487/3/3581/5513462 by C
onsolidation Plus Q

U
EEN

 user on 08 July 2019

http://dx.doi.org/10.1146/annurev.astro.46.060407.145222
http://dx.doi.org/10.1111/j.1365-2966.2012.20340.x
http://dx.doi.org/10.3847/1538-4357/aa6b05
http://dx.doi.org/10.3847/2041-8205/819/1/L2
http://dx.doi.org/10.1088/0004-637X/770/1/57
http://dx.doi.org/10.1088/0004-637X/763/1/18
http://dx.doi.org/10.1093/mnras/stv2046
http://dx.doi.org/10.1086/379160
http://dx.doi.org/10.1088/0004-637X/785/1/63
http://dx.doi.org/10.1088/0004-637X/756/2/183
http://dx.doi.org/10.1093/mnras/stx2426
http://dx.doi.org/10.1038/311517a0
http://dx.doi.org/10.1086/591513
http://dx.doi.org/10.1088/0004-637X/718/2/1001
http://dx.doi.org/10.1111/j.1365-2966.2010.17370.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10519.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07881.x
http://dx.doi.org/10.1088/0004-637X/798/1/7
http://dx.doi.org/10.3847/0004-637X/826/2/214
http://dx.doi.org/10.1086/163134
http://dx.doi.org/10.1111/j.1365-2966.2006.10608.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16433.x
http://dx.doi.org/10.1086/376392
http://dx.doi.org/10.1093/mnras/sts439
http://dx.doi.org/10.1111/j.1365-2966.2011.20365.x
http://dx.doi.org/10.1093/mnras/stv270
http://dx.doi.org/10.1086/112305
http://dx.doi.org/10.1111/j.1365-2966.2006.10145.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12569.x
http://dx.doi.org/10.1038/nature07648
http://dx.doi.org/10.1088/0004-637X/766/1/25
http://dx.doi.org/10.1111/j.1365-2966.2009.14741.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14742.x
http://dx.doi.org/10.1093/mnras/stu742
http://dx.doi.org/10.1086/509314
http://dx.doi.org/10.1088/0004-637X/737/1/10
http://dx.doi.org/10.1093/mnras/stv744
http://dx.doi.org/10.1093/mnras/193.2.189
http://dx.doi.org/10.1088/0004-637X/776/1/63
http://dx.doi.org/10.1111/j.1365-2966.2011.19457.x
http://dx.doi.org/10.1093/mnras/stt866
http://dx.doi.org/10.1088/0004-637X/761/2/156
http://dx.doi.org/10.1088/0004-637X/754/1/48
http://dx.doi.org/10.1093/mnras/stt2294
http://dx.doi.org/10.1093/mnras/stu1142
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1093/mnras/stt1117
http://dx.doi.org/10.1111/j.1365-2966.2005.09321.x
http://dx.doi.org/10.1093/mnras/stw2564
http://dx.doi.org/10.1086/592241
http://dx.doi.org/10.1088/0004-637X/800/1/20
http://dx.doi.org/10.1088/0004-637X/814/2/131
http://dx.doi.org/10.3847/0004-637X/827/1/28
http://dx.doi.org/10.1093/mnras/stx071
http://dx.doi.org/10.1111/j.1365-2966.2010.18114.x
http://dx.doi.org/10.1093/mnras/stw2888
http://dx.doi.org/10.1093/mnras/stt1374
http://dx.doi.org/10.1093/mnras/stv705
http://dx.doi.org/10.1051/0004-6361/201527681
http://dx.doi.org/10.1088/0004-637X/691/2/1424
http://dx.doi.org/10.1093/mnras/stu1738
http://dx.doi.org/10.1093/mnras/stv2793
http://dx.doi.org/10.1086/313278
http://arxiv.org/abs/1804.07306
http://dx.doi.org/10.1051/0004-6361:20010966
http://dx.doi.org/10.1093/mnras/stv2310
http://dx.doi.org/10.1086/587500
http://dx.doi.org/10.1088/0067-0049/210/1/14
http://dx.doi.org/10.1088/0004-637X/779/2/102
http://dx.doi.org/10.1088/0004-637X/740/2/102
http://dx.doi.org/10.1088/2041-8205/764/2/L31
http://dx.doi.org/10.1088/0004-637X/724/2/895
http://dx.doi.org/10.1088/0004-637X/759/1/9
http://dx.doi.org/10.1093/mnras/stt1780
http://dx.doi.org/10.1093/mnras/stw434
http://dx.doi.org/10.1086/431734
http://dx.doi.org/10.1086/509101
http://dx.doi.org/10.1086/592490
http://dx.doi.org/10.1088/0004-637X/693/1/216
http://dx.doi.org/10.1088/0004-637X/699/1/850
http://dx.doi.org/10.1088/0004-637X/745/1/69
http://dx.doi.org/10.1093/mnras/sty852
http://dx.doi.org/10.1088/0004-637X/788/1/11
http://dx.doi.org/10.1086/505573
http://dx.doi.org/10.1093/mnras/stw3348
http://dx.doi.org/10.1088/0004-637X/734/1/48
http://dx.doi.org/10.3847/1538-4357/aa7fef
http://dx.doi.org/10.1088/0004-637X/772/2/119
http://dx.doi.org/10.1088/0004-637X/795/2/123
http://dx.doi.org/10.1088/0004-637X/808/2/129
http://dx.doi.org/10.1093/mnras/stu2215
http://dx.doi.org/10.1093/mnras/stv2659
http://dx.doi.org/10.1103/PhysRevLett.80.2754


3604 J. C. Forbes, M. R. Krumholz, and J. S. Speagle

Mandelker N., Padnos D., Dekel A., Birnboim Y., Burkert A., Krumholz M.
R., Steinberg E., 2016, MNRAS, 463, 3921

Maoz D., Mannucci F., Brandt T. D., 2012, MNRAS, 426, 3282
McBride J., Fakhouri O., Ma C.-P., 2009, MNRAS, 398, 1858
Miller S. H., Bundy K., Sullivan M., Ellis R. S., Treu T., 2011, ApJ, 741,

115
Miller S. H., Ellis R. S., Sullivan M., Bundy K., Newman A. B., Treu T.,

2012, ApJ, 753, 74
Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319
Moster B. P., Somerville R. S., Maulbetsch C., van den Bosch F. C., Macciò
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A P P E N D I X A : N U M E R I C A L C O M P U TAT I O N
O F ROTAT I O N C U RV E I N T E G R A L S

Having rewritten the equations for v2
φ,disc as in equation (21), the

integrals can be pre-computed at the beginning of each simulation
so long as the grid structure does not change over the course of the
simulation. In particular, the influence of disc material in the ith cell
on the circular velocity in the jth cell is

Vij =
∫ ∞

0
dkJ1(krj )k

∫ ri+1/2

ri−1/2

J0(kr ′)r ′dr ′. (A1)

Depending on whether rj is less than, greater than, or within the ith
cell, these integrals have closed-form solutions as sums of elliptic
integrals. During the simulation, the contribution to the circular
velocity from the disc is simply computed as

v2
φ,disc,j =

∑
i

(�i + �∗,i)Vij , (A2)

with Vij pre-computed.
In practice, computing v2

φ,disc this way and subjecting the disc
to transport via gravitational instability leads to unphysical grid-
scale oscillations in both the column density and the rotation curve.
Small perturbations in the surface densities lead to corresponding
perturbations in the rotation curve. Gravitational instability acts to
keep Q ∝ vφ /� constant, and so enhances the original perturbations
in �. This numerical instability is therefore the result of the
simulation attempting to enforce a broad ansatz, i.e. Q � 1 as
precisely true in every annulus.

To suppress unphysical oscillations in vφ and �, we artificially
suppress small-scale modes of �i and �i,∗ when computing equa-
tion (A2). In particular, �i and �i, ∗ in that equation, are replaced
with the inverse Fourier transforms of

�̃(k) = �FFT(k)e−(k/klim)nlim (A3)
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and

�̃∗(k) = �∗,FFT(k)e−(k/klim)nlim
, (A4)

where �FFT and �∗,FFT are the fast Fourier transforms of the gas
and stellar surface densities. With the appropriate choice of klim and
nlim, high-k (i.e. small-scale) oscillations in the surface densities are
suppressed enough that the numerical instability does not develop.

This procedure has the adverse effect of producing locations in
the rotation curve with discontinuous first derivatives. These in
turn can affect the numerical stability of the equations governing
mass transport. To smooth out these discontinuities, we additionally
average the full rotation curve (including contributions from all
three components) in fixed windows of 40 cells. This essentially
guarantees that regardless of the accretion history or size scale of
the galaxy being simulated, the simulation will run smoothly at least
as far as the rotation curve is concerned.

APPENDIX B: EMULATO R VALIDATION

In order to assess how well the models do at reproducing the data, we
employ a combination of visual and quantitative metrics. Visually
we can examine the residuals and any trends they may have with
particular variables. For the most part, the residuals are centred
about zero and there are no visible trends with Mh,0. A few variables
have larger scatters about zero at the low-mass end of the fits.

Aside from the residuals, the fit may be assessed with a quantile–
quantile (QQ) plot. For a given target variable, the values of that
variable in the validation set are sorted. The fit’s predicted values
for that variable, given the values of the input features in the
validation set, are also sorted. The first value in each list, then
the second value, and so on, are paired with each other and plotted.
If the predicted values and the actual values are drawn from the
same distribution, this plot will appear as a line near y = x. To
conserve space on the plot, these distributions are re-centred by
subtracting the median of the true distribution from both the true
and the predicted distributions. Additionally, since these quantities
are all logarithmic when the emulator sees them, the values shown
are also logarithmic. The values are not rescaled though, so the
different dynamic ranges of each target are still visible in Fig.
B1. For the most part, the samples do indeed fall close to the
diagonal dashed lines, indicating good agreement between the
predicted distributions and the actual distributions of the target
variables.

We can also use a few standard metrics to assess the fits. The first
is the R2 coefficient, defined as

R2 = 1 −
(∑

i

(ψval,i − ψpred,i)
2

)/(∑
i

(ψval,i − ψ̄val)
2

)
.(B1)

Here the sums extend over every element in the validation set, ψval,i

is the ith true value of the target quantity, ψpred,i is the corresponding
ψ value predicted by the regression, and ψ̄val is the arithmetic
mean of the ψval,i. By definition, if the model simply predicted the
mean value of the training set (and the training and test sets were

sufficiently large and drawn from the same distribution), R2 = 0.
If the prediction were perfect so that ψval,i = ψpred,i, R2 = 1. Note
that R2 can be negative if the predictions are worse than simply
predicting the average.

Another standard metric is to simply measure the coefficient of
correlation between the test set and the predictions, i.e.

ρ =
(∑

i(ψpred,i − ψ̄pred)(ψval,i − ψ̄val)
)

(∑
i(ψpred,i − ψ̄pred)2

∑
i(ψval,i − ψ̄test)

)1/2 . (B2)

This coefficient, unlike R2, is guaranteed to be between −1 and 1, the
latter implying a perfect match between the regression prediction
and the test set, and the former implying a perfect anticorrelation
between the two.

We are also particularly interested in the outlier fraction, namely
how often the emulator makes a large error, which we define as a
residual 	 = ψpred,i − ψval,i with absolute value greater than some
quantity, e.g. |	| > 0.3 or |	| > 1 since these can cause problems
for the MCMC. All of these quantities, along with the mean absolute
error, i.e. the average of |	|, are shown for each target variable for
the emulator used in the MCMC. The performance metrics are all
written such that lower values are better.

Figure B1. QQ plot. As described in the text, for each target variable the
values of the validation set are sorted and compared to the sorted values of
the emulator’s predictions (and both are centred to have zero median). A
good match between the distribution of quantities predicted by the emulator
and the true values corresponds to the points lying along the y = x line.
Each set of points and corresponding line is then offset vertically for visual
clarity. The emulator predicts eight different quantities, namely those shown
in equation (51) and Table B1, at four different redshifts.
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Table B1. Performance of the emulator.

Variable 1 − R2 AAEa MAEb 1 − ρ f|	| > 0.3 f|	| > 1.0

Mh

(z = 0) 0.0041 0.0142 0.0114 0.0018 0.0 0.0
(z = 1) 0.0124 0.0232 0.0161 0.0060 0.0011 0.0
(z = 2) 0.0181 0.0309 0.0215 0.0086 0.0028 0.0
(z = 3) 0.0194 0.0369 0.0281 0.0095 0.0033 0.0

M∗
(z = 0) 0.0347 0.0833 0.0509 0.0175 0.0386 0.000 56
(z = 1) 0.0359 0.0894 0.0557 0.0179 0.0454 0.000 56
(z = 2) 0.0450 0.1055 0.0603 0.0227 0.0616 0.004 48
(z = 3) 0.0174 0.0852 0.0588 0.0086 0.0319 0.000 56

sSFR
(z = 0) 0.1238 0.0909 0.0492 0.0626 0.0588 0.000 56
(z = 1) 0.1062 0.0913 0.0537 0.0541 0.0521 0.001 68
(z = 2) 0.1528 0.1019 0.0521 0.0793 0.0773 0.003 36
(z = 3) 0.0532 0.0666 0.0376 0.0263 0.0274 0.000 56

〈Zg〉SF

(z = 0) 0.0590 0.0835 0.0553 0.0296 0.0308 0.000 56
(z = 1) 0.0495 0.0844 0.0539 0.0246 0.0330 0.000 56
(z = 2) 0.0428 0.0866 0.0615 0.0210 0.0347 0.001 12
(z = 3) 0.0417 0.0857 0.0572 0.0205 0.0358 0.000 56

MH2 /M∗
(z = 0) 0.0848 0.1060 0.0644 0.0424 0.0650 0.001 68
(z = 1) 0.0906 0.1035 0.0635 0.0455 0.0644 0.003 92
(z = 2) 0.1413 0.1147 0.0623 0.0726 0.0813 0.005 60
(z = 3) 0.0584 0.0752 0.0485 0.0289 0.0280 0.001 121

r∗
(z = 0) 0.0907 0.0697 0.0486 0.0463 0.0179 0.0
(z = 1) 0.0833 0.0587 0.0393 0.0423 0.014 58 0.0
(z = 2) 0.0806 0.0511 0.0346 0.0405 0.0067 0.000 56
(z = 3) 0.0468 0.0425 0.0298 0.0234 0.0056 0.0

v2.2

(z = 0) 0.0406 0.0234 0.0160 0.0201 0.0 0.0
(z = 1) 0.0364 0.0238 0.0163 0.0179 0.0 0.0
(z = 2) 0.0340 0.0234 0.0161 0.0166 0.0 0.0
(z = 3) 0.030 33 0.0230 0.0163 0.0149 0.0 0.0

〈σ 〉SF

(z = 0) 0.0365 0.0446 0.0289 0.0182 0.0067 0.0
(z = 1) 0.032 64 0.0382 0.0240 0.0162 0.0061 0.0
(z = 2) 0.0319 0.0370 0.0238 0.0158 0.0050 0.0
(z = 3) 0.0361 0.0402 0.0271 0.0178 0.0039 0.0

aAverage absolute error.
bMedian absolute error.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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